TY - CONF A1 - Krütt, Enno A1 - Pirskawetz, Stephan A1 - Wallau, Wilma A1 - Meng, Birgit T1 - Development of an automated 60 °C Concrete Prism Test T2 - Proceedings of the 16th International Conference on Alkali-Aggregate Reaction in Concrete N2 - ln most of the ASR-test procedures, the expansion of concrete or mortar specimens is used as an indicator to assess the ASR-potential of an aggregate or a specific concrete mix. For these tests, the specimens are stored in an ASR-provoking environment, where the reaction is accelerated by elevated temperature and humidity. To measure the length change, the storage must be interrupted for at least a few minutes. Düring the 60 °C Concrete Prism Test (60 °C-CPT), the specimens are cooled down to 20 °C for 24 hours, to ensure the same hygrothermal conditions for every measurement. This limits the number of measurements during the test period and may lead to additional effects, that probably influence the expansion development. With a recently developed device, it is possible to continuously monitor the expansion ofprisms without interrupting the ASR-provoking storage. Due to the dense database of this automated test, the results can contribute to a better understanding of the ASR-process. This study compares results of the automated and conventional 60 °C-CPT. Tests of different aggregates showed, that the results of the automated and conventional test are consistent, but the expansions during the conventional test are generally higher. Preliminary results led to the conclusion, that the cooling for the measurements leads to additional expansions. Therefore, a modified threshold should be discussed for the automated 60 °C-CPT. T2 - 16th International Conference on Alkali-Aggregate Reaction in Concrete CY - Lisboa, Portugal DA - 31.05.2022 KW - 60 °C-CPT KW - ASR expansion monitoring KW - Automated testing PY - 2021 SN - 978-972-49-2315-4 VL - 1 SP - 789 EP - 799 AN - OPUS4-54553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Werder, Julia A1 - Simon, Sebastian A1 - Meng, Birgit T1 - Internal sulfate resistance of concrete T2 - EuroCoalAsh 2021 Conference “International Conference for Promoting the Use of Coal Combustion Products (CCPs) in Construction” N2 - If the amount of sulfate within the mix design for concrete is not balanced, ettringite formation which first controls solidification continues while the concrete is hardening. Ettringite forms by reaction of sulfate contained in the cement or in some admixture with calcium aluminate (C3A) as cement component. The “late primary ettringite formation” promotes an increase in volume within the hardened concrete leading to cracks. To analyze the effect of substituting part of ordinary Portland cement (OPC) by a treated brown coal fly ash mortar bars were tested according to ASTM C452. This test method was originally developed to extrapolate from the internal to external sulfate attack and is based on the idea that by testing a concrete mixture containing sulfate the process of deterioration is accelerated because it does not have to diffuse into the concrete before reaction first. In addition to the samples prescribed in ASTM C452 further samples in the size of the German SVA procedure were tested also designed for accessing the external sulfate resistance. The results show that while the replacement of 25 % of cement by brown coal fly ash leads to length changes around the limit defined by ASTM, the substitution of 50 % cement exceeded the limit by a multiple. The progress of expansion is the very similar for the two geometries tested. In-situ XRD measurements confirmed that while for pastes made of OPC the formation of ettringite is completed after 20 hours, this is not true for the mixtures containing the brown coal fly ash. In a different study the effect of hydrothermal treatment on the phase composition of ultra-high-performance concrete was analyzed. The results show that the sulfate and aluminate resulting from the decomposition of ettringite are bound into new phases. If this binding is permanent this might allow the larger use of sulfate bearing raw materials. T2 - EuroCoalAsh 2021 Conference CY - Online meeting DA - 02.11.2021 KW - Brown coal fly ash KW - Ettringite KW - Internal sulfate resistance KW - Test methods KW - In-situ XRD KW - Hydrothermal treatment PY - 2021 SP - 131 EP - 137 CY - Thessaloniki AN - OPUS4-54133 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -