TY - CONF A1 - Beyer, Sebastian A1 - Emmerling, Franziska A1 - Schneider, Rudolf T1 - Surface functionality independent conjugation of biomolecules to colloidal metal-organic frameworks and their exemplified application in immuno-assays N2 - Metal-organic framework (MOF) colloids hold great potential for bioanalytical and biomedical applications due to their unique features. These include responsive luminescent properties and exceptionally high loading capacities for small molecular drugs. However, currently the lack of a surface functionality independent method for biomolecule conjugation is strongly limiting the advancement of colloidal MOFs in bioanalytical or biomedical applications. Bioanalytical methods, especially for environmental analysis, would benefit dramatically when responsive luminescent properties of MOFs could be coupled with a specific antibody interaction. Targeted drug delivery in biomedical applications often requires specificity towards tissues of interest in addition to a high drug loading capacity. Thus, both envisioned applications require biomolecules and in particular antibodies to be conjugated to colloidal MOFs. Here, we propose a robust and easy to handle method that is suitable for a wide range of MOF templates and that allows reliable conjugation of biomolecules. Colloidal ZIF-8 MOFs with particle size between 300nm and 5µm were used as templates to adsorb polymeric multilayer through a Layer-by-Layer self-assembly process. Multilayer build up was confirmed by the change in zeta-potential of particles upon polyelectrolyte adsorption as well as dynamic light scattering experiments and SEM/TEM microscopy. Subsequent biomolecule conjugation to functional groups of the polymeric multilayer on the surface of colloidal MOFs was achieved by established carbodiimide/succinimide conjugation chemistry. Successful and stable conjugation was confirmed by employing fluorescent labeled biomolecules. Subsequently, colloidal MOF-antibody (IgG) conjugates were utilized in a solid-phase immuno assay using antibodies against carbamazepine and lithocholic acid, two interesting markers in environmental analysis. In brief, mouse anti-CBZ (Carbamazepine) and rabbit anti-lithocholic acid were separately and covalently immobilized on 2D polystyrene surfaces to form a small micro spot array. Two separate populations of colloidal MOF particles were conjugated with goat anti mouse IgG and goat anti rabbit IgG, respectively. The different fluorescent labels of the two MOF colloid populations allowed the determination of binding selectivity and strength of the colloidal MOF-antibody conjugates to the immobilized binding partners. The ability to coat MOFs in solution independent of their surface charge with polymers and subsequently to conjugate biomolecules to their surface makes this method a powerful tool to foster bioanalytical, biomedical as well as other applications. T2 - MOF-2016 Conference Long Beach, California CY - Long Beach, California, USA DA - 11.09.2016 KW - Immunoassay PY - 2016 AN - OPUS4-38498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beyer, Sebastian A1 - Rothfahl, Kevin A1 - Chapartegui, Ander A1 - Emmerling, Franziska A1 - Schneider, Rudolf T1 - Colloidal metalorganic frameworks as novel biofunctional nanoparticles for immunoassay applications N2 - Metal-organic framework (MOF) colloids have unique features that render them ideal signalling agents for realizing advanced immunoassay-based detection systems. MOFs are porous coordination polymers of metal nodes and organic linkers. The pore size of MOFs can be engineered and tailored to allow specific host (MOF) and guest (analyte) interactions. The particle sizes of the colloidal MOF can be tailored by employing methods from colloidal chemistry in wet synthesis. The adaption of established Layer-by-Layer polyelectrolyte coating protocols [1] allows equipping colloidal MOF particles with a nanometer thin polyelectrolyte membrane. This polyelectrolyte membrane serves as an interface for antibody binding. These biofunctional MOF nanoparticles have shown a strong immuno-binding that is sufficient for solid state immunoassays. Our current research addresses the design of luminescence encoded colloidal particle libraries by adjusting the ratios of e.g. Terbium (green) and Europium (red) metal nodes in mixed lanthanide based MOF-76. These mixed lanthanide MOF-76 particles are envisioned to allow multiplexed immuno-detection of endocrine disruptors such as bisphenol A. In addition we investigate the detection of analytes that do not allow the production of antibodies due to their inherent properties. Such “difficult analytes” have a strong hydrophobicity or are very small or highly toxic molecules. One example is the common plasticizer dioctylphthalate that is also a potent endocrine disruptor. MOF colloids can address this issue by specific host (MOF) : guest (analyte) interactions that result in analyte-specific colour change or exciplex-based fluorescence emission. Our overall aim is to develop methodologies that allow parallel sensing of two endocrine disruptors (e.g. bisphenol A & phthalates) by simultaneous immuno-detection and MOF:analyte specific interactions. T2 - BioSensor 2017 - 1st European and 10th German BioSensor Symposium CY - Potsdam, Germany DA - 20.03.2017 KW - MOFs KW - Immunoassay KW - Nanoparticles PY - 2017 AN - OPUS4-43522 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -