TY - CONF A1 - Brence, Blaž A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens T1 - Interdigital Transducers for Structural Health Monitoring N2 - Interdigital transducers (IDTs) are a well-known tool for excitation of surface acoustic waves. The use of IDTs is versatile, but they are most commonly employed as actuators for excitation of ultrasonic guided waves (UGWs). However, they are still a relatively new technology, which leaves many possibilities for future research, especially in the scope of newly emerging structural health monitoring (SHM) systems. IDTs offer low weight, design flexibility and beam directivity, which make them ideal candidates for employment in such systems. Due to the IDTs’ and waves’ complexity, problems often cannot be described analytically, therefore they require numerical solutions and experimental validations. In this contribution, a novel, simple use of IDTs, in the scope of SHM is described. Firstly, numerical findings acquired with finite element method are presented. To validate those results, experiments in a plate-like waveguide are carried out. A good agreement between them is found. The results show the potential of the IDTs in yet another prospective application, which could be attractive for adoption in the future. T2 - DAGA 2022 - Jahrestagung für Akustik CY - Stuttgart, Germany DA - 21.03.2022 KW - Lamb waves KW - Ultrasonic Guided Waves KW - Selective excitation PY - 2022 AN - OPUS4-55500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brence, Blaž A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens T1 - Interdigital Transducers for Structural Health Monitoring N2 - Interdigital transducers (IDTs) are a well-known tool for excitation of surface acoustic waves. The use of IDTs is versatile, but they are most commonly employed as actuators for excitation of ultrasonic guided waves (UGWs). However, they are still a relatively new technology, which leaves many possibilities for future research, especially in the scope of newly emerging structural health monitoring (SHM) systems. IDTs offer low weight, design flexibility and beam directivity, which make them ideal candidates for employment in such systems. Due to the IDTs’ and waves’ complexity, problems often cannot be described analytically, therefore they require numerical solutions and experimental validations. In this contribution, a novel, simple use of IDTs, in the scope of SHM is described. Firstly, numerical findings acquired with finite element method are presented. To validate those results, experiments in a plate-like waveguide are carried out. A good agreement between them is found. The results show the potential of the IDTs in yet another prospective application, which could be attractive for adoption in the future. T2 - 48. Jahrestagung für Akustik (DAGA) CY - Stuttgart, Germany DA - 21.03.2022 KW - Lamb waves KW - Ultrasonic Guided Waves KW - Selective excitation PY - 2022 SP - 221 EP - 224 AN - OPUS4-55501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brence, Blaž A1 - Bulling, Jannis A1 - Lugovtsova, Yevgeniya A1 - Kraemer, P. A1 - Prager, Jens T1 - Determination of a notch depth using ultrasonic guided waves N2 - In non-destructive testing and structural health monitoring, ultrasonic guided waves (UGWs) are of great interest for finding and characterizing structural flaws. The interaction of the waves with the flaws can often not be described analytically due to waves’ complexity. This makes numerical simulations and experiments indispensable. However, mentioned field of research is still relatively young and most of the methods focus on flaw localization, using time of flight of the reflected signal. This leaves many possibilities for further research, especially when it comes to separate analysis of different propagating modes. It is well-known that ultrasonic wave modes convert when interacting with flaws. When a fundamental mode (A0 or S0) encounters a notch, it interacts and converts to another fundamental mode. In this contribution, this effect is used to analyze the depth of a notch. Firstly, numerical simulations are presented, which show notch depth proportionality to amplitude ratio of fundamental modes. To validate these results, experiments were carried out on a metal plate with a shallow notch which was gradually deepened. UGWs were excited using a polymer-based interdigital transducer (IDT) and detected with a 3D laser Doppler vibrometer. The IDT is employed to ensure excitation of a single mode and thus to reduce the complexity of the analysis. Good agreement between numerical and experimental results has been found. The results show the potential of UGWs not only for defect reconstruction and localization, but also its precise sizing. T2 - 10th European Workshop on Structural Health Monitoring (EWSHM 2022) CY - Palermo, Italy DA - 04.07.2022 KW - Lamb waves KW - Numerical simulation KW - Selective excitation PY - 2022 AN - OPUS4-55502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mustapha, S. A1 - Yilmaz, Bengisu A1 - Heimann, Jan A1 - Brence, Blaz A1 - Prager, Jens T1 - Guided Waves Propagation in Composite Overwrapped Pressure Vessel N2 - The application of composite overwrapped pressure vessels (COPV) to store hydrogen and other compressed gases, especially when operating at high pressures, imposed the need for an innovative and reliable approach to ensure the safe operation of the system. Continuous structural health monitoring (SHM) based on ultrasonic guided waves (GWs) is a promising approach due to the ability of the wave to propagate for long distances and go around complex structures, moreover the high sensitivity to various failure modes such as delamination, matrix cracking and debonding. In this study, we scrutinize the behavior of (GWs) within the COPV using a network of PZT elements that are used for excitation and sensing. A laser doppler vibrometer (LDV) was also used to scan the surface of the vessel in various directions. L(0,1) and L(0,2) were observed in the captured signal. The L(0, 2) appeared to be a dominant mode in the COPV and was capable of propagating along the entire length and maintaining a good signal-to-noise ratio. The L(0,2) mode maintained the same phase velocity when it is captured at various excitation angles (0, 45, and 90 degrees). The reduced effect of the orthotropy of the materials on the propagating waves is an important result as it will reduce the complexity in data processing when performing damage identification. T2 - 13th. European Conference on Non-Destructive Testing (ECNDT) CY - Lisbon, Portugal DA - 03.07.2023 KW - Composite Overwrapped Pressure Vessels KW - Guided Waves KW - Laser Doppler Vibrometer KW - Structural Health Monitoring KW - Sensors Placement PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-591081 DO - https://doi.org/10.58286/28068 SN - 2941-4989 VL - 1 IS - 1 SP - 1 EP - 6 PB - NDT.net CY - Mayen AN - OPUS4-59108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heimann, Jan A1 - Mustapha, S. A1 - Yilmaz, Bengisu A1 - Charmi, Amir A1 - Brence, Blaž A1 - Prager, Jens T1 - Untersuchung der Ausbreitung von geführten Ultraschallwellen in Wasserstoffdruckbehältern zur Zustandsüberwachung N2 - Die zunehmende Bedeutung von Wasserstoff als emissionsfreier Energieträger der Zukunft lässt die Anforderungen an eine technisch einwandfreie und sichere Wasserstoffspeicherung steigen. Im Mobilitätssektor kommen dabei vorwiegend Kohlefaserverbundbehälter zur Speicherung von gasförmigem Wasserstoff im Hochdruckbereich zum Einsatz, die sich durch ihre Leichtbauweise bei gleichzeitig hoher Speicherkapazität auszeichnen. Materialfehler oder -ermüdung können jedoch zum Ausfall bis hin zum kritischen Versagensfall führen. Ein sicherer Betrieb der Behälter erfordert daher ein innovatives und zuverlässiges Konzept, um deren Integrität zu gewährleisten und folgenschwere Zwischenfälle zu vermeiden. Die Strukturüberwachung mittels geführter Ultraschallwellen ist dafür einer der prominentesten Ansätze, da sich die Wellen über große Entfernungen in der Struktur ausbreiten können und zudem sehr empfindlich auf kleinste Materialdefekte reagieren. In diesem Beitrag wird der Aufbau eines Sensornetzwerks zur Schadenserkennung und -lokalisierung vorgestellt, das auf den Prinzipien der Ausbreitung geführter Ultraschallwellen in Druckbehältern aus Verbundwerkstoffen basiert. Dazu werden in einem ersten Schritt das dispersive und multimodale Ausbreitungsverhalten analysiert und dominante Wellenmoden identifiziert. Basierend auf der Analyse werden Dämpfungsverhalten und Empfindlichkeit gegenüber künstlichen Defekten bestimmt. Unter Verwendung der ermittelten Informationen wird ein Sensornetzwerk bestehend aus piezoelektrischen Flächenwandlern entworfen, welches den zu untersuchenden Bereich vollständig abdecken soll. Das Ergebnis wird anschließend durch Aufbringen künstlicher Defekte experimentell evaluiert und präsentiert. T2 - DAGA 2023 CY - Hamburg, Germany DA - 06.03.2023 KW - Geführte Ultraschallwellen KW - Zustandsüberwachung KW - Wasserstoffdruckbehälter KW - Sensornetzwerk KW - Structural Health Monitoring PY - 2023 UR - https://pub.dega-akustik.de/DAGA_2023 SN - 978-3-939296-21-8 SP - 1598 EP - 1601 CY - Berlin AN - OPUS4-58022 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -