TY - JOUR A1 - Borzekowski, Antje A1 - Drewitz, T. A1 - Keller, Julia A1 - Pfeifer, Dietmar A1 - Kunte, Hans-Jörg A1 - Koch, Matthias A1 - Rohn, S. A1 - Maul, R. T1 - Biosynthesis and characterization of zearalenone-14-sulfate, zearalenone-14-glucoside and zearalenone-16-glucoside using common fungal strains N2 - Zearalenone (ZEN) and its phase II sulfate and glucoside metabolites have been detected in food and feed commodities. After consumption, the conjugates can be hydrolyzed by the human intestinal microbiota leading to liberation of ZEN that implies an underestimation of the true ZEN exposure. To include ZEN conjugates in routine analysis, reliable standards are needed, which are currently not available. Thus, the aim of the present study was to develop a facilitated biosynthesis of ZEN-14-sulfate, ZEN-14-glucoside and ZEN-16-glucoside. A metabolite screening was conducted by adding ZEN to liquid fungi cultures of known ZEN conjugating Aspergillus and Rhizopus strains. Cultivation conditions and ZEN incubation time were varied. All media samples were analyzed for metabolite formation by HPLC-MS/MS. In addition, a consecutive biosynthesis was developed by using Fusarium graminearum for ZEN biosynthesis with subsequent conjugation of the toxin by utilizing Aspergillus and Rhizopus species. ZEN-14-sulfate (yield: 49%) is exclusively formed by Aspergillus oryzae. ZEN-14-glucoside (yield: 67%) and ZEN-16-glucoside (yield: 39%) are formed by Rhizopus oryzae and Rhizopus oligosporus, respectively. Purities of ≥73% ZEN-14-sulfate, ≥82% ZEN-14-glucoside and ≥50% ZEN-16-glucoside were obtained by 1H-NMR. In total, under optimized cultivation conditions, fungi can be easily utilized for a targeted and regioselective synthesis of ZEN conjugates. KW - Mycotoxin KW - Zearalenone KW - Conjugate KW - Biosynthesis KW - Fusarium KW - Aspergillus KW - Rhizopus PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444246 DO - https://doi.org/10.3390/toxins10030104 SN - 2072-6651 VL - 10 IS - 3 SP - Article 104, 1 EP - 15 PB - MDPI CY - Basel AN - OPUS4-44424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keller, Julia A1 - Borzekowski, Antje A1 - Haase, H. A1 - Menzel, R. A1 - Rueß, L. A1 - Koch, Matthias T1 - Toxicity assay for citrinin, zearalenone and zearalenone-14-sulfate using the nematode Caenorhabditis elegans as model organism N2 - To keep pace with the rising number of detected mycotoxins, there is a growing need for fast and reliable toxicity tests to assess the potential threat to food safety. Toxicity tests with the bacterial-feeding nematode Caenorhabditis elegans as model organism are well established. In this study the C. elegans wildtype strain N2 (var. Bristol) was used to investigate the toxic effects of the food-relevant mycotoxins citrinin (CIT) and zearalenone-14-sulfate (ZEA-14-S) and zearalenone (ZEA) on different life cycle parameters including reproduction, thermal and oxidative stress resistance and lifespan. The metabolization of the mycotoxins by the nematodes in vivo was investigated using HPLC-MS/MS. ZEA was metabolized in vivo to the reduced isomers α-zearalenol (α-ZEL) and β-ZEL. ZEA 14-S was reduced to α-/β-ZEL 14-sulfate and CIT was metabolized to mono-hydroxylated CIT. All mycotoxins tested led to a significant decrease in the number of nematode offspring produced. ZEA and CIT displayed negative effects on stress tolerance levels and for CIT an additional shortening of the mean lifespan was observed. In the case of ZEA-14-S, however, the mean lifespan was prolonged. The presented study shows the applicability of C. elegans for toxicity testing of emerging food mycotoxins for the purpose of assigning potential health threats. KW - Mycotoxins KW - Metabolization KW - Toxicity testing KW - Biotests PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-455772 DO - https://doi.org/10.3390/toxins10070284 VL - 10 IS - 7 SP - 284, 1 EP - 12 PB - MDPI AN - OPUS4-45577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Borzekowski, Antje A1 - Anggriawan, R. A1 - Auliyati, M. A1 - Kunte, Hans-Jörg A1 - Koch, Matthias A1 - Rohn, S. A1 - Karlovsky, P. A1 - Maul, Ronald T1 - Formation of Zearalenone Metabolites in Tempeh Fermentation N2 - Tempeh is a common food in Indonesia, produced by fungal fermentation of soybeans using Rhizopus sp., as well as Aspergillus oryzae, for inoculation. Analogously, for economic reasons, mixtures of maize and soybeans are used for the production of so-called tempeh-like products. For maize, a contamination with the mycoestrogen zearalenone (ZEN) has been frequently reported. ZEN is a mycotoxin which is known to be metabolized by Rhizopus and Aspergillus species. Consequently, this study focused on the ZEN transformation during tempeh fermentation. Five fungal strains of the genera Rhizopus and Aspergillus, isolated from fresh Indonesian tempeh and authentic Indonesian inocula, were utilized for tempeh manufacturing from a maize/soybean mixture (30:70) at laboratory-scale. Furthermore, comparable tempeh-like products obtained from Indonesian markets were analyzed. Results from the HPLC-MS/MS analyses show that ZEN is intensely transformed into its metabolites alpha-zearalenol (alpha-ZEL), ZEN-14-sulfate, alpha-ZEL-sulfate, ZEN-14-glucoside, and ZEN-16-glucoside in tempeh production. alpha-ZEL, being significantly more toxic than ZEN, was the main metabolite in most of the Rhizopus incubations, while in Aspergillus oryzae fermentations ZEN-14-sulfate was predominantly formed. Additionally, two of the 14 authentic samples were contaminated with ZEN, alpha-ZEL and ZEN-14-sulfate, and in two further samples, ZEN and alpha-ZEL, were determined. Consequently, tempeh fermentation of ZEN-contaminated maize/soybean mixture may lead to toxification of the food item by formation of the reductive ZEN metabolite, alpha-ZEL, under model as well as authentic conditions. KW - Modified mycotoxins KW - Zearalenone sulfate KW - a-zearalenol KW - Food fermentation KW - Rhizopus and Aspergillus oryzae PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-491126 DO - https://doi.org/10.3390/molecules24152697 VL - 24 IS - 15 SP - 2697 PB - MDPI AN - OPUS4-49112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Borzekowski, Antje A1 - Auliyati, M. A1 - Anggriawan, R. A1 - Kunte, Hans-Jörg A1 - Rohn, S. A1 - Koch, Matthias A1 - Karlovsky, P. A1 - Maul, R. T1 - Fungi Isolated from Indonesian Tempeh Production Capable of Zearalenone Conjugation N2 - Zearalenone (ZEN) and its metabolites such as the phase II sulfate and glucoside conjugates have been detected in food and feed commodities1. In addition to these naturally occurring ZEN conjugates, food fermentation by fungi may also lead to conjugate formation. Fungal strains of the genera Rhizopus and Aspergillus are used in tempeh fermentation, and it is known that some strains can conjugate ZEN2. Moreover, during this process the reductive phase I metabolites α- and β-zearalenol (α-/β-ZEL) and their conjugates are formed by the same microorganisms in vitro. As the conjugates can be hydrolysed by human intestinal microbiota, also sulfates and glucosides represent a relevant source for the human exposure to ZEN. If the unprocessed grains for tempeh fermentation like soybeans and/or maize are contaminated with ZEN, upon analysis ZEN content of the final tempeh product may be underestimated, because ZEN has been conjugated during food processing. Very recently, the EU-CONTAM Panel found it appropriate to set a group tolerable daily intake (TDI) expressed as ZEN equivalents for ZEN and its modified forms (phase I and phase II metabolites)3. In this study a total of 70 strains of fungal species commonly found in tempeh fermentation were screened for ZEN metabolite formation in vitro. The fungal strains were isolated from inocula or fresh tempeh from different tempeh producers and market areas in Indonesia. ZEN (c = 0.3 µM) was added to liquid cultures of the fungi. After two days of incubation the media were analyzed for metabolite formation by HPLC-MS/MS. The conjugate formation varied with the fungal strain. In most cultures ZEN-14-sulfate was the major metabolite accompanied by rapid disappearance of ZEN; also, formation of α- and β-ZEL, ZEN-16-glucoside and two ZEL-sulfates has been observed. The in vitro-screening showed that fungal strains used in tempeh fermentation have the potential for ZEN conversion leading to ZEN and ZEL conjugate formation. Therefore, reference substances of ZEN conjugates are urgently needed for monitoring food safety of tempeh and other fermented products manufactured from grains that can be contaminated with ZEN. T2 - 39th Mycotoxin Workshop CY - Bydgoszcz, Poland DA - 19.06.2017 KW - Mycotoxin KW - Tempeh PY - 2017 AN - OPUS4-40964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keller, Julia A1 - Borzekowski, Antje A1 - Koch, Matthias T1 - Mykotoxine in Lebensmitteln - Zearalenon und seine Transformationsprodukte N2 - Mykotoxine in Lebensmitteln stellen weltweit Probleme dar, Zearalenon in Speiseöl ist ein solches. Neue Hydrazinbasierte Analyseverfahren können jetzt helfen, den EU-Grenzwert besser zu kontrollieren. Aber auch die Strukturaufklärung von Transformationsprodukten und verlässliche Kalibrierstandards sind aktuelle Herausforderungen. KW - Analyseverfahren KW - Hydrazin KW - Speiseöle KW - Transformationsprodukte PY - 2019 IS - 03 SP - 34 EP - 36 AN - OPUS4-47858 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -