TY - JOUR A1 - Müller, Patrick A1 - Morys, Michael A1 - Sut, Aleksandra A1 - Jäger, Christian A1 - Illerhaus, Bernhard A1 - Schartel, Bernhard T1 - Melamine poly(zinc phosphate) as flame retardant in epoxy resin: Decomposition pathways, molecular mechanisms and morphology of fire residues N2 - Synergistic multicomponent systems containing melamine poly(metal phosphate)s have been recently proposed as flame retardants. This work focuses on the decomposition pathways, molecular mechanisms and morphology of the fire residues of epoxy resin (EP) flame retarded with melamine poly(zinc phosphate) (MPZnP) to explain the modes of action and synergistic effects with selected synergists (melamine polyphosphate (MPP) and AlO(OH), respectively). The total load of flame retardants was always 20 wt.%. The decomposition pathways were investigated in detail via thermogravimetric Analysis coupled with Fourier transform infrared spectroscopy. The fire residues were investigated via elemental analysis und solid-state nuclear magnetic resonance spectroscopy. The morphology of intumescent fire residues was investigated via micro-computed tomography and scanning electron microscopy. EP + (MPZnP + MPP) formed a highly voluminous residue that showed structural features of both EP + MPZnP and EP + MPP, resulting in a highly effective protection layer. EP + (MPZnP + AlO(OH)) preserved the entire quantity of phosphorus content during combustion due to the Formation of Zn₂P₂O₇ and AlPO₄. KW - Melamine poly(metal phosphate) KW - Flame retardancy KW - Epoxy resin KW - Solid-state NMR KW - Micro-computed tomography KW - Fire residue PY - 2016 U6 - https://doi.org/10.1016/j.polymdegradstab.2016.06.023 SN - 0141-3910 VL - 130 SP - 307 EP - 319 PB - Elsevier AN - OPUS4-36863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morys, Michael A1 - Illerhaus, Bernhard A1 - Sturm, Heinz A1 - Schartel, Bernhard T1 - Revealing the inner secrets of intumescent chars by advanced small scale tests combined with µ-CT N2 - Testing of intumescent coatings for Steel is usually done in intermediate scale or even full scale experiments and is hence quite expensive. We developed two complementary small scale tests, simulating fully developed Tire. First is a strongly modified electrical muffle furnace, which is now able to follow the Standard temperature-time curve (according EN 1363-1) for 90 min in a very accurate manner. Düring the experiment backside temperatures are recorded and the growth of the char is observed with a custom made high temperature endoscope. Second is a testing apparatus based on a propane-oxygen-bumer for direct severe flame impingement of coated samples, reaching temperatures far above 1500 °C. Our small scale samples are coated Steel plates of a size of 75 x 75 x 2 mm3. The structure-propertyrelation between additives, thermal properties and morphology of the char were examined using a well determined series of samples consisting of basic composition mixed with different additives. With the burner-testing-apparatus we studied the behavior of a high performance coating, which shows a transformation of the carbonaceous char into a ceramic foam at temperatures as high as 1600 °C. Nondestructive micro-computed tomography was used to characterize the morphology of the char. According to the structure of the foams we used different analytic methods like cell-detection or wallthickness-analysis. Additional scanning electron and optical microscopy were performed. The combination of the CT-data with the measured backside temperatures of the different samples provides us a deep understanding of the interaction between isolating properties and morphology of intumescent chars. T2 - Fire and materials 2015 - 14th International conference and exhibition CY - San Francisco, CA, USA DA - 02.02.2015 PY - 2015 SP - 478 EP - 483 PB - Interscience Communications AN - OPUS4-32710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Morys, Michael A1 - Illerhaus, Bernhard A1 - Sturm, Heinz A1 - Schartel, Bernhard T1 - Revealing the inner secrets of intumescence: Advanced standard time temperature oven (STT Mufu+)—my‐computed tomography approach N2 - Intumescent coatings have been used for fire protection of steel for decades, but there is still a need for improvement and adaptation. The key parameters of such coatings in a fire Scenario are thermal insulation, foaming dynamics, and cohesion. The fire resistance tests, large furnaces applying the standard time temperature (STT) curve, demand coated full‐scale components or intermediate‐scale specimen. The STT Mufu+ (standard time temperature muffle furnace+) approach is presented. It is a recently developed bench‐scale testing method to analyze the performance of intumescent coatings. The STT Mufu+ provides vertical testing of specimens with reduced specimen size according to the STT curve. During the experiment, the foaming process is observed with a high‐temperature endoscope. Characteristics of this technique like reproducibility and resolution are presented and discussed. The STT Mufu+ test is highly efficient in comparison to common tests because of the reduced sample size. Its potential is extended to a superior research tool by combining it with advanced residue analysis (μ‐computed tomography and scanning electron microscopy) and mechanical testing. The benefits of this combination are demonstrated by a case study on 4 intumescent coatings. The evaluation of all collected data is used to create performance‐based rankings of the tested coatings. KW - Bench‐scale fire testing KW - Computed tomography KW - Fire resistance KW - Intumescence KW - Residue analysis KW - Standard time temperature furnace PY - 2017 U6 - https://doi.org/10.1002/fam.2426 SN - 0308-0501 SN - 1099-1018 VL - 41 IS - 8 SP - 927 EP - 939 PB - Wiley AN - OPUS4-42754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Morys, Michael A1 - Illerhaus, Bernhard A1 - Sturm, Heinz A1 - Schartel, Bernhard T1 - Size is not all that matters: Residue thickness and protection performance of intumescent coatings made from different binders N2 - In addition to the acid source, charring agent, and blowing agent, the binder is a crucial part of an intumescent coating. Its primary task is to bind all compounds, but it also acts as a carbon source and influences the foaming process. A series of intumescent coatings based on five different binders was investigated in terms of insulation, foaming, mechanical impact resistance, and residue morphology. The Standard Time-Temperature modified Muffle Furnace (STT MuFu+ ) was used for the bench-scale fire resistance tests and provided data on temperature and residue thickness as well as well-defined residues. The residue morphology was analyzed by nondestructive m-computed tomography and scanning electron microscopy. A moderate influence of the binder on insulation performance was detected in the set of coatings investigated, whereas the foaming dynamics and thickness achieved were affected strongly. In addition, the inner structure of the residues showed a rich variety. High expansion alone did not guarantee good insulation. Furthermore, attention was paid to the relation between the microstructure transition induced by carbon loss due to thermo-oxidation of the char and the development of the thermal conductivity and thickness of the coatings during the fire test. KW - Intumescence KW - Morphology analysis KW - Computed tomography KW - Fire resistance KW - Bench-scale fire test KW - Fire protective coating PY - 2017 U6 - https://doi.org/10.1177/0734904117709479 SN - 0734-9041 SN - 1530-8049 VL - 35 IS - 4 SP - 284 EP - 302 PB - Sage AN - OPUS4-40766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Morys, Michael A1 - Illerhaus, Bernhard A1 - Sturm, Heinz A1 - Schartel, Bernhard T1 - Variation of intumescent coatings revealing different modes of action for good protection performance N2 - Thermal insulation and mechanical resistance play a crucial role for the performance of an intumescent coating. Both properties depend strongly on the morphology and morphological development of the foamed residue. Small amounts (4 wt%) of fiberglass, clay and a copper salt, respectively, are incorporated into an intumescent coating to study their influence on the morphology and Performance of the residues. The bench scale fire tests were performed on 75 x 75 x 2 mm³ coated steel plates according to the standard time–temperature curve in the Standard Time Temperature Muffle Furnace+ (STT Mufu+). It provided information about foaming dynamics (expansion rates) and thermal insulation. Adding the copper salt halved the expansion height, whereas the clay and fiberglass Change the height of the residue only moderately. The time to reach 500 °C was improved by 31% for clay and 15% for the other two fillers. Nondestructive micro computed tomography is used to assess the inner structure of the residues. A transition of the residue from a black, carbonaceous foam with closed cells into an inorganic, residual open cell sponge occurs at high temperatures. This transition is due to a loss of carbon; the change in microstructure is analyzed by scanning electron microscopy. Additional mechanical tests are performed and interpreted with respect to the results of the morphology analysis. Adding clay or copper salt improved the mechanical resistance tested by a factor 4. The additives significantly influence the thickness and foaming Dynamics as well as the inner structure of the residues, whereas their influence on insulation Performance is moderate. In conclusion, different modes of action are observed to achieve similar insulation performance during the fire test. KW - Intumescence KW - Coating KW - Bench scale fire testing KW - Computed tomography KW - Fire resistance PY - 2017 U6 - https://doi.org/10.1007/s10694-017-0649-z SN - 0015-2684 SN - 1572-8099 VL - 53 IS - 4 SP - 1569 EP - 1587 PB - Springer AN - OPUS4-40751 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Kunze, Ralf A1 - Neubert, Dietmar A1 - Tidjani, Adams T1 - ZnS as fire retardant in plasticised PVC N2 - The flame retardant effect of zinc sulphide (ZnS) in plasticised poly(vinyl chloride) (PVC-P) materials was investigated. PVC-P containing different combinations of additives such as 5% ZnS, 5% of antimony oxide (Sb2O3) and 5% of mixtures based on Sb2O3 and ZnS were compared. The thermal degradation and the combustion behaviour were studied using thermogravimetry (TG), coupled with FTIR (TG-FTIR) or with mass spectroscopy (TG-MS), and a cone calorimeter, respectively. A detailed and unambiguous understanding of the decomposition and release of the pyrolysis products was obtained using both TG-MS and TG-FTIR. The influence of ZnS, Sb2O3 and the corresponding mixtures on the thermal decomposition of PVC-P was demonstrated. Synergism was observed for the combination of the two additives. The combustion behaviour (time to ignition, heat release, smoke production, mass loss, CO production) was monitored versus external heat fluxes between 30 and 75 kW m-2 with the cone calorimeter. Adding 5% of ZnS has no significant influence on the fire behaviour of PVC-P materials beyond a dilution effect, whereas Sb2O3 works as an effective fire retardant. Synergism of ZnS and Sb2O3 allows the possibility of replacing half of Sb2O3 by ZnS to reach equivalent fire retardancy. KW - PVC KW - ZnS KW - Fire retardancy KW - TG-FTIR KW - Cone calorimeter PY - 2002 U6 - https://doi.org/10.1002/pi.845 SN - 0959-8103 SN - 1097-0126 SN - 0007-1641 VL - 51 IS - 3 SP - 213 EP - 222 PB - Wiley InterScience CY - Chichester, West Sussex AN - OPUS4-1291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hartwig, A. A1 - Pütz, D. A1 - Schartel, Bernhard A1 - Bartholmai, Matthias A1 - Wendschuh-Josties, M. T1 - Combustion behaviour of epoxide based nanocomposites with ammonium and phosponium bentonites N2 - The influence of different organobentonites on the decomposition and the combustion behaviour of an epoxy resin were examined. The epoxy resin is a cationically polymerised cycloaliphatic epoxy resin flexibilised with poly(tetrahydrofuran) (PTHF), with hydroxyl endgroups. The bentonite was modified with either an ammonium or a phosphonium salt. The thermal decomposition of the PTHF induced by the initiator, used for the cationic polymerisation, did neither take place for the nanocomposite based on the ammonium bentonite nor for that based on the phosphonium bentonite. This improved decomposition characteristic lead to a larger time to ignition for both kinds of nanocomposites compared to the not modified polymer, which is not the case for other polymer/clay nanocomposites described in the literature. The fire behaviour was investigated using limiting oxygen index (LOI), a horizontal burner test and a cone calorimeter. The forced flaming conditions in the cone calorimeter were varied using different external heat fluxes between 30 and 70 kW · m-2. The fire behaviour of the nanocomposites was improved in comparison to the polymer, and phosphonium bentonite was superior to ammonium bentonite. The main mechanism is a barrier formation resulting in a reduction of the fire growth rate, which was more pronounced in the case of high external heat fluxes. KW - Cationic polymerisation KW - Clay KW - Combustion KW - Degradation KW - Epoxide KW - Nanocomposite PY - 2003 U6 - https://doi.org/10.1002/macp.200300047 SN - 1022-1352 SN - 1521-3935 VL - 204 IS - 18 SP - 2247 EP - 2257 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-2801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Schwarz, U. A1 - Reinemann, S. ED - Lewin, M. T1 - Fire Retarded Polypropylene/Flax Biocomposites T2 - 14th Conference on Recent Advances in Flame Retardancy of Polymeric Materials ; 14th Annual BCC Conference on Flame Retardancy CY - Stamford, CT, USA DA - 2003-06-02 KW - Fire retardancy KW - PP/Flax Biocomposite KW - Expandable Graphite KW - Ammonium Polyphosphate KW - TG-FTIR KW - Cone Calorimeter PY - 2003 SN - 1-569-65930-3 VL - 14 SP - 219 EP - 228 PB - BCC CY - Norwalk, Conn. AN - OPUS4-2815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartholmai, Matthias A1 - Schartel, Bernhard T1 - Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system N2 - Polymeric nanocomposites are discussed as one of the most promising advanced materials whose nanoscale effects can be exploited for industry. Layered silicate polypropylene-graft-maleic anhydride nanocomposites are investigated as a model to clarify the potential of such materials in terms of fire retardancy. The nanostructure is characterized using transmission electron microscopy (TEM) and shear viscosity. The fire behavior is characterized using different external heat fluxes in cone calorimeter, limiting oxygen index and UL 94 classification. A comprehensive fire behavior characterization is presented which enables an assessment of the materials’ potential with respect to different fire scenarios and fire tests. The influence of morphology and the active mechanisms are discussed, such as barrier formation and changed melt viscosity. To our knowledge, it is the first attempt to illuminate the concept’s strengths, such as the reduction of flame spread, and weaknesses, such as the lack of influence on ignitability, in a clear, comprehensive and detailed manner. KW - Fire retardancy KW - Nanocomposites KW - Cone Calorimeter KW - LOI KW - UL94 KW - Flame retardance KW - poly(propylene) (PP) KW - Organoclay PY - 2004 UR - http://www3.interscience.wiley.com/cgi-bin/jissue/109085890 SN - 1042-7147 SN - 1099-1581 VL - 15 IS - 7 SP - 355 EP - 364 PB - John Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-3706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Kunze, Ralf A1 - Hennecke, Manfred A1 - Kettner, A. A1 - Wendorff, J. H. T1 - On the thermal behaviour and thermo-oxidative stability of liquid crystalline triphenylene compounds N2 - Columnar discotic materials are considered for applications in the area of photoconductivity and light-emitting diodes. A major requirement is their stability at elevated temperatures and in the presence of oxygen. The thermal and thermo-oxidative behaviour of discotic triphenylene derivatives was investigated by us using various methods, in particular by chemiluminescence (CL), UV-vis absorption spectroscopy and in situ thermogravimetry-mass spectroscopy (TG-MS). Various degradation processes are described for increasing temperature, and their influences on functional properties are discussed. KW - Liquid crystal KW - Oxidation KW - Thermogravimetry PY - 1999 U6 - https://doi.org/10.1002/(SICI)1099-0712(199903/04)9:2<55::AID-AMO366>3.3.CO;2-R SN - 1057-9257 SN - 1099-0712 VL - 9 IS - 2 SP - 55 EP - 64 PB - Wiley CY - Chichester AN - OPUS4-732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Wachtendorf, Volker A1 - Hennecke, Manfred A1 - Grell, M. A1 - Bradley, D.D.C. T1 - Polarized fluorescence and orientational order parameters of a liquid-crystalline conjugated polymer N2 - We report a study of the orientational order of aligned thin films of the liquid crystalline conjugated polymer poly(9,9-dioctylfluorene). Steady state polarized fluorescence measurements were used to determine the orientational order parameter and . The influence of intermolecular and intramolecular excitation energy transfer on the degree of polarization is discussed. The role of film morphology is also examined by comparison of the results for glassy and crystalline films. KW - Liquid-cristalline conjugated Polymer KW - Polarized fluorescence measurements PY - 1999 SN - 1098-0121 SN - 0163-1829 SN - 0556-2805 SN - 1095-3795 SN - 1550-235X VL - 60 IS - 1 SP - 277 EP - 283 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Hennecke, Manfred T1 - Chemiluminescence: A promising new testing method for plastic optical fibers N2 - The thermo-oxidative degradation of a polymeric optical cable is investigated by chemiluminescence, The results are reliable and reproducible. Two distinct processes are reported marked by a peak and a plateau behavior versus the time, respectively. Both processes are ruled by thermally activated processes. Beside the dependencies of temperature and time, the influence of absorbed water is discussed. Chemiluminescence is proposed as a promising candidate for a suitable testing method assessing the thermo-oxidative stability of plastic optical fibers and cables. it requires not more than a simple one-day testing procedure and has the advantage that it can be carried out even within the lo cv temperature ranges of the cables' intended use. KW - Chemiluminescence KW - Chemilumineszenz PY - 1999 U6 - https://doi.org/10.1109/50.803022 SN - 0733-8724 SN - 1558-2213 VL - 17 IS - 11 SP - 2291 EP - 2296 PB - Institute of Electrical and Electronics Engineers CY - New York, NY AN - OPUS4-718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Hennecke, Manfred T1 - Thermo-oxidative stability of a conjugated polymer by chemiluminescence N2 - Conjugated polymers based on 1,4-phenylenevinylene units are very promising materials for applications as light-emitting diodes. A major requirement is their stability at elevated temperatures of operation. The thermo-oxidative behaviour of a soluble poly(1,4-phenylenevinylene) derivative, poly[2,5-bis(2-ethylhexyloxy)-1,4-phenylene vinylene], was investigated by using chemiluminescence and UV–Vis absorption spectroscopy. Extremely sensitive chemiluminescence is successfully applied since even minor chemical changes could lead to a considerable loss of photo- and electro-optical properties. Various degradation processes are described as a function of time and temperature and their influences on functional properties are discussed. The investigated material does not show sufficient thermo-oxidative stability within the temperature range of intended use in contact with air. For industrial application, direct contact with oxygen during processing and operation has to be avoided. KW - Chemiluminescence KW - Conjugated polymer KW - Thermal-oxidation KW - Stability PY - 2000 U6 - https://doi.org/10.1016/S0141-3910(99)00120-2 SN - 0141-3910 SN - 1873-2321 VL - 67 IS - 2 SP - 249 EP - 253 PB - Applied Science Publ. CY - London AN - OPUS4-853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike A1 - Schartel, Bernhard T1 - Fire Retardancy Mechanisms of Red Phosphorus in Thermoplastics N2 - The thermal decomposition and the fire behavior of glass fiber reinforced polyamide 66 (PA-66) and high impact polystyrene (HIPS) containing red phosphorus (P4) were investigated. For glass fiber reinforced PA-66, P4 promotes char formation in the condensed phase. Barrier effects and the reduction of combustible volatiles were identified as fire retardancy mechanisms. For HIPS, P4 acts in the gas phase, mainly trapping radicals. The heat release per mass loss polymer is reduced due to an incomplete combustion. T2 - 12th International Conference Additives 2003 CY - San Francisco, CA, USA DA - 2003-04-06 PY - 2003 UR - http://www.executive-conference.com/conferences/archives/abstracts2003/add03_abs5b.html SP - 1(?) EP - 10(?) PB - ECM CY - Plymouth, Mich. AN - OPUS4-2502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grell, M. A1 - Long, X. A1 - Bradley, D. A1 - Bernius, M. A1 - Chamberlin, T. A1 - Inbasekaran, M. A1 - Woo, E. P. A1 - Hennecke, Manfred A1 - Schartel, Bernhard A1 - Wachtendorf, Volker T1 - A liquid crystalline mainchain conjugated polymer for polarized electroluminescence applications T2 - 4th European Conference on Molecular Electronics (ECME 97) CY - Cambridge, England, UK DA - 1997-09-07 PY - 1997 CY - Stuttgart AN - OPUS4-2432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schartel, Bernhard A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Hennecke, Manfred T1 - Chemiluminescence - A promising new testing method for plastic optical fibres? T2 - 7th International Plastic Optical Fibres Conference (POF-7) CY - Berlin, Germany DA - 1998-10-05 PY - 1998 SN - 3-905084-55-4 VL - 7 SP - 248 EP - 249 PB - AKM AG CY - Basel AN - OPUS4-2433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Wachtendorf, Volker A1 - Grell, M. A1 - Bradley, D. A1 - Hennecke, Manfred ED - Gerhard-Multhaupt, R. T1 - Polarized fluorescence and orientational order parameters of a liquid crystalline conjugated polymer T2 - European Conference on Macromolecular Physics: Molecular Orientation in Polymers, Generation, Characterisation, Application CY - Potsdam, Germany DA - 1999-09-30 PY - 1999 N1 - Serientitel: Europhysics conference abstracts – Series title: Europhysics conference abstracts IS - 23H SP - 46 CY - Potsdam AN - OPUS4-2434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Wachtendorf, Volker A1 - Krüger, Simone A1 - Hennecke, Manfred T1 - Chemiluminescence - An advanced method for small extent, early stages and accelerated testing of the thermooxidative degradation in polymers T2 - Makromolekulares Kolloquium Freiburg CY - Freiburg im Breisgau, Germany DA - 2000-02-24 PY - 2000 SP - 45 CY - Freiburg im Breisgau AN - OPUS4-2435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Wachtendorf, Volker A1 - Damerau, T. A1 - Hennecke, Manfred ED - Spadaro, G. T1 - Photooxidative and thermooxidative degradation of conjugated polymers T2 - 1st International Conference on Polymer Modification, Degradation and Stabilisation (MoDeSt 2000) CY - Palermo, Italy DA - 2000-09-03 PY - 2000 SN - 0969-806X VL - 63 IS - 1 PB - Pergamon CY - Oxford AN - OPUS4-2436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Kunze, Ralf A1 - Neubert, Dietmar T1 - ZnS as Fire Retardant in PVC-P T2 - 2nd International Conference on Polymer Modification, Degradation and Stabilisation (MoDeSt) CY - Budapest, Hungary DA - 2002-06-30 PY - 2002 VL - 82 IS - 2 PB - Elsevier CY - Orlando, Fla. AN - OPUS4-2437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Wachtendorf, Volker A1 - Krüger, Simone A1 - Hennecke, Manfred T1 - Chemiluminescence - An advanced method for small extent, early stages and accelerated testing of the thermooxidative degradation in polymers T2 - Makromolekulares Kolloquium CY - Freiburg, Germany DA - 2000-02-24 PY - 2000 AN - OPUS4-3447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Damerau, Thomas A1 - Hennecke, Manfred T1 - Photo- and thermo-oxidative stability of aromatic spiro-linked bichromophoric cross-shaped molecules N2 - An extensive investigation of the photostability and the thermo-oxidative stability is presented for 2,2,7,7-tetrakis(biphenyl-4-yl)-9,9-spirobifluorene and 2,2,4,4,7,7-hexakis(biphenyl-4-yl)-9,9-spirobifluorene. Both compounds are conjugated fully aromatic systems that are being discussed as active functional materials for a variety of advanced applications. The effect of atmosphere, sample thickness and preparation procedure on photo-oxidative degradation are investigated in detail by absorption and fluorescence spectroscopy. Distinct mechanisms are described in terms of relevant parameters such as the quantum yields of the photo-oxidation and the fluorescence. No oxidative degradation could be detected under nitrogen. In ambient air a strong decrease of the fluorescence performance is found due to effective quenching by defective chromophores. Chemiluminescence investigations were performed to characterise the thermo-oxidative behaviour in the temperature region between 300 and 450 K. It becomes clear that even a stable chemical structure such as the investigated aromatic system does not guarantee sufficient photostability with regard to light emitting properties. About this Journal PY - 2000 U6 - https://doi.org/10.1039/b004931j SN - 1463-9076 SN - 1463-9084 VL - 2 IS - 20 SP - 4690 EP - 4696 PB - The Royal Soc. of Chemistry CY - Cambridge AN - OPUS4-1002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Hennecke, Manfred T1 - Excitation energy transfer of a bichromophoric cross-shaped molecule investigated by polarized fluorescence spectroscopy N2 - The excitation energy transfer (EET) of a bichromophoric cross-shaped molecule was investigated by stationary polarized fluorescence spectroscopy in the solid state. For this purpose 2,2[prime],7,7[prime]-tetrakis(biphenyl-4-yl)-9,9[prime]-spirobifluorene was embedded in a polymeric bisphenol-A-polycarbonate (PC) matrix. The dependence of the fluorescence on concentration and wavelength was determined. The role of the intermolecular and intramolecular EET is dealt with separately and discussed by means of the degree of polarization. The intermolecular excitation energy transfer is described in terms of a Förster transfer mechanism. The intramolecular transfer is prevented for the zero-point vibrational levels by the molecular cross-shaped structure, but is found for a wide range of wavelength, presumably based on vibrationally excited states. PY - 2000 U6 - https://doi.org/10.1063/1.481620 SN - 0021-9606 SN - 1089-7690 VL - 112 IS - 22 SP - 9822 EP - 9827 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-1038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Böhning, Martin A1 - Wald, Oliver A1 - Turky, Gamal A1 - Goering, Harald A1 - Brzezinka, Klaus-Werner A1 - Schartel, Bernhard A1 - Schönhals, Andreas T1 - Dielectric Relaxation and Gas Transport Properties in Polypropylene Based Nanocomposites T2 - ACS 2002 Biennial Symposium "Polymeric Nanomaterials" CY - Rohnert Park, CA, USA DA - 2002-11-17 PY - 2002 SP - 1(?) EP - 3(?) AN - OPUS4-2035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böhning, Martin A1 - Tidjani, Adams A1 - Wald, Oliver A1 - Brzezinka, Klaus-Werner A1 - Turky, Gamal A1 - Goering, Harald A1 - Schartel, Bernhard A1 - Schönhals, Andreas T1 - Dielectric and gas transport properties of polypropylene-clay nanocomposites T2 - Frühjahrstagung des Arbeitskreises Festkörperphysik bei der DPG CY - Regensburg, Germany DA - 2002-03-11 PY - 2002 SN - 0420-0195 SN - 0372-5448 SN - 0343-9216 IS - CPP 5.4 SP - 425 CY - Bad Honnef AN - OPUS4-2036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Böhning, Martin A1 - Turky, Gamal A1 - Goering, Harald A1 - Wald, Oliver A1 - Schartel, Bernhard A1 - Schönhals, Andreas T1 - Polypropylene/Clay Nanocomposites - Dielectric Relaxation and Gas Transport Properties T2 - 2nd International Conference on Broadband Dielectric Spectroscopy and Its Applications CY - Leipzig, Germany DA - 2002-09-02 PY - 2002 AN - OPUS4-2037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Böhning, Martin A1 - Tidjani, Adams A1 - Wald, Oliver A1 - Turky, Gamal A1 - Goering, Harald A1 - Brzezinka, Klaus-Werner A1 - Schartel, Bernhard A1 - Schönhals, Andreas T1 - Polypropylene/Clay Nanocomposites - Gas Transport Characteristics and Molecular Mobility T2 - Polydays 2002 CY - Berlin, Germany DA - 2002-09-30 PY - 2002 SP - 1(?) EP - 2(?) AN - OPUS4-2038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Kunze, Ralf A1 - Neubert, Dietmar T1 - Red Phosphorus-Controlled Decomposition for Fire Retardant PA 66 N2 - The thermal degradation and the combustion behavior of glass fiber-reinforced PA 66 materials containing red phosphorus were investigated. Thermogravimetry (TG), TG coupled with FTIR, and TG coupled with mass spectroscopy were used to investigate the thermal decomposition. The flame retardant red phosphorus was investigated with respect to the decomposition kinetics and the release of volatile products. The combustion behavior was characterized using a cone calorimeter. Fire risks and fire hazards were monitored versus external heat fluxes between 30 and 75 kW/m2. Red phosphorus acts in the solid phase and its efficiency depends on the external heat flux. The use of red phosphorus results in an increased amount of residue and in a corresponding decrease in total heat release. The decrease of the mass loss rate peak results in a corresponding decrease of the peak heat release. With increasing external heat flux applied the first effect on the total heat release decreases linearly, whereas the second effect on the peak heat release expands linearly. The investigation provides insight into the mechanisms of how the fire retardant PA 66 is achieved by red phosphorus controlling the degradation kinetics. Taking into account that a decrease of the volatile products also leads to a decrease of heat production in the flame zone and that the char acts as heat transfer barrier, a reduced pyrolysis temperature is suggested as a further feedback effect. T2 - 8th European Conference on fire retardant polymers CY - Alessandria, Italy DA - 2001-06-24 KW - PA 66 KW - Red phosphorus KW - Fire retardancy KW - TG-FTIR KW - Cone calorimeter PY - 2002 U6 - https://doi.org/10.1002/app.10144 SN - 0021-8995 SN - 1097-4628 VL - 83 IS - 10 SP - 2060 EP - 2071 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-1234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Kühn, Gerhard A1 - Mix, Renate A1 - Friedrich, Jörg Florian T1 - Surface Controlled Fire Retardancy of Polymers Using Plasma Polymerisation N2 - Communication: Fire retardant coatings are deposited on polyamide-66 using plasma polymerisation. Chemical composition and thickness of deposits are adjusted varying the plasma treatment based on hexamethydisiloxane mixed with oxygen. The fire retardancy performances are evaluated using a cone calorimeter. The correlation between fire retardancy and thickness as well as chemical composition is discussed. KW - Cone calorimeter KW - Flame retardance KW - Heat release KW - Plasma polymerization KW - Polyamides PY - 2002 U6 - https://doi.org/10.1002/1439-2054(20020901)287:9<579::AID-MAME579>3.0.CO;2-6 SN - 1438-7492 SN - 1439-2054 VL - 287 IS - 9 SP - 579 EP - 582 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-1537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lehmann, M. A1 - Schartel, Bernhard A1 - Hennecke, Manfred A1 - Meier, H. T1 - Dendrimers consisting of stilbene or distyrylbenzene building blocks synthesis and stability N2 - On the basis of Wittig-Horner reactions and protection group techniques compound 7 for the core and the components 9a-c and 11a-c for the dendrons were prepared and linked in the final step. The convergent synthesis yielded constitutionally and configurationally pure dendrimers (2a-c, 2a'-c') which consist of distyrylbenzene units. Their thermo-oxidative stability in the presence of air was studied by chemiluminescence and compared to the dendrimers 1 consisting of stilbene units. KW - Chemiluminescence KW - Dendrimers KW - Diphenylethylenderivate KW - Oxidation KW - Wittig reactions PY - 1999 U6 - https://doi.org/10.1016/S0040-4020(99)00823-6 SN - 0040-4020 SN - 1464-5416 VL - 55 IS - 47 SP - 13377 EP - 13394 PB - Elsevier Science CY - Kidlington AN - OPUS4-1539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schartel, Bernhard A1 - Kunze, Ralf A1 - Neubert, Dietmar A1 - Braun, Ulrike ED - Lewin, M. T1 - Mechanistic Studies on PA-66 Fire Retarded with Red Phosphorus T2 - 13th Conference on Recent Advances in Flame Retardancy of Polymeric Materials ; 13th Annual BCC Conference on Flame Retardancy CY - Stamford, CT, USA DA - 2002-06-03 PY - 2002 SN - 1-569-65890-0 VL - 13 SP - 93 EP - 103 PB - BCC CY - Norwalk, Conn. AN - OPUS4-1562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Kunze, Ralf A1 - Bartholmai, Matthias A1 - Neubert, Dietmar A1 - Schriever, Robert T1 - TG-MS and TG-FTIR applied for an unambiguous thermal analysis of intumescent coatings N2 - Thermogravimetry (TG), thermogravimetry coupled with mass spectroscopy (TG-MS) and thermogravimetry coupled with Fourier transform infrared spectroscopy (TG-FTIR) were used to characterise the thermo-oxidative behaviour of two intumescent coating materials. The temperature dependence, the corresponding volatile products and the amount of residue of the different processes were determined. Using both TG-MS and TG-FTIR results in an unambiguous interpretation of the volatile products. Characteristics such as the influence of endothermic reactions, the release of non-flammable gases, the dehydrogenation enhancing the char formation and the stability of the cellular char were discussed in detail. It was demonstrated, that TG, TG-MS and TG-FTIR are powerful methods to investigate mechanisms in intumescent coatings and that they are suitable methods in respect to quality assurance and unambiguous identification of such materials. KW - Intumescent coating materials KW - TG KW - TG-FTIR KW - TG-MS PY - 2002 U6 - https://doi.org/10.1023/A:1022272707412 SN - 1388-6150 SN - 1418-2874 SN - 0368-4466 SN - 1572-8943 VL - 70 IS - 3 SP - 897 EP - 909 PB - Kluwer Academic Publ. CY - Dordrecht AN - OPUS4-2133 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartholmai, Matthias A1 - Schriever, Robert A1 - Schartel, Bernhard T1 - Influence of external heat flux and coating thickness on the thermal insulation properties of two different intumescent coatings using cone calorimeter and numerical analysis N2 - Polymeric intumescent coatings are fire protective materials that increase their thermal resistance when exposed to high temperatures to prevent building structures from damage. The idea of the investigation was to develop a simple test method to determine the time dependent thermal conductivity of intumescent coatings. Therefore steel plates were coated with two different intumescent systems. During cone calorimeter tests the temperature at the back side of the coated plates was measured. These results were used to calculate the time dependent thermal resistance of the protective layer with the simulation program IOPT2D for different external heat fluxes and different layer thickness. KW - Intumescent coatings KW - Thermal resistance KW - Cone calorimetry KW - Numerical analysis PY - 2003 U6 - https://doi.org/10.1002/fam.823 SN - 0308-0501 SN - 1099-1018 VL - 27 IS - 4 SP - 151 EP - 162 PB - Heyden CY - London AN - OPUS4-2633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Schwarz, U. A1 - Reinemann, S. T1 - Fire Retardancy of Polypropylene/Flax Blends N2 - A comprehensive characterization of the thermal and the fire behaviour is presented for polypropylene (PP) flax compounds containing ammonium polyphosphate (APP) and expandable graphite as fire retardants. Thermogravimetry coupled with an evolved gas analysis (TG-FTIR) was performed to ensure a significant thermal analysis. The fire response under forced flaming conditions was studied using a cone calorimeter. The external heat flux was varied between 30 and 70 kW m-2 so that the results could be evaluated for different fire scenarios and tests. Different flammability tests (UL 94, limiting oxygen index, glow wire test, GMI 60261) were performed and the results compared with the cone calorimeter data. The different char forming mechanisms are described and the resulting fire retardancy is classified. The successful and ecological friendly fire retardancy is a technological breakthrough for PP/flax biocomposites. KW - Biosomposites KW - Flame retardancy KW - Flax PY - 2003 U6 - https://doi.org/10.1016/S0032-3861(03)00692-X SN - 0032-3861 SN - 1873-2291 VL - 44 IS - 20 SP - 6241 EP - 6250 PB - Springer CY - Berlin AN - OPUS4-2640 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Wendorff, J. H. T1 - Molecular composites for molecular reinforcement: A promising concept between success and failure N2 - The basic principles of molecular reinforcement and especially the specific approaches to obtain homogeneous composites with molecularly dispersed rigid rods are focused on and discussed. Brief overviews and successful examples of the available data covering the main characteristics are summarized. KW - Verbundwerkstoffe KW - Molecular Reinforcement KW - Homogene Mischbarkeit PY - 1999 SN - 0032-3888 SN - 1548-2634 VL - 39 IS - 1 SP - 128 EP - 151 PB - Wiley CY - Hoboken, NY AN - OPUS4-731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tidjani, Adams A1 - Wald, Oliver A1 - Pohl, M.-M. A1 - Hentschel, Manfred P. A1 - Schartel, Bernhard T1 - Polypropylene-graft-maleic anhydride-nanocomposites: I-Characterization and thermal stability of nanocomposites produced under nitrogen and in air N2 - The morphology and thermal behaviour of polypropylene–graft–maleic anhydride (PP–g–MA) layered silicate (montmorillonite) nanocomposites were investigated using X-ray diffraction, transmission electron microscopy, differential scanning calorimetry and thermogravimetry. The study focuses on the influence of the presence of oxygen during the preparation of PP–g–MA–nanocomposite using two different modified clays. The nanocomposites show tactoid, intercalated and exfoliated structures side by side with different dominant states depending on the clay used and on the processing conditions. The systems are described as multi-component blends rather than binary blends since the organic ions do not only change the mixing behaviour, but also influence material properties. Beside the physical barrier property of the clay layers also chemical processes were found to play an important role. KW - Polypropylene-graft-maleic anhydride KW - Montmorillonites KW - Nanocomposites KW - X-ray KW - Thermal stability PY - 2003 U6 - https://doi.org/10.1016/S0141-3910(03)00174-5 SN - 0141-3910 SN - 1873-2321 VL - 82 IS - 1 SP - 133 EP - 140 PB - Applied Science Publ. CY - London AN - OPUS4-2773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Braun, Ulrike T1 - Fire Retardancy Mechanisms of Phosphorus in Thermoplastics KW - Fire retardancy KW - Red Phosphorus KW - Cone Calorimeter KW - TG-FTIR KW - TG-MS KW - HIPS KW - PBT KW - PA 66 PY - 2004 SN - 0743-0515 VL - 91 SP - 152 EP - 153 PB - Division of Polymeric Materials Science and Engineering, American Chemical Society CY - Washington, DC AN - OPUS4-3971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flammschutz von Polymeren T2 - Institutskolloquium des Instituts für Polymerforschung IPF CY - Dresden, Germany DA - 2004-04-30 PY - 2004 AN - OPUS4-4170 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Bartholmai, Matthias A1 - Braun, Ulrike T1 - Residue, Charring and Intumescence T2 - 15th Annual BCC Conference on Flame Retardancy; Recent Advances in Flame Retardancy of Polymeric Materials CY - Stamford, CT, USA DA - 2004-06-06 PY - 2004 AN - OPUS4-4171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Brandverhalten und Flammschutz von Polymeren T2 - ITC-CPV Institutskolloquium des Forschungszentrums Karlsruhe CY - Karlsruhe, Germany DA - 2004-07-27 PY - 2004 AN - OPUS4-4176 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Braun, Ulrike T1 - Fire Retardancy Mechanisms of Phosphorus in Thermoplastics T2 - 228th ACS National Meeting, Fall 2004 CY - Philadelphia, PA, USA DA - 2004-08-22 PY - 2004 AN - OPUS4-4177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Combustion Behaviour and Fire Retardancy of Polymers T2 - Clariant GmbH CY - Hürth, Germany DA - 2003-02-04 PY - 2003 AN - OPUS4-4044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Bartholmai, Matthias A1 - Braun, Ulrike T1 - Fire retardancy of Polymers Using Barrier Effects T2 - 8. Rudolstädter Kunststofftag CY - Rudolstadt, Germany DA - 2003-05-21 PY - 2003 AN - OPUS4-4045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Schwarz, U. A1 - Reinemann, S. T1 - Fire retardancy of Polypropylene/Flax Blends T2 - 14th Annual BCC Conference on Flame Retardancy; Recent Advances in Flame Retardancy of Polymeric Materials CY - Stamford, CT, USA DA - 2003-06-02 PY - 2003 AN - OPUS4-4046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flammschutz von Polymeren durch Oberflächenmodifizierung T2 - Habilitänden-Workshop 2003, GDCH Fachgruppe Makromolekulare Chemie CY - Düsseldorf, Germany DA - 2003-07-14 PY - 2003 AN - OPUS4-4047 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Fire Retardancy of Polymers T2 - BASF AG CY - Ludwigshafen am Rhein, Germany DA - 2003-09-11 PY - 2003 AN - OPUS4-4048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Bartholmai, Matthias A1 - Braun, Ulrike T1 - Barier Effects for the Fire Retardancy of Polymers T2 - 9th European Meeting on Fire Retardancy and Protection of Materials, FRPM '03 CY - Lille, France DA - 2003-09-17 PY - 2003 AN - OPUS4-4049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - red phosphorus, nanocomposites and Intumescence Coatings - Three Examples of Advanced Fire Retardancy T2 - SFB Kolloquium am Institut für Makromolekulare Chemie, Albert-Ludwigs Universität Freiburg CY - Freiburg, Germany DA - 2003-10-29 PY - 2003 AN - OPUS4-4050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schartel, Bernhard A1 - Braun, Ulrike T1 - Mechanisms of Phosphorous Flame Retardants T2 - 12th International Flame Retardants 2006 Conference CY - London, England, UK DA - 2006-02-14 PY - 2006 SN - 0-9541216-7-8 SP - 153 EP - 154 PB - Interscience Communications CY - London AN - OPUS4-12078 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Some comments on the use of cone calorimeter data T2 - Developments in Calorimetry Workshop CY - London, England DA - 2006-02-16 PY - 2006 AN - OPUS4-12109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Braun, Ulrike T1 - Mechanisms of phosphorus flame retardants T2 - Fire Retardants 2006 CY - London, England DA - 2006-02-14 PY - 2006 AN - OPUS4-12110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Red Phosphorus, Nanocomposites and Intumescence Catings - Three Examples of Advanced Fire Retardancy T2 - SFB Kolloquium am Institut für Makromolekulare Chemie, Albert-Ludwigs Universität Freiburg CY - Freiburg, Germany DA - 2003-10-29 PY - 2003 AN - OPUS4-4056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Fire Retardancy of Polymers: Science between Macromolecular Chemistry and Fire Engineering T2 - Hochpolymer- und Kunststoffkolloquium, Technische Universität Darmstadt CY - Darmstadt, Germany DA - 2003-10-30 PY - 2003 AN - OPUS4-4057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Fire Retardancy of Polymers T2 - Bayer AG CY - Dormagen, Germany DA - 2003-11-04 PY - 2003 AN - OPUS4-4058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Bartholmai, Matthias T1 - Fire Behavior Assessment of Nanocomposites T2 - Nanocomposites 2003 CY - San Francisco, CA, USA DA - 2003-11-10 PY - 2003 AN - OPUS4-4059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Polymer-Layered Silicate Nanocomposites: new Flame Retardant Apporoach for polymeric Materials T2 - Hannover-Messe 2003 CY - Hanover, Germany DA - 2003-04-07 PY - 2003 AN - OPUS4-4614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Bartholmai, Matthias T1 - Assessing the performance of intumescent coatings using bench-scaled cone calorimeter T2 - European Coatings Conference - Fire Retardant Coatings CY - Berlin, Germany DA - 2006-09-14 PY - 2006 AN - OPUS4-13780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Untersuchungen von Wirkmechanismen - ein Beitrag zur gezielten Optimierung von Polmer-Flammschutzmittel-Systemen T2 - 7. Fachtagung des SKZ "Brandschutz und Flammschutzmittel" CY - Würzburg, Germany DA - 2004-12-01 PY - 2004 AN - OPUS4-5283 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard ED - Troitzsch, J. T1 - Untersuchungen von Wirkmechanismen - ein Beitrag zur gezielten Optimierung von Polymer-Flammschutzmittel-Systemen T2 - 7. Fachtagung Kunststoffe, Brandschutz und Flammschutzmittel, Neue Entwicklungen und Anwendungen CY - Würzburg, Deutschland DA - 2004-12-01 KW - Fire retardancy KW - Nanocomposites KW - Cone Calorimeter KW - Red Phosphorus KW - Intumescence PY - 2004 SP - D1 EP - D11 PB - SKZ CY - Würzburg AN - OPUS4-5286 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Schartel, Bernhard T1 - Effect of Red Phosphorus and Melamine Polyphosphate on the Fire Behavior of HIPS N2 - Pyrolysis and fire behavior of high impact polystyrene (HIPS) containing red phosphorus and melamine polyphosphate were investigated. The thermal and thermo-oxidative decomposition were characterized using thermogravimetry coupled with FTIR and MS, respectively. The fire behavior was monitored with a cone calorimeter using different external heat fluxes and determining the LOI. Red phosphorus reduced the heat release in HIPS due to radical trapping in the gas phase. The reduction in effective heat of combustion was accompanied by an increase of incomplete combustion products such as smoke and carbon monoxide. Melamine polyphosphate in HIPS acted in the condensed phase with barrier formation. The heat release rate was reduced, whereas the total heat evolved, smoke and carbon monoxide formation were not influenced significantly. Using both fire retardants, the resulting fire retardancy was characterized mainly by superposition. KW - HIPS KW - Red Phosphorus KW - TG-FTIR KW - TG-MS KW - Cone Calorimeter KW - LOI KW - Fire retardancy KW - Melamine Polyphosphate PY - 2005 U6 - https://doi.org/10.1177/0734904105043451 SN - 0734-9041 SN - 1530-8049 VL - 23 IS - 1 SP - 5 EP - 30 PB - Sage CY - London AN - OPUS4-5287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Knoll, Uta A1 - Hartwig, A. A1 - Pütz, D. T1 - Phosphonium-modified layered silicate epoxy resins nanocomposites and their combinations with ATH and organo-phosphorus fire retardants N2 - Phosphonium-modified layered silicate epoxy resin nanocomposites were evaluated by testing the thermal/thermo-mechanical properties [differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), torsional pendulum, Sharpy toughness], flammability (limiting oxygen index LOI) and fire behavior (cone calorimeter with different irradiations). The morphology of the composites was determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The drying conditions of phosphonium-modified layered silicate were varied in order to improve the nanocomposite formation and properties. The results were compared with using a commercial ammonium-modified montmorillonite. Enhanced nanocomposite formation was found for the commercial systems due to the amount of excess surfactant, but this effect was overcompensated through the advanced morphology of the phosphonium-modified systems. Several fire retardancy mechanisms and their specific influence on the different fire properties, such as ignitability, flammability, flame spread, total heat release (fire load), and the production of CO and smoke were discussed comprehensively. The main mechanism of layered silicate is a barrier formation influencing the flame spread in developing fires. Several minor mechanisms are significant, but important fire properties such as flammability or fire load are hardly influenced. Hence combinations with aluminum hydroxide and organo-phosphorus flame retardants were evaluated. The combination with aluminum hydroxide was a promising approach since it shows superposition in properties such as the fire load and only in some properties very little antagonism. The combination with an organo-phosphorus flame retardant disillusions, since it was characterized mainly by antagonism. KW - Flame retardance KW - Nanocomposites KW - Organoclay KW - Epoxy resin KW - Cone calorimeter PY - 2006 U6 - https://doi.org/10.1002/pat.686 SN - 1042-7147 SN - 1099-1581 VL - 17 IS - 4 SP - 281 EP - 293 PB - John Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-12519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Wirkmechanismen von phosphorhaltigen Flammschutzmitteln T2 - SKZ-Fachtagung Kunststoffe, Brandschutz und Flammschutzmittel, Neue Entwicklungen und Anwendungen CY - Würzburg, Germany DA - 2006-06-21 PY - 2006 AN - OPUS4-12502 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Cone calorimeter: A tool for the research and development of polymeric materials T2 - Kolloquium des Department "Materialien und Systeme zum Schutz und Wohlbefinden des menschlichen Körpers" der Eidgenössischen Materialprüfungs- und Forschungs-Anstalt (EMPA) CY - St. Gallen, Switzerland DA - 2006-06-01 PY - 2006 AN - OPUS4-12503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Wirkmechanismen von phosphorhaltigen Flammschutzmitteln T2 - 8. SKZ-Fachtagung "Kunststoffe, Brandschutz und Flammschutzmittel" CY - Würzburg, Deutschland DA - 2006-06-21 PY - 2006 SP - D1-D6, 1-16 PB - SKZ CY - Würzburg AN - OPUS4-12537 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schartel, Bernhard ED - Okamoto, M. T1 - Fire retardancy based on polymer layered silicate nanocomposites KW - Fire retardancy KW - Nanocomposites KW - Cone Calorimeter KW - LOI KW - UL94 KW - Rheology PY - 2004 SN - 4-88231-479-7 SP - 242 EP - 257 PB - CMC Publ. AN - OPUS4-5497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böhning, Martin A1 - Goering, Harald A1 - Fritz, Andreas A1 - Brzezinka, Klaus-Werner A1 - Turky, Gamal A1 - Schönhals, Andreas A1 - Schartel, Bernhard T1 - Dielectric Study of Molecular Mobility in Poly(propylene-graft-maleic anhydride)/Clay Nanocomposites N2 - Polymer/clay nanocomposite materials based on poly(propylene-graft-maleic anhydride) (PPgMAH) and two different organophilic modified clays were investigated by dielectric relaxation spectroscopy (DRS). In contrast to ungrafted polypropylene (PP), PPgMAH shows a dielectrically active relaxation process which can be assigned to localized fluctuations of the polar maleic anhydride groups. Its relaxation rate exhibits an unusual temperature dependence, which could be attributed to a redistribution of water molecules in the polymeric matrix. This is confirmed by a combination of Raman spectroscopy and thermogravimetric experiments (TGA) with real-time dielectric measurements under controlled atmospheres. In the nanocomposites this relaxation process is shifted to higher frequencies up to 3 orders of magnitude compared to the unfilled polymer. This indicates a significantly enhanced molecular mobility in the interfacial regions. In the nanocomposite materials a separate high-temperature process due to Maxwell-Wagner-Sillars (MWS) polarization was observed. The time constant of this MWS process can be correlated with characteristic length scales in nanocomposites and therefore provides additional information on dispersion and delamination/exfoliation of clay platelets in these materials. These properties also influence the diffusivity of the water molecules as revealed by real-time dielectric investigations. KW - Polymer clay nanocomposites KW - Molecular mobility KW - Dielectric relaxation spectroscopy PY - 2005 U6 - https://doi.org/10.1021/ma048315c SN - 0024-9297 SN - 1520-5835 VL - 38 IS - 7 SP - 2764 EP - 2774 PB - American Chemical Society CY - Washington, DC AN - OPUS4-7281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Bartholmai, Matthias A1 - Knoll, Uta T1 - Some comments on the use of cone calorimeter data N2 - The cone calorimeter has become one of the most important and widely used instruments for the research and development of fire retarded polymeric materials. The paper addresses three important ways in which the principal setup influences the results — factors which sometimes do not receive due consideration when drawing conclusions. The paper discusses in detail the impact on cone calorimeter results of the choice of external heat flux, the influence on the peak of heat release rate of sample thickness and thermal feedback from the back of the sample, and the influence on irradiance of the horizontal and vertical distances from the cone heater. KW - Cone Calorimeter KW - Fire retardancy KW - Fire testing KW - Nanocomposites KW - Intumescence PY - 2005 U6 - https://doi.org/10.1016/j.polymdegradstab.2004.12.016 SN - 0141-3910 SN - 1873-2321 VL - 88 IS - 3 SP - 540 EP - 547 PB - Applied Science Publ. CY - London AN - OPUS4-7211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Bartholmai, Matthias A1 - Knoll, Uta T1 - Some comments on the main fire retardancy mechanisms in polymer nanocomposites N2 - Barrier formation and increasing the melt viscosity are addressed as the two main general fire retardancy mechanisms of polymer nanocomposites. They result in specific impacts on fire properties that consequentially cause varying flame retardancy efficiency in different fire tests. The barrier formation retards mainly flame spread (peak of heat release rate) in developing fires, but does not reduce fire load (total heat evolved), ignitability or flammability (limiting oxygen index, UL 94). Furthermore, this flame retardancy effect increases with increasing irradiation and vanishes with decreasing irradiation. The increased melt viscosity prevents dripping, which is beneficial or disadvantageous depending on the fire test used. In some test, it become the dominant influence, transforming self-extinguishing samples into flammable materials or causing wicking. Advantages and the limits are sketched comprehensively for exploiting the main general fire retardancy mechanisms of polymer nanocomposites. It is concluded that barrier formation and changing the melt viscosity in nanocomposites are not sufficient for most applications, but must be accompanied by additional mechanisms in special systems or in combination with other flame retardants. KW - Flame retardance KW - Nanocomposites KW - Organoclay KW - Cone calorimeter KW - Flammability PY - 2006 U6 - https://doi.org/10.1002/pat.792 SN - 1042-7147 SN - 1099-1581 VL - 17 IS - 9-10 SP - 772 EP - 777 PB - John Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-13868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Schartel, Bernhard T1 - Flame Retardant Mechanisms of Red Phosphorus and Magnesium Hydroxide in High Impact Polystyrene N2 - The flame retardant mechanisms of red phosphorus, magnesium hydroxide and red phosphorus combined with magnesium hydroxide were studied in high impact polystyrene by means of comprehensive decomposition studies and combustion tests. The study is intended to illuminate prerequisites and the potential of red phosphorus as a fire retardant for hydrocarbon polymers in the condensed phase and in the gas phase. Thermal and thermo-oxidative decomposition, decomposition kinetics and the product gases evolved were characterized using thermogravimetry coupled with Fourier transform infrared spectroscopy and mass spectroscopy, respectively. Fire behaviour was investigated with a cone calorimeter using different external heat fluxes, whereas the flammability was determined by limited oxygen indices. The combustion residues were analysed using XPS. Red phosphorus reduced the heat release in HIPS due to radical trapping in the gas phase. Magnesium hydroxide influenced fire behaviour by heat sink mechanisms, release of water and the formation of a magnesia layer acting as a barrier. The combination of both flame retardants in HIPS nearly resulted in a superposition. A slight synergy in barrier characteristics was due to the formation of magnesium phosphate, whereas a slight anti-synergism occurred in flammability and in the gas phase action. The latter effect is controlled by a decreased fuel rate due to the barrier layer rather than by an initiation of red phosphorus oxidation in the condensed phase. KW - Fire retardancy KW - Polystyrene KW - Pyrolysis KW - TG-FTIR KW - Red Phosphorus KW - Mg(OH)2 KW - Cone Calorimeter KW - Additives KW - Thermogravimetric analysis PY - 2004 U6 - https://doi.org/10.1002/macp.200400255 SN - 1022-1352 SN - 1521-3935 VL - 205 IS - 16 SP - 2185 EP - 2196 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-4488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Fire Retardancy of Textiles: Fundamentals, Mechanisms, Requirements T2 - Internationale Chemiefasertagung CY - Dornbirn, Austria DA - 2005-09-21 PY - 2005 AN - OPUS4-10974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Bartholmai, Matthias A1 - Knoll, Uta T1 - Some Comments on Fire Retardancy Mechanisms in Polymer Nanocomposites T2 - 8th International Symposium on Polymers for Advanced Technologies CY - Budapest, Hungary DA - 2005-09-12 PY - 2005 AN - OPUS4-10977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Bartholmai, Matthias A1 - Knoll, Uta T1 - Some Comments on Fire Retardancy Mechanisms in Polymer Nanocomposites T2 - 10th European Meeting on Fire Retardancy and Protection of Materials (10th European Conference on Fire Retardant Polymers), FRPM '05, BAM, Berlin CY - Berlin, Germany DA - 2005-09-07 PY - 2005 AN - OPUS4-10978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Despinasse, Marie-Claire A1 - Schartel, Bernhard T1 - Aryl phosphate-aryl phosphate synergy in flame-retarded bisphenol A polycarbonate/acrylonitrile-butadiene-styrene N2 - The pyrolysis and fire performance of bisphenol A polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) flame-retarded by a mixture of two aryl bisphosphates were investigated by thermogravimetry-coupled with FTIR, oxygen index (LOI), UL 94 and cone calorimeter. Both flame retardants, bisphenol A bis (diphenyl phosphate) BDP and hydroquinone bis (diphenyl phosphate) HDP, show gas-phase and condensed-phase actions. When mixed together at different ratios, a synergy is observed in terms of pyrolysis and fire residues as well as in effective heat of combustion (THE/ML). The synergisms were quantified and confirmed mathematically by the evaluation of the synergistic effect index (SE). All LOI values for the flame-retarded blends are between 29% and 32%, as opposed to 23% for PC/ABS, and UL94 testing results in V-0 at 1.6 mm instead of HB. Investigations on the binary system BDP + HDP reveal that BDP and HDP interact with each other, yielding stable intermediate products which are proposed to increase the thermal stability of the PC/ABS + BDP/HDP blends. Oligomeric phosphate esters are presumed to form via transesterification. KW - Flame retardancy KW - PC/ABS KW - Pyrolysis KW - Aryl phosphate KW - Synergy KW - Combustion PY - 2013 U6 - https://doi.org/10.1016/j.tca.2013.04.006 SN - 0040-6031 SN - 1872-762X VL - 563 SP - 51 EP - 61 PB - Elsevier CY - Amsterdam AN - OPUS4-28515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gallo, Emanuela A1 - Sánchez-Olivares, G. A1 - Schartel, Bernhard T1 - Flame retardancy of starch-based biocomposites - aluminium hydroxide-coconut fiber synergy N2 - The use of coconut fiber (CF) agricultural waste was considered as an environmentally friendly and inexpensive alternative in flame retarded biocomposites. To decrease the high content of aluminum trihydrate (ATH) required, the thermal decomposition (thermogravimetry), flammability [oxygen index (LOI) and UL 94 test] and fire behavior (cone calorimeter) of a combination of CF and ATH were investigated in a commercial blend of thermoplastic starch (TPS) and cellulose derivatives. CF induced some charring activity, slightly decreasing the fire load and burning propensity in cone calorimeter test. ATH decomposes endothermically into water and inorganic residue. Significant fuel dilution as well as a pronounced residual protection layer reduces the fire hazards. Replacing a part of ATH with coconut fibers resulted in improved flame retardancy in terms of ignition, reaction to small flame, and flame-spread characteristics [heat release rate (HRR), fire growth rate (FIGRA), etc.]. The observed ATH and CF synergy opens the door to significant reduction of the ATH contents and thus to interesting flame retarded biocomposites. KW - Biocomposites KW - Flammability KW - Starch KW - Aluminium hydroxide KW - Coconut fiber PY - 2013 SN - 0032-2725 VL - 58 IS - 5 SP - 395 EP - 402 PB - Industrial chemistry research inst CY - Warszawa, Poland AN - OPUS4-28513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Guang Mei A1 - Schartel, Bernhard A1 - Kleemeier, M. A1 - Hartwig, A. T1 - Flammability of layered silicate epoxy nanocomposites combined with low-melting inorganic ceepree glass N2 - Tetraphenylphosphonium modified layered silicate epoxy nanocomposite (EP/TPPMMT) combined with low-melting silicate glass, Ceepree (CP) is investigated by thermal analysis, flammability tests and cone calorimeter at different heat fluxes. Adding CP and TPPMMT does not change the pyrolysis apart from increasing inorganic residue. The total heat evolved (THE) is changed insignificantly, as neither relevant additional carbonaceous charring nor flame inhibition occurs. However, flame retardancy is clearly observed due to an inorganic-carbonaceous surface protection layer. The peak heat released rate (PHRR) is reduced by around 32–42% when 5 wt% TPPMMT is added, and 51–63% when 10 wt% CP is added. PHRR reduction less than expected is observed when both additives are combined. The reduction is greater than that achieved by using TPPMMT but less than when only CP is used. The morphology of fire residue is investigated by scanning electron microscope on different length scales and turns out to be the key to understanding the efficiency of flame retardancy. The fire residue of EP/CP shows a layered structure, whereas separated columns limit the barrier properties for EP/5%TPPMMT on the micrometer scale. Columns dominating the fire residue structure of EP/5%TPPMMT/10%CP deteriorate the fire retardancy, whereas a more integral structure at the top of the residue causes the improvement over EP/5%TPPMMT. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers KW - Flame retardancy KW - Nanocomposites KW - Low melting glasses KW - Epoxy resin KW - Ceepree PY - 2012 U6 - https://doi.org/10.1002/pen.22111 SN - 0032-3888 SN - 1548-2634 VL - 52 IS - 3 SP - 507 EP - 517 PB - Wiley CY - Hoboken, NY AN - OPUS4-25590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Thin fire protection coatings: Is there any alternative to intumescence? T2 - European coatings conference: Fire redardant coatings V CY - Berlin, Germany DA - 2012-03-13 PY - 2012 AN - OPUS4-25612 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Meyer-Plath, Asmus A1 - Dittrich, Bettina A1 - Petrov, Sergej A1 - Mülhaupt, R. A1 - Friedrich, C. A1 - Moseler, M. A1 - Hofmann, D. A1 - Wartig, K.-A. A1 - Tölle, F. A1 - Beckert, F. A1 - Schopp, S. A1 - Ratzsch, K. A1 - Mohamed, M. A1 - Walter, M. A1 - Kailer, A. A1 - Riedinger, B. A1 - Altstädt, V. A1 - Kerling, S. T1 - FUNgraphen - Vorstellung der Forschungsziele T2 - 4. Jahrestagung inno.CNT CY - Bayreuth, Germany DA - 2012-01-30 PY - 2012 AN - OPUS4-25613 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Towards Evidence-based Development of Flame Retarded Polymers T2 - 243th ACS National Meeting Spring 2012 CY - San Diego, CA, USA DA - 2012-03-25 PY - 2012 AN - OPUS4-25716 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörold, Andreas A1 - Schartel, Bernhard A1 - Trappe, Volker A1 - Korzen, Manfred A1 - Naumann, Maurice T1 - Structural integrity in fire: an intermediate-scale approach T2 - ECCM15 - 15th European conference on composite materials CY - Venice, Italy DA - 2012-06-24 KW - Intermediate-scale test method KW - Structural integrity investigation KW - Fully developed fire KW - Carbon fibre reinforced plastics CFRP PY - 2012 SN - 978-88-88785-33-2 SP - 1 EP - 8(?) AN - OPUS4-26380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard T1 - Towards evidence-based development of flame retarded polymers T2 - 243rd National ACS meeting - Spring 2012 CY - San Diego, CA, USA DA - 2012-03-25 KW - Flame retardancy KW - Halogen-free KW - Flame retardancy mechanism KW - Fire property assessment PY - 2012 SN - 978-0-8412-2727-9 SN - 1550-6703 N1 - Serientitel: PMSE Preprints – Series title: PMSE Preprints VL - 243 SP - 38-PMSE PB - Amer Chemical SOC CY - Washington, USA AN - OPUS4-26381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kempel, Florian A1 - Schartel, Bernhard A1 - Linteris, G.T. A1 - Stoliarov, S.I. A1 - Lyon, R.E. A1 - Walters, R.N. A1 - Hofmann-Böllinghaus, Anja T1 - Prediction of the mass loss rate of polymer materials: Impact of residue formation N2 - Two different numerical simulation tools, Fire Dynamic Simulator (FDS) and ThermaKin, are investigated with respect to their capability to predict the mass loss rate of polymer materials exposed to different fires. For validation, gasification apparatus and cone calorimeter tests are conducted. The main focus is on the influence of residue formation. Therefore, poly (butylene terephthalate) (PBT) and PBT reinforced with glass fibres (PBT-GF) are investigated and compared. PBT decomposes almost completely, while PBT-GF forms residue. The materials are characterised in order to provide suitable input parameters. Additionally the total incident heat flux to the sample is measured. With accurate input parameters, FDS and ThermaKin predicted the pyrolysis behaviour of PBT very well. Only some limitations are identified regarding the residue-forming PBT-GF. Both numerical simulation tools demonstrate a high value regarding the assessment of parameters' relative impacts and thus the evaluation of optimisation routes in polymer and composite development. KW - Polymer KW - Pyrolysis simulation KW - Residue formation KW - Fire dynamics simulator (FDS) KW - ThermKin PY - 2012 U6 - https://doi.org/10.1016/j.combustflame.2012.03.012 SN - 0010-2180 SN - 1556-2921 VL - 159 IS - 9 SP - 2974 EP - 2984 PB - Elsevier CY - New York, NY AN - OPUS4-26382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppl, T. A1 - Brehme, Sven A1 - Pospiech, D. A1 - Fischer, O. A1 - Wolff-Fabris, F. A1 - Altstädt, V. A1 - Schartel, Bernhard A1 - Döring, M. T1 - Influence of polymeric flame retardants based on phosphorus-containing polyesters on morphology and material characteristics of poly(butylene terephthalate) N2 - Flame retarded poly(butylene terephthalate) (PBT) is required for electronic applications and is mostly achieved by low molar mass additives so far. Three phosphorus-containing polyesters are suggested as halogen-free and polymeric flame retardants for PBT. Flame retardancy was achieved according to cone calorimeter experiments showing that the peak heat release rate and total heat evolved were reduced because of flame inhibition and condensed-phase activity. The presented polymers containing derivatives of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide form immiscible blend systems with PBT. Shear-rheology shows an increase in storage moduli at low frequencies. This is proposed as quantitative measure for the degree of phase interaction. The phase structure of the blends depends on the chemical structure of the phosphorus polyester and was quite different, depending also on the viscosity ratio between matrix and second phase. A lower viscosity ratio leads to two types of phases with spherical and additionally continuous droplets. Addition of the flame retardants showed no influence on the dielectric properties but on the mechanical behavior. The polymeric flame retardants significantly diminish the impact strength because of several reasons: (1) high brittleness of the phosphorus polyesters themselves, (2) thermodynamic immiscibility, and (3) weak phase adhesion. By adding a copolymer consisting of the two base polymers to the blend, an improvement of impact strength was obtained. The copolymer particularly acts as compatibilizer between the phases and therefore leads to a smaller phase size and to a stronger phase adhesion due to the formation of fibrils. KW - Polyesters KW - Blends KW - Miscibility KW - Rheology KW - Flame retardance PY - 2013 U6 - https://doi.org/10.1002/app.38520 SN - 0021-8995 SN - 1097-4628 VL - 128 IS - 5 SP - 3315 EP - 3324 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-27957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dittrich, Bettina A1 - Schartel, Bernhard A1 - Hofmann, D. A1 - Wartig, K.-A. A1 - Mülhaupt, R. ED - Wilkie, C. T1 - Carbon black, multiwall nanotubes and graphene - promising approach to flame retarded nanocomposites? T2 - 24th Annual conference on recent advances in flame retardancy of polymeric materials CY - Stamford, NY, USA DA - 2013-05-20 KW - Graphene KW - Flame retardancy KW - Carbon nanoparticle KW - Nanocomposite PY - 2013 SN - 1-56965-218-X SP - 1 EP - 9(?) CY - Wellesley, MA, USA AN - OPUS4-28637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittrich, Bettina A1 - Wartig, K.-A. A1 - Hofmann, D. A1 - Mülhaupt, R. A1 - Schartel, Bernhard T1 - Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi layer graphene and graphene in polypropylene N2 - Herein we investigate the influence of carbon additives with different particle sizes and shapes on the flame retardancy and mechanical properties of isotactic polypropylene. Thermally reduced graphite oxide (TRGO) and multi-layer graphene (MLG250), consisting of few graphene layers, are compared with spherical, tubular and platelet-like carbon fillers such as carbon black (CB), multiwall nanotubes (MWNT) and expanded graphite (EG). The different morphologies control the dispersion of the carbon particles in PP and play a key role in structure–property relationships. Uniformly dispersed CB, MLG250 and TRGO shift the onset temperature of PP decomposition to temperatures around 30 °C higher, induce a flow limit in the composites' melt viscosity and change drastically their fire behaviour. The prevented dripping and significantly increased heat absorption result in decreased time to ignition and hardly any change in the reaction to a small flame. Under forced-flaming conditions reductions in the peak heat release rate of up to 74% are achieved due to the formation of a protective layer of residue during combustion. The described effects of carbon nanomaterials on the properties of PP composites are most pronounced for well-exfoliated graphenes, making them preferable to less exfoliated, micron-sized expanded graphite or conventional spherical and tubular carbon nanoparticles. KW - Polypropylene KW - Flame retardancy KW - Nanocomposites KW - Graphene KW - Carbon nanomaterials KW - Thermally reduced graphite oxide PY - 2013 U6 - https://doi.org/10.1016/j.polymdegradstab.2013.04.009 SN - 0141-3910 SN - 1873-2321 VL - 98 IS - 8 SP - 1495 EP - 1505 PB - Applied Science Publ. CY - London AN - OPUS4-28638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flame retardancy in the condensed phase: The role of decomposition temperature T2 - FRPM 13, 14th Eruopean Meeting on Fire Retardancy and Protection of Materials CY - Lille, France DA - 2013-06-30 PY - 2013 AN - OPUS4-28777 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Composites in Fire: Fire Behaviour Tailored for Differnt Applications T2 - Interflam 2013, 13 th International Conference and Exhibition on Fire Science and Engineering CY - London, England DA - 2013-06-24 PY - 2013 AN - OPUS4-28766 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yu, D. A1 - Kleemeier, M. A1 - Wu, Guang Mei A1 - Schartel, Bernhard A1 - Liu, W.Q. A1 - Hartwig, A. T1 - Phosphorus and silicon containing low-melting organic-inorganic glasses improve flame retardancy of epoxy/clay composites N2 - New low-melting organic–inorganic glassy polymers containing phosphorus and silicon are synthesized by the reaction between phenylphosphonic acid and methyltrichlorosilane or methyltriethoxysilane. They possess both low-softening points and high onset decomposition temperatures, which are favorable for preparing flame retardant composites. Although the glass by itself is sensitive to water, the composites are not significantly affected in that way. For glass/clay/epoxy composites glass transition temperature (Tg) as well as storage modulus increase with the glass amount. The glasses improve flame retardancy significantly due to flame inhibition and the formation of fire residue working as protection layer during burning. The total heat evolved is reduced by 23–28% for using 5–15 wt.% glass and the maximum HRR even by 58–48%. The latter effect decreases with increasing glass amount due to an adulterate residue deformation. The combination of glass and clay is proposed as a possible route to enhance flame retardancy. KW - Clay KW - Epoxy resin KW - Flame retardancy KW - Organic-inorganic polymer KW - Low-melting glass PY - 2011 U6 - https://doi.org/10.1002/mame.201100014 SN - 1438-7492 SN - 1439-2054 VL - 296 IS - 10 SP - 952 EP - 964 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-24516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Brehme, Sven A1 - Schartel, Bernhard A1 - Bykov, Y. A1 - Ciesielski, M. A1 - Döring, M. A1 - Fischer, O. A1 - Pospiech, D. A1 - Köppl, T. A1 - Altstädt, V. T1 - Flame retardancy mechanisms and performance of a halogen-free phosphorus polyester in PBT N2 - PET-P-DOPO is a phosphorus-containing polyester prepared from the glycol ether of the hydroquinone derivative of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and dimethyl terephthalate. PET-P-DOPO and a blend of PBT with PET-PDOPO were investigated with respect to pyrolysis and fire behavior. PET-P-DOPO achieves a V-0 rating in the UL 94 test and exhibits a high LOI of 39.3%. The outstanding flame-retardant properties of PET-P-DOPO are the result of three different mechanisms (flame inhibition, charring and a protection effect of the intumescent char) that are active in PET-P-DOPO. The fire load and the peak of heat release rate (pHRR) are reduced to 34% and 17%, respectively. The char exhibits an intumescent multicellular structure enabling it to act as an efficient protection layer. As PET-P-DOPO is immiscible with PBT, the blend shows a lower breaking elongation than pure PBT. Compared to pure PET-P-DOPO, the flame retardancy of the blend is decreased according to the fraction of PET-P-DOPO used. Nevertheless, the flame-retardancy of PET-P-DOPO in the blend was good enough to compete with PBT flame-retarded by AlPi-Et (aluminum diethylphosphinate) that was used as a Benchmark. KW - PBT KW - DOPO KW - Flame retardancy PY - 2011 SN - 1-59623-795-3 SP - 1 EP - 15 CY - Wellesley, USA AN - OPUS4-24617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Gezielte Entwicklung flammgeschützter Polymerwerkstoffe T2 - 11. Schwarzheider Kunststoffkolloquium CY - Schwarzheide, Germany DA - 2011-09-21 PY - 2011 AN - OPUS4-24651 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppl, T. A1 - Brehme, Sven A1 - Wolff-Fabris, F. A1 - Altstädt, V. A1 - Schartel, Bernhard A1 - Döring, M. T1 - Structure-property relationships of halogen-free flame-retarded poly(butylene terephthalate) and glass fiber reinforced PBT N2 - Flame retardancy for thermoplastics is a challenging task where chemists and engineers work together to find solutions to improve the burning behavior without strongly influencing other key properties of the material. In this work, the halogen-free additives aluminum diethylphosphinate (AlPi-Et) and a mixture of aluminum phosphinate (AlPi) and resorcinol-bis(di-2,6-xylyl phosphate) (AlPi-H + RXP) are employed in neat and reinforced poly(butylene terephthalate) (PBT), and the morphology, mechanical performance, rheological behavior, and flammability of these materials are compared. Both additives show submicron dimensions but differ in terms of particle and agglomerate sizes und shapes. The overall mechanical performance of the PBT flame-retarded with AlPi-Et is lower than that with AlPi-H-RXP, due to the presence of larger agglomerates. Moreover, the flow behavior of the AlPi-Et/PBT materials is dramatically changed as the larger rod-like primary particles build a percolation threshold. In terms of flammability, both additives perform similar in the UL 94 test and under forced-flaming combustion. Nevertheless, AlPi-Et performs better than AlPi-H + RXP in the LOI test. The concentration required to achieve acceptable flame retardancy ranges above 15 wt %. KW - Polyesters KW - Fibers KW - Morphology KW - Structure–property relations KW - Flame retardance PY - 2012 U6 - https://doi.org/10.1002/app.34910 SN - 0021-8995 SN - 1097-4628 VL - 124 IS - 1 SP - 9 EP - 18 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-25253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gallo, Emanuela A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Russo, P. A1 - Acierno, Domenico T1 - Fire retardant synergisms between nanometric Fe2O3 and aluminium phosphinate in poly(butylene terephthalate) N2 - The pyrolysis and the flame retardancy of poly(butylene terephthalate) (PBT) containing aluminum diethylphosphinate (AlPi) and nanometric Fe2O3 were investigated using thermal analysis, evolved gas analysis (Thermogravimetry-FTIR), flammability tests (LOI, UL 94), cone calorimeter measurements and chemical analysis of residue (FTIR). AlPi mainly acts as a flame inhibitor in the gas phase, through the release of diethylphosphinic acid. A small amount of Fe2O3 in PBT promotes the formation of a carbonaceous char in the condensed phase. The combination of 5 and 8 wt% AlPi, respectively, with 2 wt% metal oxides achieves V-0 classification in the UL 94 test thanks to complementary action mechanisms. Using PBT/metal oxide nanocomposites shows a significant increase in the flame retardancy efficiency of AlPi in PBT and thus opens the route to surprisingly sufficient additive contents as low as 7 wt%. KW - Poly(butylene terephthalate) (PBT) KW - Flammability KW - Metal oxide KW - Nanocomposite KW - Aluminum diethylphosphinate PY - 2011 U6 - https://doi.org/10.1002/pat.1774 SN - 1042-7147 SN - 1099-1581 VL - 22 IS - 12 SP - 2382 EP - 2391 PB - John Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-24915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Weiß, André A1 - Sturm, Heinz A1 - Kleemeier, M. A1 - Hartwig, A. A1 - Vogt, C. A1 - Fischer, R.X. T1 - Layered silicate epoxy nanocomposites: formation of the inorganic-carbonaceous fire protection layer N2 - The layered silicate (LS) modification and processing parameters applied control the morphology of the LS/polymer composites. Here, increasing the surface area of the LS particles by using alternative drying processes increases dispersion towards a more typical nanocomposite morphology, which is a basic requirement for promising flame retardancy. Nevertheless, the morphology at room temperature does not act itself with respect to flame retardancy, but serves as a prerequisite for the formation of an efficient surface protection layer during pyrolysis. The formation of this residue layer was addressed experimentally for the actual pyrolysis region of a burning nanocomposite and thus our results are valid without any assumptions or compromises on the time period, dimension, surrounding atmosphere or temperature. The formation of the inorganic-carbonaceous residue is influenced by bubbling, migration, reorientation, agglomeration, ablation, and perhaps also delamination induced thermally and by decomposition, whereas true sintering of the inorganic particles was ruled out as an important mechanism. Multiple, quite different mechanisms are relevant during the formation of the residue, and the importance of each mechanism probably differs from one nanocomposite system to another. The main fire protection effect of the surface layer in polymer nanocomposites based on non-charring or nearly non-charring polymers is the increase in surface temperature, resulting in a substantial increase in reradiated heat flux (heat shielding). KW - Nanocomposite KW - Fire retardancy KW - Epoxy resin KW - Fire behavior KW - Flammability PY - 2011 U6 - https://doi.org/10.1002/pat.1644 SN - 1042-7147 SN - 1099-1581 VL - 22 IS - 12 SP - 1581 EP - 1592 PB - John Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-24916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Towards Evidence-based Development of Flame Retarded Polymers T2 - Polymer- und Kunststoff Kolloquium CY - Darmstadt, Germany DA - 2011-11-24 PY - 2011 AN - OPUS4-24933 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard A1 - Richter, K. H. A1 - Böhning, Martin ED - Morgan, A. B. ED - Wilkie, C. A. ED - Nelson, G. L. T1 - Synergistic use of talc in halogen-free flame retarded polycarbonate/Acrylonitrile-butadiene-styrene blends N2 - Pyrolysis, flammability, fire behavior, melt viscosity, and gas diffusion of bisphenol A polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) were investigated, with bisphenol A bis(diphenyl phosphate) (BDP), with 10 wt.% talc and with BDP in combination with 5, 10 and 20 wt.% talc, respectively. Compared to PC/ABS, PC/ABS + BDP results in an increased decomposition temperature of PC, a higher char yield, a significantly increased LOI, a V-0 classification in UL 94, a reduced peak heat release rate (pHRR), and a reduced total heat release (THR) in the cone calorimeter. This efficient flame retardancy is due to mechanisms in both the gas and condensed phases. PC/ABS + 10 wt.% talc shows a decrease in the PC decomposition temperature. The fire behavior is improved in part compared to PC/ABS, with an increased LOI and reduced pHRR. PC/ABS + BDP + 10 wt.% talc shows a strong synergism in LOI, a V-0 classification, and a decrease in pHRR, whereas THR is slightly increased compared to PC/ABS + BDP. Talc decreases the gas diffusion and enhances the flow limit for low shear rates, both of which influence the pyrolysis and flammability results. Further, talc improves the protection properties of the fire residues. Nevertheless it also partly suppresses flame inhibition and the charring effect of BDP. The synergism between BDP and talc in LOI is obtained even for low talc loadings in PC/ABS + BDP + talc, whereas for higher loadings saturation is observed. KW - Flame retardancy KW - PC/ABS KW - Aryl phosphate KW - Talc PY - 2012 SN - 978-0-8412-2780-4 U6 - https://doi.org/10.1021/bk-2012-1118.ch002 N1 - Serientitel: ACS Symposium Series – Series title: ACS Symposium Series VL - 1118 IS - Chapter 2 SP - 15 EP - 36 PB - Oxford University Press AN - OPUS4-27563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gallo, Emanuela A1 - Schartel, Bernhard A1 - Schmaucks, G. A1 - von der Ehe, Kerstin A1 - Böhning, Martin T1 - Effect of well dispersed amorphous silicon dioxide in flame retarded styrene butadiene rubber N2 - Spherically shaped amorphous silicon dioxide with broad size particle distribution was used in combination with aluminium trihydroxide (ATH) in styrene butadiene rubber composites. The pyrolysis, flammability, fire properties, flame spread and gas diffusion were investigated. The kind and amount of ATH, but in particular the fine silicon dioxide chosen as an additive, influenced the thermal decomposition and fire behaviour of styrene butadiene rubber composites. Gravimetric gas sorption measurements showed that the gas diffusion was systematically lower with silicon dioxide. The initial pyrolysis gas release was hindered, increasing the temperature at which decomposition begins as well as the ignition time in fire tests. During combustion, ATH and silicon dioxide accumulate on the surface of the specimen, forming a residual protective layer. A reduced peak heat release rate and fire spread were observed. The addition of a special kind of silicon dioxide is proposed to play a key role in optimising fire retardancy. KW - Flame retardancy KW - Styrene butadiene rubber KW - SBR KW - Silicon dioxide KW - Aluminium trihydroxide KW - ATH PY - 2013 U6 - https://doi.org/10.1179/1743289812Y.0000000012 SN - 1465-8011 SN - 1743-2898 VL - 42 IS - 1 SP - 34 EP - 42 PB - IOM Communications CY - London, UK AN - OPUS4-27626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shabir Mahr, Muhammad A1 - Hübert, Thomas A1 - Schartel, Bernhard A1 - Bahr, Horst A1 - Sabel, Martin A1 - Militz, H. T1 - Fire retardancy effects in single and double layered sol-gel derived TiO2 and SiO2-wood composites N2 - Sol–gel derived TiO2 and SiO2-wood inorganic composites are prepared by direct vacuum infiltration of silicon and titanium alkoxide based precursors in pine sapwood in one or two cycles followed by a controlled thermal curing process. The resulting flame retardancy effect is investigated under two different fire scenarios using cone calorimetry and oxygen index (LOI). Heat release rates (HRR) especially the values for the second peak, are reduced moderately for all single layered composites. This effect is more pronounced for double layered composites where HRR was reduced up to 40 % showing flame retardancy potential in developing fires. Beside this, smoke release was lowered up to 72 % indicating that these systems had less fire hazards compared to untreated wood, whereas no meaningful improvement is realized in terms of fire load (total heat evolved) and initial HRR increase. However impressively, the LOI of the composites were increased up to 41 vol% in comparison to 23 vol% for untreated wood displaying a remarkable flame retardancy against reaction to a small flame. An approximate linear interdependence among the fire properties and the material loading as well as fire residue was observed. A residual protection layer mechanism is proposed improving the residue properties for the investigated composites. KW - Wood KW - Sol-gel KW - Composite materials KW - Cone calorimeter KW - Fire retardance KW - Flammability PY - 2012 U6 - https://doi.org/10.1007/s10971-012-2877-5 SN - 0928-0707 SN - 1573-4846 VL - 64 IS - 2 SP - 452 EP - 464 PB - Kluwer Academic Publ. CY - Dordrecht AN - OPUS4-27618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wawrzyn, Eliza A1 - Schartel, Bernhard A1 - Ciesielski, M. A1 - Kretzschmar, B. A1 - Braun, Ulrike A1 - Döring, M. T1 - Are novel aryl phosphates competitors for bisphenol A bis(diphenyl phosphate) in halogen-free flame-retarded polycarbonate/acrylonitrile-butadiene-styrene blends? N2 - The reactivity of the flame retardant and its decomposition temperature control the condensed-phase action in bisphenol A polycarbonate/acrylonitrile–butadiene–styrene/polytetrafluoroethylene (PC/ABSPTFE) blends. Thus, to increase charring in the condensed phase of PC/ABSPTFE + aryl phosphate, two halogen-free flame retardants were synthesized: 3,3,5-trimethylcyclohexylbisphenol bis(diphenyl phosphate) (TMC-BDP) and bisphenol A bis(diethyl phosphate) (BEP). Their performance is compared to bisphenol A bis(diphenyl phosphate) (BDP) in PC/ABSPTFE blend. The comprehensive study was carried out using thermogravimetry (TG); TG coupled with Fourier transform infrared spectrometer (TG-FTIR); the Underwriters Laboratory burning chamber (UL 94); limiting oxygen index (LOI); cone calorimeter at different irradiations; tensile, bending and heat distortion temperature tests; as well as rheological studies and differential scanning calorimeter (DSC). With respect to pyrolysis, TMC-BDP works as well as BDP in the PC/ABSPTFE blend by enhancing the cross-linking of PC, whereas BEP shows worse performance because it prefers cross-linking with itself rather than with PC. As to its fire behavior, PC/ABSPTFE + TMC-BDP presents results very similar to PC/ABSPTFE + BDP; the blend PC/ABSPTFE + BEP shows lower flame inhibition and higher total heat evolved (THE). The UL 94 for the materials with TMC-BDP and BDP improved from HB to V0 for specimens of 3.2 mm thickness compared to PC/ABSPTFE and PC/ABSPTFE + BEP; the LOI increased from around 24% up to around 28%, respectively. BEP works as the strongest plasticizer in PC/ABSPTFE, whereas the blends with TMC-BDP and BDP present the same rheological properties. PC/ABSPTFE + TMC-BDP exhibits the best mechanical properties among all flame-retarded blends. KW - Polycarbonate (PC) KW - Aryl phosphate KW - Flame retardancy KW - Pyrolysis KW - PC/ABS PY - 2012 U6 - https://doi.org/10.1016/j.eurpolymj.2012.06.015 SN - 0014-3057 SN - 1873-1945 VL - 48 IS - 9 SP - 1561 EP - 1574 PB - Elsevier CY - Oxford AN - OPUS4-26292 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shabir Mahr, Muhammad A1 - Hübert, Thomas A1 - Sabel, Martin A1 - Schartel, Bernhard A1 - Bahr, Horst A1 - Militz, H. T1 - Fire retardancy of sol-gel derived titania wood-inorganic composites N2 - Sol–gel technology was applied in tailoring novel wood-made-inorganic composites with improved thermal and fire properties. In practice, composites materials were prepared by impregnating pine sapwood wood with nano-scaled precursor solutions derived from titanium(IV) isopropoxide followed by a thermal curing process. Thermal and fire properties were evaluated by thermal analysis and cone calorimetry, whereas flammability was specified by oxygen index (LOI) and UL 94 test. Peak heat release rates were moderately reduced indicating fire retardance potential in terms of flame spread attributed to the appropriate protection layer action of the titania-based depositions. LOI (oxygen index) values of these composites were increased up to 38 vol.% in comparison to 23 vol.% for untreated wood. The flame retardancy performance depends on the fire scenario and is strongly influenced by wood loading and crackfree deposition of the titania layers inside the composite. PY - 2012 U6 - https://doi.org/10.1007/s10853-012-6628-3 SN - 0022-2461 SN - 1573-4803 VL - 47 IS - 19 SP - 6849 EP - 6861 PB - Springer Science + Business Media B.V. CY - Norwell, Mass. AN - OPUS4-26235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörold, Andreas A1 - Schartel, Bernhard A1 - Trappe, Volker A1 - Korzen, Manfred T1 - An intermediate-scale fire testing approach on the structural integrity of lightweight materials N2 - Carbon or glass über composites and Sandwich structures, the lightweight materials of choice for aviation, naval, offshore and construction show an enormous energy saving potential. Their combination of excellent specific mechanical properties, high corrosive resistance and thermal insulation properties in combination with various adoptable fabrication techniques leading to mass and fuel cost reduction. The most limiting single factor for a wider use of fibre reinforced plastics (FRP) in particular as elements for structural application is believed to be their fire behaviour (Mouritz and Gibson, 2006). FRPs promote burning by themselves consuming the stabilizing polymeric matrix while embedded fibers (glass, carbon) persisting the flame (Mouritz et ah, 2006). Already at elevated temperatures (100 - 200 °C) the matrix softens with a loss in mechanical properties (Perret et al., 2011, Mouritz and Gibson, 2006). For this reason the stability of the structural component is decreased severely. Fire behavior becomes the major hazard to worry about, increasingly demanding targetoriented investigation, suitable testing and tailored development. Experimental approaches in the bench-scale have been proposed to investigate the structural integrity in the past (La Delfa et al., 2009, Gibson et al., 2010, Seggewiß, 2011, Mouritz and Gardiner, 2002, Schartel et al.). Ascribed to the small-scale neither the mechanical properties nor the effects of fire may be represented satisfactorily. Flence, the task is to perform more realistic investigations under adequate compressive loads in fully developed fires, based on suitable specimen sizes. Also (La Delfa et al., 2009)) have announced that it is evident that larger scale test of composites are needed. The aim of this study is to present a developed intermediate-scale test setup to perform more realistic investigations (Hörold et al.). Mechanical loading is generated by a column furnace in terms of compression due to a more severe response of specimens in fire tests (Seggewiß, 2011, Gibson et al., 2012, Feih et al., 2008, Feih et al., 2007). An oil burner used to determine the burnthrough resistance of thermal/acoustic insulation materials provides fire directly onto one side of the specimen (Federal Aviation Administration, 2003). Generating a fully developed fire the NexGen burner offers a homogenous heat flux of ~ 180 kW/m2. The intermediate-scale is addressed by specimen sizes either 500 x 500 mm or 1000 x 500 mm with a maximum thickness of 50 mm. The specimen attachment is realized by a compression device that was designed to apply the compressive loads, figure 1. The test setup for specimens with component like dimensions allows realistic investigations up to structural failure in absence and presence of fire load. A first test series was carried out with different levels of loading while the fire remained unchanged. Failure mechanisms, temperature distributions, diversity of FRPs regarding fiber, matrix, lay-up and core as well as flame retardant Systems are in the scope of investigation. T2 - Fire and materials 2013 - 13th International conference and exhibition CY - San Francisco, CA, USA DA - 28.01.2013 PY - 2013 SP - 221 EP - 226 PB - Interscience Communications CY - London, UK AN - OPUS4-27782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pawlowski, Kristin A1 - Schartel, Bernhard T1 - Flame retardancy mechanisms of bisphenol A bis(diphenyl phosphate) in polycarbonate/acrylonitrile-butadiene-styrene blends T2 - FRPM07 - 11th European Meeting on Fire Retardant Polymers CY - Bolton, England DA - 2007-07-04 PY - 2007 AN - OPUS4-15000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Braun, Ulrike T1 - Comprehensive fire behaviour assessment of polymeric materials based on cone calorimeter investigations N2 - Bench scale performance based cone calorimeter investigations were conducted on glass fibre reinforced polyamide 66 (PA-66) and high impact polystyrene (HIPS) materials. Red phosphorus and magnesium hydroxide were used as fire retardants. Dilution, heat sink, barrier and charring mechanisms are considered to be active in the condensed phase. Dilution, cooling and flame poisoning mechanisms are discussed for the gas phase. Cone calorimeter data are used to give a comprehensive fire behaviour assessment in terms of the propensity to cause a quick growing fire and of the propensity to cause a fire of long duration. The external heat flux is varied between 30 and 75 kW/m2 so that the results for combustion behaviour and flame retardancy, respectively, are valid for different fire scenarios and fire tests. Results on the intrinsic contribution of the steady heat release rate per unit area reveal information about the flammability behaviour. UL 94 results are predicted in close correspondence to UL 94 experiments. PY - 2003 U6 - https://doi.org/10.1515/epoly.2003.3.1.177 SN - 1618-7229 IS - 013 SP - 1 EP - 14 PB - De Gruyter CY - [S.l.] AN - OPUS4-15852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pawlowski, Kristin A1 - Schartel, Bernhard T1 - Flame retardancy mechanisms of triphenyl phosphate, resorcinol bis(diphenyl phosphate) and bisphenol A bis(diphenyl phosphate) in polycarbonate/acrylonitrile-butadiene-styrene blends N2 - The flame retardancy mechanisms of three aryl phosphates, triphenyl phosphate (TPP), resorcinol bis(diphenyl phosphate) (RDP) and bisphenol A bis(diphenyl phosphate) (BDP), in a polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) blend are investigated and compared. Further, the influence of polytetrafluorethylene (PTFE) on viscosity and thermal decomposition is discussed in the systems PC/ABS and PC/ABS + BDP. Mechanisms are proposed based on the results of various methods. Thermogravimetric analysis, Fourier transform infrared spectroscopy and kinetics are used to study the pyrolysis. The fire behaviour is studied by means of cone calorimeter measurements at different heat fluxes and the flammability is specified by limiting oxygen index (LOI) and UL 94. Rheology measurements are used to illuminate the changed dripping behaviour due to PTFE. TPP shows only a gas phase action. RDP shows mainly a gas phase action and some condensed phase action. BDP shows a crucial condensed phase action in addition to a gas phase action. TPP and RDP are somewhat superior in terms of flammability (LOI), whereas BDP shows superior performance in forced flaming combustion (cone calorimeter). Synergistic effects between PTFE and BDP are found. KW - Aryl phosphates KW - PC/ABS KW - Flame retardant KW - Pyrolysis KW - Flammability KW - TG-FTIR PY - 2007 U6 - https://doi.org/10.1002/pi.2290 SN - 0959-8103 SN - 1097-0126 SN - 0007-1641 VL - 56 IS - 11 SP - 1404 EP - 1414 PB - Wiley InterScience CY - Chichester, West Sussex AN - OPUS4-15857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Knoll, Uta A1 - Bartholmai, Matthias A1 - Goering, Harald A1 - Neubert, Dietmar A1 - Pötschke, P. T1 - Mechanical, Thermal, and Fire Behavior of Bisphenol A Polycarbonate/Multiwall Carbon Nanotube Nanocomposites N2 - Nanocomposites of bisphenol A polycarbonate with 2, 4, 6, and 15 wt% multiwall carbon nanotubes (MWNT) and their use in fire retardancy are investigated. Their thermal behavior and pyrolysis are characterized using thermogravimetry, differential scanning calorimeter, oscillatory shear rheology, and dynamic mechanical analysis. The flammability is addressed using LOI and UL 94; the fire behavior, with a cone calorimeter using different irradiation. With increasing MWNT content the storage modulus is increased (10-20%) and melt viscosity increases by several orders of magnitude, particularly for low shear rates. The melt flow, dripping, and deformation during fire are hindered, which influences UL 94 and cone calorimeter results. The peak heat release rate is reduced up to 40-50% due to an improved barrier for small amounts (2 wt%) of MWNT and for low irradiation, whereas the effect is reduced for increasing irradiation and nearly vanishes for increasing filling. Adjuvant but also deleterious mechanisms result in the complex dependency on the MWNT content. Significant flame retardancy effects are specific and limited to only some fire properties. This study allows the materials' potential for implementation in different fire scenarios and tests to be assessed and provides insight into active mechanisms. KW - Flame retardancy KW - Nanocomposite KW - Carbon multiwall nanotube (MWNT) KW - Cone Caorimeter KW - Flammability PY - 2008 U6 - https://doi.org/10.1002/pen.20932 SN - 0032-3888 SN - 1548-2634 VL - 48 IS - 1 SP - 149 EP - 158 PB - Wiley CY - Hoboken, NY AN - OPUS4-16365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Balabanovich, Aliaksandr A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. T1 - Pyrolysis and fire behaviour of epoxy systems containing a novel 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-(DOPO)-based diamino hardener N2 - Highly soluble 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-(DOPO)-based diamino hardener (2), bearing its amino groups directly on the DOPO framework, is investigated with respect to its use as a reactive flame retardant in thermosets. A mechanism for decomposition of the corresponding phosphorus-modified epoxy resin system based on a diglycidylether of bisphenol A DGEBA and 2 (DGEBA/2) is proposed and compared to the systems using DGEBA and 4,4'-diaminodiphenylsulfon (DGEBA/DDS) and to a similar system based on the structurally comparable non-reactive DOPO-based compound (DGEBA/DDS/1). Additive 1 changed the decomposition characteristics of the epoxy resin only slightly and phosphorus was released. Incorporating 2 induces two-step decomposition and most of the phosphorus remains in the residue. Furthermore, the fire behaviour of neat epoxy resin systems and a representative carbon fibre-reinforced composite based on DGEBA, DDS and 2 (DGEBA/DDS/2) were examined and compared to that of the analogous composite systems based on DGEBA/DDS and DGEBA/DDS/1. Based on different flame retardancy mechanisms both the reactive compound 2 and the additive compound 1 improve flammability (increase in LOI >13% and achieving V-1 behaviour) of the epoxy resin and composites. Under forced flaming only the flame inhibition of the additive compound 1 acts sufficiently. Lastly, the superior key mechanical properties of the epoxy resin and composite based on 2 are sketched. KW - Decomposition KW - DOPO KW - Flame retardancy KW - Composites KW - Thermosets PY - 2008 U6 - https://doi.org/10.1016/j.eurpolymj.2008.01.017 SN - 0014-3057 SN - 1873-1945 VL - 44 IS - 3 SP - 704 EP - 715 PB - Elsevier CY - Oxford AN - OPUS4-16708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Pawlowski, Kristin T1 - Phosphorus-containing flame retarded polymeric materials T2 - Makromolekulares Kolloquium Freiburg CY - Freiburg, Germany DA - 2008-02-28 PY - 2008 AN - OPUS4-16702 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flame retardancy mechanisms: Some comments to the role of the surface T2 - European Coatings Conference "FIRE RETARDANT COATINGS III" CY - Berlin, Germany DA - 2008-09-18 PY - 2008 AN - OPUS4-17921 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Bartholmai, Matthias A1 - Braun, Ulrike T1 - Residue, Charring and Intumescence N2 - The exploration of condensed phase mechanisms such as charring and intumescence has been pushed forward in the last decades, since it is believed that focusing on these concepts will bring materials closer to an efficient and ecologically friendly fire retardancy. They promise to concentrate efficient fire retardancy at the key position between pyrolysis zone and gas phase. Examples of residue/char forming and intumescent materials are used to illustrate the influence of mass and heat barrier effects on the fire behavior of materials and general results are presented. A comprehensive understanding of the mechanisms and structure-property relationships in fire retardancy is presented. KW - Fire retardancy KW - Nanocomposites KW - Red Phosphorus KW - Intumescence KW - Cone Calorimeter PY - 2006 SN - 1-59623-221-8 VL - XV SP - 15 EP - 21 PB - BCC Research CY - Norwalk, Conn. AN - OPUS4-4068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Pötschke, P. A1 - Knoll, Uta A1 - Abdel-Goad, M. T1 - Fire behaviour of polyamide 6/multiwall carbon nanotube naocomposites N2 - Nanocomposites of polyamide 6 with 5 wt.% multiwall carbon nanotubes are investigated to clarify their potential as regards the fire retardancy of polymers. The nanocomposites are investigated using SEM, electrical resistivity, and oscillatory shear rheology. The pyrolysis is characterized using thermal analysis. The fire behaviour is investigated with a cone calorimeter using different external heat fluxes, by means of the limiting oxygen index and the UL 94 classification. The fire residue is characterized using SEM. The comprehensive fire behaviour characterization not only allows the materials’ potential for implementation in different fire scenarios and fire tests to be assessed, but also provides detailed insight into the active mechanisms. The increased melt viscosity of the nanocomposites and the fibre-network character of the nanofiller are the dominant mechanisms influencing fire performance. The changes are found to be adjuvant with respect to forced flaming conditions in the cone calorimeter, but also deleterious in terms of flammability. KW - Carbon Nanotubes KW - Nanocomposites KW - Flame retardancy KW - Rheology KW - Thermal Analysis KW - Fire retardancy KW - Cone Calorimeter PY - 2005 U6 - https://doi.org/10.1016/j.eurpolymj.2004.11.023 SN - 0014-3057 SN - 1873-1945 VL - 41 IS - 5 SP - 1061 EP - 1070 PB - Elsevier CY - Oxford AN - OPUS4-7142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Ciesielski, M. A1 - Döring, M. A1 - Braun, Ulrike A1 - Knoll, Uta A1 - Schartel, Bernhard T1 - Effective halogen-free flame retardants for carbon fibre-reinforced epoxy composites N2 - DOPO-based flame retardants with tailored chemical structures are proposed for carbon fibre reinforced epoxy composites. Critical properties related to the fracture toughness are maintained, effectively allowing the use of such compounds in composites for demanding applications. KW - Fire retardancy KW - DOPO KW - Epoxy resin KW - LOI KW - UL94 PY - 2006 U6 - https://doi.org/10.1007/s10853-006-0134-4 SN - 0022-2461 SN - 1573-4803 VL - 41 IS - 15 SP - 4981 EP - 4984 PB - Springer Science + Business Media B.V. CY - New York, USA AN - OPUS4-12641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Knoll, Uta A1 - Schartel, Bernhard A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Perez-Graterol, R. A1 - Sandler, J.K.W. A1 - Altstädt, V. T1 - Novel Phosphorus-Containing Poly(ether sulfone)s and Their Blends with an Epoxy Resin: Thermal Decomposition and Fire Retardancy N2 - Summary: The decomposition of novel phosphorus-containing poly(oxyphenylene-sulfonyl-phenylene-oxy-diphenyl phenylene phosphine oxide) (PSU_I), 2,5-dihydroxy-1-biphenylene-phosphine oxide based polysulfone (PSU_II), poly(sulfonyl-diphenylphenylene phosphonate) (PSU_P) and bisphenol A-based polysulfone (PSU) is studied. The influence of the chemical structure, charring and phosphorus release is discussed based on the mass loss, kinetics and products. The pyrolysis and fire behaviour of blends with epoxy resin (EP) are studied. For EP-PSU_II, phosphorus initiates water elimination and changes the decomposition pathway of EP. The fire behaviour of EP-PSU shows some improvements, whereas the heat release rate is crucially reduced for EP-PSU_II due to simultaneous char formation and flame inhibition. KW - Epoxy KW - Flame retardance KW - High performance polymers KW - Polysulfones KW - Thermogravimetric analysis (TGA) PY - 2006 U6 - https://doi.org/10.1002/macp.200600182 SN - 1022-1352 SN - 1521-3935 VL - 207 IS - 16 SP - 1501 EP - 1514 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-12650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard ED - Morgan, A. ED - Wilkie, C. T1 - Considerations regarding specific impacts of the principal fire retardancy mechanisms in nanocomposites KW - Nanocomposites KW - Fire retardancy KW - Layered silicate KW - Cone calorimeter KW - Multiwall carbon nanotubes KW - LOI KW - UL 94 PY - 2007 SN - 978-0-471-73426-0 IS - Kap. 5 SP - 107 EP - 129 PB - John Wiley & Sons, Ltd. CY - New York AN - OPUS4-14844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard ED - Troitzsch, J. T1 - Entwicklung von flammgeschützten Polymerwerkstoffen - Interpretation von Cone Calorimeter Daten T2 - 9. SKZ-Fachtagung "Kunststoffe, Brandschutz und Flammschutzmittel" CY - Würzburg, Deutschland DA - 2007-12-05 KW - Flammschutz von Polymeren KW - Fire Retardancy KW - Cone Calorimeter PY - 2007 N1 - Sprachen: Deutsch/Englisch - Languages: German/English SP - 1 EP - 25 PB - SKZ CY - Würzburg AN - OPUS4-16487 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Entwicklung von flammgeschützten Polymerwerkstoffen - Interpretation von Cone Calorimeter Daten T2 - 9. SKZ-Fachtagung Kunststoffe, Brandschutz und Flammschutzmittel. Neue Entwicklungen und Anwendungen CY - Würzburg, Germany DA - 2007-12-05 PY - 2007 AN - OPUS4-16476 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Braun, Ulrike A1 - Sturm, Heinz A1 - Schartel, Bernhard T1 - Flame retardancy mechanisms of aluminium phosphinate in glass-fibre reinforced polyester T2 - Flame Retardants 2008 Conference CY - London, UK DA - 2008-02-12 PY - 2008 SN - 978-0-9556548-1-7 SP - 133 EP - 140 PB - Interscience Communications CY - London, UK AN - OPUS4-17785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Balabanovich, Aliaksandr A1 - Knoll, Uta A1 - Braun, Ulrike A1 - Schartel, Bernhard T1 - Novel Phosphorus-containing Hardeners with Tailored Chemical Structures for Epoxy Resins: Synthesis and Cured Resin Properties N2 - A comparative evaluation of systematically tailored chemical structures of various phosphorus-containing aminic hardeners for epoxy resins was carried out. In particular, the effect of the oxidation state of the phosphorus in the hardener molecule on the curing behavior, the mechanical, thermomechanical, and hot-wet properties of a cured bifunctional bisphenol-A based thermoset is discussed. Particular attention is paid to the comparative pyrolysis of neat cured epoxy resins containing phosphine oxide, phosphinate, phosphonate, and phosphate (with a phosphorus content of about 2.6 wt %) and of the fire behavior of their corresponding carbon fiber-reinforced composites. Comparatively faster curing thermosetting system with an enhanced flame retardancy and adequate processing behavior can be formulated by taking advantage of the higher reactivity of the phosphorus-modified hardeners. For example, a combination of the high reactivity and of induced secondary crosslinking reactions leads to a comparatively high Tg when curing the epoxy using a substoichiometric amount of the phosphinate-based hardener. The overall mechanical performance of the materials cured with the phosphorus-containing hardeners is comparable to that of a 4,4-DDS-cured reference system. While the various phosphorus-containing hardeners in general provide the epoxy-based matrix with enhanced flame retardancy properties, it is the flame inhibition in the gas phase especially that determines the improvement in fire retardancy of carbon fiber-reinforced composites. In summary, the present study provides an important contribution towards developing a better understanding of the potential use of such phosphorus-containing compounds to provide the composite matrix with sufficient flame retardancy while simultaneously maintaining its overall mechanical performance on a suitable level. KW - Flame retardance KW - Organo-phosphorus compounds KW - Fracture toughness PY - 2007 SN - 0021-8995 SN - 1097-4628 VL - 105 IS - 5 SP - 2744 EP - 2759 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-15071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Accurate use of cone calorimeter data: Some food for thought T2 - FRPM07 - 11th European Meeting on Fire Retardant Polymers CY - Bolton, England DA - 2007-07-04 PY - 2007 AN - OPUS4-15060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Hull, T.R. T1 - Development of fire-retarded materials-Interpretation of cone calorimeter data N2 - There is little consensus within the fire science community on interpretation of cone calorimeter data, but there is a significant need to screen new flammability modified materials using the cone calorimeter. This article is the result of several discussions aiming to provide guidance in the use and interpretation of cone calorimetry for those directly involved with such measurements. This guidance is essentially empirical, and is not intended to replace the comprehensive scientific studies that already exist. The guidance discusses the fire scenario with respect to applied heat flux, length scale, temperature, ventilation, anaerobic pyrolysis and set-up represented by the cone calorimeter. The fire properties measured in the cone calorimeter are discussed, including heat release rate and its peak, the mass loss and char yield, effective heat of combustion and combustion efficiency, time to ignition and CO and smoke production together with deduced quantities such as FIGRA and MARHE. Special comments are made on the use of the cone calorimeter relating to sample thickness, textiles, foams and intumescent materials, and the distance of the cone heater from the sample surface. Finally, the relationship between cone calorimetry data and other tests is discussed. KW - Cone calorimetry KW - Heat release KW - Fire retardant PY - 2007 SN - 0308-0501 SN - 1099-1018 VL - 31 IS - 5 SP - 327 EP - 354 PB - Heyden CY - London AN - OPUS4-15069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artner, J. A1 - Ciesielski, M. A1 - Ahlmann, M. A1 - Walter, O. A1 - Döring, M. A1 - Perez, R.M. A1 - Altstädt, V. A1 - Sandler, J.K.W. A1 - Schartel, Bernhard T1 - A novel and effective synthetic approach to 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) Derivatives N2 - Starting from trivalent 10-alkoxy-10H-9-oxa-10-phosphaphenanthrenes, a broad range of DOPO derivatives was synthesized via transesterification with aliphatic alcohols and subsequent Michaelis-Arbuzov rearrangement using catalytic amounts of p-toluenesulfonic acid methylester. Due to the considerable differences in the nature of the alcohols employed, several procedures for processing them are presented. KW - DOPO KW - Flame retardant KW - Michaelis-Arbuzov rearrangement KW - Transesterification PY - 2007 U6 - https://doi.org/10.1080/10426500701407417 SN - 1042-6507 SN - 0308-664X VL - 182 IS - 9 SP - 2131 EP - 2148 PB - Taylor & Francis CY - Philadelphia, USA AN - OPUS4-15705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Schartel, Bernhard A1 - Fichera, Mario Augusto A1 - Jäger, Christian T1 - Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6 N2 - The fire retardancy mechanisms of aluminium diethylphosphinate in combination with melamine polyphosphate and zinc borate was analysed in glass-fibre reinforced polyamide 6,6. The influence of phosphorus compounds on the polyamide decomposition pathways was characterized using thermal analysis (TG), evolved gas analysis (TG–FTIR), and FTIR–ATR analysis of the residue. The Lewis acid–base interactions between the flame retardants, the amide unit, and the metal ions control the decomposition. The flammability (LOI, UL 94) and performance under forced-flaming conditions (cone calorimeter using different irradiations) were investigated. Fire residues were analysed with FTIR–ATR, SEM–EDX, and NMR. Aluminium phosphinate in polyamide 6,6 acts mainly by flame inhibition. Melamine polyphosphate shows some fuel dilution and a significant barrier effect. Using a combination of aluminium phosphinate and melamine polyphosphate results in some charring and a dominant barrier effect. These effects are improved in the presence of zinc borate due to the formation of boron–aluminium phosphates instead of aluminium phosphates. KW - Flame retardancy KW - Polyamide 6,6 KW - Metal phosphinate KW - Melamine polyphosphate KW - Zinc borate PY - 2007 SN - 0141-3910 SN - 1873-2321 VL - 92 IS - 8 SP - 1528 EP - 1545 PB - Applied Science Publ. CY - London AN - OPUS4-15707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Pawlowski, Kristin A1 - Lyon, R.E. T1 - Pyrolysis combustion flow calorimeter: A tool to assess flame retarded PC/ABS materials? N2 - The pyrolysis combustion flow calorimeter (PCFC) as a tool for assessing the flammability of a polycarbonate (bisphenol A)/acrylonitrile–butadiene–styrene (PC/ABS) blend containing different flame retardants and additives was investigated. Strategies are proposed for analysing multi-step decomposition. The heat release capacity (HRC) and total heat release (HR), obtained by PCFC, are related to the char yield and the heat of complete combustion of the volatiles. Physical affects such as dripping, wicking, and sample thickness are not described, nor are chemical effects such as flame inhibition because pyrolysis and combustion are forced to completion on a small (milligram) sample. Varying the combustion temperature or oxygen concentration results in incomplete combustion as occuring in real fires. The correlations with flammability (UL 94, LOI) and forced flaming combustion in a cone calorimeter are discussed. The best correlation is found between HR and LOI. Reasonable correlation exists between HRC and char residue with the LOI and for HRC and HR with peak heat release rate (pHRR) in the cone calorimeter. Combining results from PCFC with those from oxygen bomb or cone calorimeter tests yields an additional understanding of fire behaviour. KW - Pyrolysis combustion flow calorimeter KW - Flammability KW - Combustion KW - Flame retardancy KW - PC/ABS PY - 2007 U6 - https://doi.org/10.1016/j.tca.2007.05.021 SN - 0040-6031 SN - 1872-762X VL - 462 IS - 1-2 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam AN - OPUS4-15734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artner, J. A1 - Ciesielski, M. A1 - Walter, O. A1 - Döring, M. A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Schartel, Bernhard T1 - A novel DOPO-based diamine as hardener and flame retardant for epoxy resin systems N2 - 10-Ethyl-9-oxa-10-phosphaphenanthrene-10-oxide (1) can be nitrated using acetic anhydride and fuming nitric acid. The nitro group is reduced using palladium on charcoal and hydrogen. These reaction conditions are used for the synthesis of an analogous DOPO-based diaminic hardener (7). An evaluation of the curing behavior, mechanical properties and flammability of a neat resin made of DGEBA and 7 (DGEBA + 7) and of a carbon fiber-reinforced resin made of DGEBA, 4,4-diaminodiphenylsulfon (DDS) and 7 (DGEBA + DDS + 7) shows the potential of this hardener to lead to flame-retardant systems while keeping relevant properties on a high level; especially when compared to a similar system (DGEBA + DDS + 1). KW - Composites KW - Epoxy resins KW - Synthesis KW - Flame retardancy KW - Mechanical properties PY - 2008 U6 - https://doi.org/10.1002/mame.200700287 SN - 1438-7492 SN - 1439-2054 VL - 293 IS - 6 SP - 503 EP - 514 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-17624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Pawlowski, Kristin A1 - Perret, Birgit T1 - Flame Retardancy Mechanisms in Halogen-Free PC/ABS Blends KW - Fire Retardancy KW - PC/ABS KW - Arylphosphates KW - Cone Calorimeter KW - UL 94 KW - LOI KW - TG-FTIR PY - 2008 SN - 0743-0515 VL - 98 SP - 245 EP - 246 PB - Division of Polymeric Materials Science and Engineering, American Chemical Society CY - Washington, DC AN - OPUS4-17625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Braun, Ulrike A1 - Schartel, Bernhard ED - Schartel, Bernhard T1 - Flame retardant epoxy resin system for liquid composite moulding applications KW - Epoxy resin KW - Fire retardancy PY - 2007 SN - 978-3-8334-8873-3 SP - 69 EP - 84 PB - Books on Demand GmbH CY - Norderstedt AN - OPUS4-17627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Braun, Ulrike T1 - Flame retardancy mechanisms of aluminum phosphinate in glass fiber reinforced thermoplastics T2 - 19th Annual Conference Recent Advances in Flame Retardancy of Polymeric Materials CY - Stamford, CT, USA DA - 2008-06-09 PY - 2008 AN - OPUS4-17630 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Pawlowski, Kristin A1 - Perret, Birgit T1 - Flame retardancy mechanisms in Halogen-Free PC/ABS Blends N2 - For applications such as in electronical engineering and transportation the fire behavior of PC/ABS is a key property and hence the flame retardancy of polycarbonate (bisphenol A)/acrylonitrilebutadienestyrene blends (PC/ABS) is a key challenge. Within the search for halogen-free flame retardants the development of phosphorus-based systems plays an important role. In the last decades aryl phosphates, such as triphenyl phosphate (TPP), resorcinol bis(diphenyl phosphate) (RDP) and bisphenol A bis(diphenyl phosphate) (BDP) were proposed successfully for PC/ABS.1,2 Nowadays, predominantly different systems based on RDP and BDP in combination with poly(tetrafluoroethylene)(PTFE) are used. However, halogen-free flame retarded PC/ABS blends show high growth rates and it is a highly innovative field, which means that several products have been launched to the market in the last 5 – 10 years. In order to invent the next generation of PC/ABS, the scientific understanding of mechanisms and the comprehensive description of the resulting performance is recognized as a possible key towards an aimed or tailored development. T2 - 235th ACS National Meeting CY - New Orleans, LA, USA DA - 2008-04-06 PY - 2008 AN - OPUS4-17631 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fichera, M.A. A1 - Jäger, Christian A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Pawlowski, Kristin ED - Menachem Lewin, T1 - Solid-state NMR for monitoring the thermal decomposition of flame retarded polymers PY - 2007 SN - 1-59623-321-4 VL - I SP - 9 EP - 19 PB - BCC Research CY - Norwalk, CT, USA AN - OPUS4-17581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Bahr, Horst A1 - Sturm, Heinz A1 - Schartel, Bernhard T1 - Flame retardancy mechanisms of metal phosphinates and metal phosphinates in combination with melamine cyanurate in glass-fiber reinforced poly(1,4-butylene terephthalate): the influence of metal cation N2 - The pyrolysis and fire behavior of glass-fiber reinforced poly(butylene terephthalate) (PBT/GF) with two different metal phosphinates as flame retardants in combination with and without melamine cyanurate (MC) were analyzed by means of thermogravimetry, thermogravimetry coupled with infrared spectroscopy, flammability, and cone calorimeter tests as well as scanning electron microscopy/energy dispersive X-ray spectroscopy and X-ray fluorescence spectroscopy. In PBT/GF, dosages of 13-20% of the halogen-free flame retardant aluminum phosphinate or aluminum phosphinate in combination with MC fulfill the requirements for electrical engineering and electronics applications (UL 94 = V-0; LOI > 42%), whereas the use of the same amount of zinc phosphinate or zinc phosphinate in combination with MC does not improve the fire behavior satisfactorily (UL 94 = HB; LOI = 27-28%). The performance under forced flaming conditions (cone calorimeter) is quite similar for both of the metal phosphinates. The use of aluminum and zinc salts results in similar flame inhibition predominantly due to the release of the phosphinate compounds in the gas phase. Both metal phosphinates and MC interact with the polymer changing the decomposition characteristics. However, part of the zinc phosphinate vaporizes as a complete molecule. Because of the different decomposition behavior of the metal salts, only the aluminum phosphinate results in a small amount of thermally stable carbonaceous char. In particular, the aluminum phosphinate-terephthalate formed is more stable than the zinc phosphinate-terephthalate. The small amount of char has a crucial effect on the thermal properties and mechanical stability of the residue and thus the flammability. KW - Flame retardance KW - Polyester KW - Phosphinates KW - Pyrolysis KW - Cone calorimeter PY - 2008 U6 - https://doi.org/10.1002/pat.1147 SN - 1042-7147 SN - 1099-1581 VL - 19 IS - 6 SP - 680 EP - 692 PB - John Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-17620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Balabanovich, Aliaksandr A1 - Schartel, Bernhard T1 - Effective halogen-free flame retardancy for a monocomponent polyfunctional epoxy using an oligomeric organophosphorus compound N2 - Oligomeric organo-phosphorus flame retardants are proposed for a monocomponent polyfunctional epoxy resin system (RTM6) without significantly deteriorating the overall performance of the resulting material. KW - DOPO KW - Epoxy resin KW - Fire retardancy KW - LOI PY - 2006 U6 - https://doi.org/10.1007/s10853-006-1079-3 SN - 0022-2461 SN - 1573-4803 VL - 41 IS - 24 SP - 8347 EP - 8351 PB - Springer Science + Business Media B.V. CY - New York, USA AN - OPUS4-14112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Balabanovich, Aliaksandr A1 - Schartel, Bernhard A1 - Knoll, Uta A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Perez, R. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. T1 - Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites N2 - A systematic and comparative evaluation of the pyrolysis of halogen-free flame-retarded epoxy resins containing phosphine oxide, phosphinate, phosphonate, and phosphate (phosphorus contents around 2.6 wt.%) and the fire behaviour of their carbon fibre composites is presented. Decomposition pathways are proposed based on the thermal analysis (TG), TG coupled with evolved gas analysis (TG-FTIR), kinetics and analysis of the residue with FTIR and XPS. All organophosphorus-modified hardeners containing phenoxy groups lead to a reduced decomposition temperature and mass loss step for the main decomposition of the cured epoxy resin. With increasing oxidation state of the phosphorus the thermally stable residue increases, whereas the release of phosphorus-containing volatiles decreases. The flammability of the composites was investigated with LOI and UL 94 and the fire behaviour for forced-flaming conditions with cone calorimeter tests performed using different irradiations. The flame retardancy mechanisms are discussed. With increasing oxidation state of the phosphorus additional charring is observed, whereas the flame inhibition, which plays the more important role for the performance of the composites, decreases. The processing and the mechanical performance (delamination resistance, flexural properties and interlaminar bonding strength) of the fibre-reinforced composites containing phosphorus were maintained at a high level and, in some cases, even improved. The potential for optimising flame retardancy while maintaining mechanical properties is highlighted in this study. KW - Fire retardant KW - Composites KW - Organophosphorus-containing epoxy resin PY - 2006 U6 - https://doi.org/10.1016/j.polymer.2006.10.022 SN - 0032-3861 SN - 1873-2291 VL - 47 IS - 26 SP - 8495 EP - 8508 PB - Springer CY - Berlin AN - OPUS4-14054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Ciesielski, M. A1 - Döring, M. A1 - Braun, Ulrike A1 - Balabanovich, Aliaksandr A1 - Schartel, Bernhard T1 - Novel phosphorus-modified polysulfone as a combined flame retardant and toughness modifier for epoxy resins N2 - A novel phosphorus-modified polysulfone (P-PSu) was employed as a combined toughness modifier and a source of flame retardancy for a DGEBA/DDS thermosetting system. In comparison to the results of a commercially available polysulfone (PSu), commonly used as a toughness modifier, the chemorheological changes during curing measured by means of temperature-modulated DSC revealed an earlier occurrence of mobility restrictions in the P-PSu-modified epoxy. A higher viscosity and secondary epoxy-modifier reactions induced a sooner vitrification of the reacting mixture; effects that effectively prevented any phase separation and morphology development in the resulting material during cure. Thus, only about a 20% increase in fracture toughness was observed in the epoxy modified with 20 wt.% of P-PSu, cured under standard conditions at 180 °C for 2 h. Blends of the phosphorus-modified and the standard polysulfone (PSu) were also prepared in various mixing ratios and were used to modify the same thermosetting system. Again, no evidence for phase separation of the P-PSu was found in the epoxy modified with the P-PSu/PSu blends cured under the selected experimental conditions. The particular microstructures formed upon curing these novel materials are attributed to a separation of PSu from a miscible P-PSu–epoxy mixture. Nevertheless, the blends of P-PSu/PSu were found to be effective toughness/flame retardancy enhancers owing to the simultaneous microstructure development and polymer interpenetration. KW - Flame retardants KW - Phosphorus-modified polysulfone KW - Fracture toughness PY - 2007 SN - 0032-3861 SN - 1873-2291 VL - 48 IS - 3 SP - 778 EP - 790 PB - Springer CY - Berlin AN - OPUS4-14515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fichera, Mario Augusto A1 - Braun, Ulrike A1 - Schartel, Bernhard A1 - Sturm, Heinz A1 - Knoll, Uta A1 - Jäger, Christian T1 - Solid-state NMR investigations of the pyrolysis and thermo-oxidative decomposition products of a polystyrene/red phosphorus/magnesium hydroxide system N2 - Thermal, thermo-oxidative and fire residues of high impact polystyrene/magnesium hydroxide/red phosphorus (HIPS/Mg(OH)2/Pr) are investigated by solid-state NMR and compared with the results for the binary subsystem Mg(OH)2/Pr. The influences of oxygen, nitrogen and temperature are discussed. For a thermal decomposition and pyrolysis during combustion, the main pyrolysis of HIPS takes place while the remaining residue is a rather intact polymer, with a major share of the embedded Pr still present. Subsequently, mainly amorphous phosphates and a slight amount of crystalline Mg3(PO4)2 and Mg2P2O7 are formed at the highest temperatures. Only with increasing mass loss does the remaining polystyrene structure decompose and graphitic structures occur. The influence of oxygen on the decomposition mechanism is most obvious for the binary system Mg(OH)2/Pr. Pr vanishes more rapidly and crystalline, oxygen-rich magnesium phosphates are formed. In HIPS/Mg(OH)2/Pr systems the polymer acts as a barrier to reaction by the embedded particles, so that major characteristics of an anaerobic decomposition are found. Significant amounts of phosphorus are retained in the condensed phase through a reaction of Pr with Mg(OH)2 to mostly amorphous phosphates. This formation of amorphous inorganic magnesium phosphates can act as an additional physical barrier. This study outlines some advanced approaches for controlling the condensed-phase mechanisms of phosphorus and underlines that solid-state NMR is a most powerful tool for investigating the organic and inorganic residues. KW - HIPS KW - Red phosphorus KW - Magnesium hydroxide KW - Solid-state NMR KW - Flame retarded polymers PY - 2007 SN - 0165-2370 SN - 1873-250X VL - 78 IS - 2 SP - 378 EP - 386 PB - Elsevier CY - Amsterdam AN - OPUS4-14517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Balabanovich, Aliaksandr A1 - Braun, Ulrike A1 - Knoll, Uta A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Perez, R. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. T1 - Pyrolysis of Epoxy Resins and Fire Behavior of Epoxy Resin Composites Flame-Retarded with 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide Additives N2 - The pyrolysis of an epoxy resin and the fire behavior of corresponding carbon fiber-reinforced composites, both flame-retarded with either 10-ethyl-9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide or 1,3,5-tris[2-(9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide-10-)ethyl]1, 3,5-triazine-2,4,6(1H,3H,5H)-trione, are investigated. The different fire retardancy mechanisms are discussed, and their influence on the fire properties assessed, in particular for flammability (limiting oxygen index, UL 94) and developing fires (cone calorimeter with different external heat fluxes of 35, 50, and 70 kW m-2). Adding the flame retardants containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide affects the fire behavior by both condensed phase and gas phase mechanisms. Interactions between the additives and the epoxy resin result in a change in the decomposition pathways and an increased char formation. The release of phosphorous products results in significant flame inhibition. The fire properties achieved are thus interesting with respect to industrial exploration. KW - Flame retardance KW - Thermosets KW - Composites KW - Thermogravimetric analysis (TGA) KW - Pyrolysis KW - High performance polymers KW - Epoxy resin PY - 2007 SN - 0021-8995 SN - 1097-4628 VL - 104 IS - 4 SP - 2260 EP - 2269 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-14573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartholmai, Matthias A1 - Schartel, Bernhard T1 - Assessing the performance of intumescent coatings using bench-scaled cone calorimeter and finite difference simulations N2 - A method was developed to assess the heat insulation performance of intumescent coatings. The method consists of temperature measurements using the bench-scaled experimental set-up of a cone calorimeter and finite difference simulation to calculate the effective thermal conductivity dependent on time/temperature. This simulation procedure was also adapted to the small scale test furnace, in which the standard time-temperature curve is applied to a larger sample and thus which provides results relevant for approval. Investigations on temperature and calculated effective thermal conduction were performed on intumescent coatings in both experimental set-ups using various coating thicknesses. The results correspond to each other as well as showing the limits of transferability between both fire tests. It is shown that bench-scaled cone calorimeter tests are a valuable tool for assessing and predicting the performance of intumescent coatings in larger tests relevant for approval. The correlation fails for processes at surface temperatures above 750°C, which are not reached in the cone calorimeter, but are attained in the small scale furnace set-up. KW - Intumescent coatings KW - Cone calorimetry KW - Numerical analysis KW - Small scale test furnace PY - 2007 SN - 0308-0501 SN - 1099-1018 VL - 31 IS - 3 SP - 187 EP - 205 PB - Heyden CY - London AN - OPUS4-14645 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Development of fire retarded materials - The use of the Cone Calorimeter and the Pyrolysis Combustion Flow Calorimeter T2 - 17. Ulm-Freiberger Kalorimetrietage CY - Freiberg, Germany DA - 2007-03-28 PY - 2007 AN - OPUS4-14688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Pawlowski, Kristin T1 - Phosphorus-containing polymeric materials: The impact of pyrolysis on flame retardancy T2 - interflam2007 - 11th International Conference on Fire Science and Engineering CY - London, England DA - 2007-09-03 PY - 2007 AN - OPUS4-15829 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Pawlowski, Kristin T1 - Phosphorus-Containing Polymeric Materials: The Impact of Pyrolysis on Flame Retardancy T2 - 11th International Conference "INTERFLAM 2007" CY - London, UK DA - 2007-09-03 KW - Flame Retardancy KW - Fire Retardancy KW - Flame Retardants KW - Decompositiion pathways KW - Pyrolysis KW - Phosphorus PY - 2007 SN - 978-0-9541216-8-6 SN - 978-0-9541216-9-3 SP - 71 EP - 78 PB - Interscience Communications Limited CY - London, UK AN - OPUS4-15761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pawlowski, Kristin A1 - Schartel, Bernhard T1 - Flame retardancy mechanisms of aryl phosphates in combination with boehmite in bisphenol A polycarbonate/acrylonitrile-butadiene-styrene blends N2 - The influence of nano-dispersed 5 wt.% boehmite (AlOOH) and 5 wt.% AlOOH combined with bisphenol A bis(diphenyl phosphate) (BDP) in bisphenol A polycarbonate/acrylonitrile–butadiene–styrene (PC/ABS) + poly(tetrafluoroethylene) (PTFE), and 1 wt.% AlOOH with and without BDP, resorcinol bis(diphenyl phosphate) (RDP), and triphenyl phosphate (TPP), on PC/ABS + PTFE has been investigated. Possible flame retardancy mechanisms are revealed. Thermogravimetry (TG) and evolved gas analysis (TG-FTIR) are used to study pyrolysis, a cone calorimeter applying different external heat fluxes is used to investigate fire behaviour, and LOI and UL 94 are used to investigate flammability. Fire residues were investigated using ATR-FTIR. Adding 5 wt.% AlOOH decreases the peak heat release rate, as also has been reported for polymer nanocomposites with other layered structures. AlOOH releases water, and adding 5 wt.% AlOOH crucially influences thermal decomposition by enhancing the hydrolysis of PC and of BDP. For PC/ABS + PTFE + BDP + 5 wt.% AlOOH, the formation of AlPO4, for instance, results in antagonistic effects on the charring of PC + BDP, whereas synergy is observed in LOI. When only 1 wt.% AlOOH is added to the PC/ABS + PTFE with and without BDP, RDP and TPP, respectively, no significant influence is observed on thermal decomposition, UL 94, LOI or performance in the cone calorimeter. KW - Aryl phosphates KW - Boehmite KW - PC/ABS KW - Flammability KW - Nanocomposites KW - Flame retardant PY - 2008 U6 - https://doi.org/10.1016/j.polymdegradstab.2008.01.002 SN - 0141-3910 SN - 1873-2321 VL - 93 IS - 3 SP - 657 EP - 667 PB - Applied Science Publ. CY - London AN - OPUS4-17121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Schartel, Bernhard T1 - Flame Retardancy Mechanisms of Aluminium Phosphinate in Combination with Melamine Cyanurate in Glass-Fibre-Reinforced Poly(1,4-butylene terephthalate) N2 - The flame retardancy mechanisms of aluminium diethylphosphinate (AlPi) and its combination with melamine cyanurate (MC) in glass-fibre-reinforced poly(butylene terephthalate) (PBT/GF) were analysed using TGA including evolved gas analysis (TGA-FTIR), cone calorimeter measurements using various irradiations, flammability tests (limited oxygen index, LOI, UL 94) and chemical analyses of residues (FTIR, SEM/EDX). AlPi decomposed mainly through the formation of diethylphosphinic acid and aluminium phosphate and influenced the decomposition of the PBT only slightly. AlPi acted mainly through flame inhibition. A halogen-free V-0 PBT/GF material was achieved with a LOI of 44%. Additional charring influenced the flammability. MC decomposed independently of the polymer and showed some fuel dilution effects. KW - Flame retardance KW - Metal phosphinate KW - Polyester KW - Pyrolysis KW - Thermogravimetric analysis PY - 2008 U6 - https://doi.org/10.1002/mame.200700330 SN - 1438-7492 SN - 1439-2054 VL - 293 IS - 3 SP - 206 EP - 217 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-17122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Braun, Ulrike A1 - Knoll, Uta A1 - Neubert, Dietmar A1 - Schartel, Bernhard ED - Schartel, Bernhard T1 - Fire Retarding Mechanisms of Red Phosphorus in Polybutylenterephthalate (PBT) in Combination with Melamine Cyanurate or Zinc Oxide KW - Fire retardancy KW - Polyester KW - Red phosphorus KW - Thermal analysis KW - Cone calorimeter PY - 2007 SN - 978-3-8334-8873-3 SP - 35 EP - 49 PB - Books on Demand GmbH CY - Norderstedt AN - OPUS4-17662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Braun, Ulrike T1 - Understanding Fire Retardancy Mechanisms in Composites: A Key for Future Development T2 - 5th International Conference on Composites In Fire (CIF5) CY - Newcastle upon Tyne, United Kingdom DA - 2008-07-10 KW - Fire retardancy KW - Composites KW - Flame Retardants KW - Phosphinate PY - 2008 SP - 01-1 - 01-10 CY - Newcastle upon Tyne, UK AN - OPUS4-17716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Braun, Ulrike T1 - Understanding fire retardancy mechanisms in composites: A key for future development T2 - Fifth International Conference on Composites in Fire CY - Newcastle upon Tyne, England DA - 2008-07-10 PY - 2008 AN - OPUS4-17701 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schartel, Bernhard A1 - Bartholmai, Matthias A1 - Braun, Ulrike ED - Le Bras, M. T1 - Barrier effects for the fire retardancy of polymers T2 - 9th European Meeting on Fire Retardancy and Protection of Materials CY - Lille, France DA - 2003-09-15 KW - Fire retardancy KW - Nanocomposites KW - Red Phosphorus KW - Mg(OH)2 KW - Cone Calorimeter KW - LOI PY - 2005 SN - 0-85404-582-1 VL - 9 SP - 264 EP - 275 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-7377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pawlowski, Kristin A1 - Schartel, Bernhard T1 - Mechanisms of Aryl Phosphates as Flame Retardants in PC/ABS N2 - The pyrolysis and the fire behaviour of PC/ABS containing various aryl phosphates and their combinations with aluminium hydroxide oxide, talc and zinc borate were investigated. Main interest was focused on the flame retardant effect and mechanism of aryl phosphates (e.g. BDP) in PC/ABS, especially in combination with the other additives. Therefore the thermal and thermo oxidative decomposition was characterised by the means of thermogravimetry analysis and thermogravimetry coupled with infrared Fourier transform spectroscopy (TG-FTIR). The results were verified with further methods, e.g. pyrolysis-gaschromatography/mass spectroscopy (Py-GC/MS). Kinetic analysis and evolved gas analysis were used to study the pyrolysis mechanisms and to expose existent synergisms in the combined systems. The fire behaviour was investigated by cone calorimeter. The flammability was determined by LOI and UL 94. The chemical compositions of the residues were also examined. T2 - 17th Annual BCC Conference on Flame Retardancy CY - Stamford, CT, USA DA - 2006-05-22 KW - Aryl Phosphate KW - TG-FTIR KW - PC/ABS KW - Cone Calorimeter KW - Fire retardancy PY - 2006 SN - 1-59623-221-8 VL - 17 SP - 132 EP - 142 PB - BCC Research CY - Norwalk, Conn. AN - OPUS4-13982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittrich, Bettina A1 - Wartig, K.-A. A1 - Hofmann, D. A1 - Mülhaupt, R. A1 - Schartel, Bernhard T1 - Carbon black, multiwall carbon nanotubes, expanded graphite and functionalized graphene flame retarded polypropylene nanocomposites N2 - Herein, we examine the influence of adding functionalized graphene (FG), distinct expanded graphites and carbon nanofillers such as carbon black and multiwall carbon nanotubes on mechanical properties, morphology, pyrolysis, response to small flame and burning behavior of a V-2 classified flame-retarded polypropylene (PP). Among carbon fillers, FG and multilayer graphene (MLG) containing fewer than 10 layers are very effectively dispersed during twin-screw extrusion and account for enhanced matrix reinforcement. In contrast to the other fillers, no large agglomerates are detected for PP-FR/FG and PP-FR/MLG, as verified by electron microscopy. Adding FG to flame-retardant PP prevents dripping due to reduced flow at low shear rates and shifts the onset of thermal decomposition to temperatures 40°C higher. The increase in the onset temperature correlates with the increasing specific surface areas (BET) of the layered carbon fillers. The reduction of the peak heat release rate by 76% is attributed to the formation of effective protection layers during combustion. The addition of layered carbon nanoparticles lowers the time to ignition. The presence of carbon does not change the composition of the evolved pyrolysis gases, as determined by thermogravimetric analysis combined with online Fourier-transformed infrared measurements. FG and well-exfoliated MLG are superior additives with respect to spherical and tubular carbon nanomaterials. KW - Graphene KW - Flame retardancy KW - Nanocomposites KW - Polypropylene KW - Carbon nanoparticles PY - 2013 U6 - https://doi.org/10.1002/pat.3165 SN - 1042-7147 SN - 1099-1581 VL - 24 IS - 10 SP - 916 EP - 926 PB - John Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-29337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lorenzetti, A. A1 - Besco, S. A1 - Hrelja, D. A1 - Roso, M. A1 - Gallo, Emanuela A1 - Schartel, Bernhard A1 - Modesti, M. T1 - Phosphinates and layered silicates in charring polymers: The flame retardancy action in polyurethane foams N2 - Nanocomposites of a charring polymer (like polyurethane foam) filled with aluminum phosphinate (AlPi) with or without melamine cyanurate (MelCy) have been prepared by microwave processing and their thermal stability and fire behavior have been studied. Results on the interaction between flame retardants and layered silicates were provided as well as detailed investigation of the char strength, which has been carried out using a suitably developed method based on dynamic-mechanic analysis. Generally, the thermo-oxidative stability in presence of layered silicates was higher than the counterparts even if an additive rather than synergic effect took place; however, in some cases the interaction between clays and phosphinate led to a significant decrease of weight residue. In nitrogen the residue amounts were about the same but a higher amount of phosphorus was retained in the solid phase in presence of clays. Cone calorimeter results showed that the use of phosphinates led to a decrease of the PHRR; further addition of clays did not reduce the PHRR owing to the worse quality of char layer as demonstrated by the char strength test. However, it has been shown that the partial substitution of aluminum phosphinate with melamine cyanurate gave improved results: the AlPi–MelCy filled foams showed similar pHRR and THE but lower TSR and higher char strength than AlPi filled foams. It was also confirmed that phosphinate acted by flame inhibition but its action was depressed by the use of nanoclays owing to their interaction. KW - Phosphinate KW - Nanocomposite KW - Polyurethane KW - Interaction KW - Flame retardant PY - 2013 U6 - https://doi.org/10.1016/j.polymdegradstab.2013.08.002 SN - 0141-3910 SN - 1873-2321 VL - 98 IS - 11 SP - 2366 EP - 2374 PB - Applied Science Publ. CY - London AN - OPUS4-29281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Composites in fire: Fire behaviour tailored for different applications N2 - Fibre reinforced polymers are used for a large variety of applications such as electronics and electrical engineering, transportation (railway vehicles, shipping, aviation), offshore and construction. In these applications limited fire hazards are a prerequisite. Passing distinct fire tests is demanded according to the different protection goals: mainly reduced ease of ignition and reaction to small flame for electronics, limited flame spread and heat release rate for transportation, and structure integrity under fire for offshore and construction. T2 - Interflam 2013 - 13th International fire science & engineering conference CY - Egham, Surrey, UK DA - 24.06.2013 KW - Composite KW - Flame retardancy PY - 2013 SN - 978-0-9556548-9-3 VL - 2 SP - 1239 EP - 1240 PB - Interscience Communications Limited AN - OPUS4-29519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Gallo, Emanuela A1 - Stöcklein, Waldemar A1 - Klack, Patrick T1 - Development of a New Intermediate Scale Method for Assessing Cables Reaction to Fire According CPR T2 - IWCS, 62nd International Cable Connectivity Symposium CY - Charlotte, NC, USA DA - 2013-11-10 PY - 2013 AN - OPUS4-29607 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Heading Evidence-based Development of Flame Retarded Polymers T2 - Fachtagung: Trends im Brandschutz und innovative Flammschutzmittel für Kunststoffe CY - Würzburg, Germany DA - 2013-09-11 PY - 2013 AN - OPUS4-29608 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flame Retardancy of Composites Tailored for Different Application T2 - 24th Annual Conference on Recent Advances in Flame Retardancy of Polymeric Materials CY - Stamford, CT, USA DA - 2013-05-20 PY - 2013 AN - OPUS4-29609 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hörold, Andreas A1 - Schartel, Bernhard A1 - Trappe, Volker A1 - Korzen, Manfred A1 - Naumann, Maurice T1 - Structural integrity of sandwich structures in fire: an intermediate-scale approach N2 - A test set-up in intermediate scale was conceived to investigate the structural integrity of materials under fire. The task was to develop a realistic test scenario targeting component-like behaviour. Carbon-fibre-reinforced sandwich specimens (500 X 500 X 20 mm) were used to examine failure mechanisms, times to failure and critical failure loads under compression. Fire tests were performed with fully developed fire applied to one side of the specimen by an oil burner. In a first test series, the applied load was varied, but the fully developed fire remained unchanged. In general, times to failure were short. Decreased load levels resulted in prolonged times to failure and led to a different failure mechanism. Results obtained in the test series were compared with a bench-scale study (150 X 150 X 20 mm) investigating identical material. The comparison clearly revealed the influence of size on the time to failure and the load-bearing capacity. KW - Fire testing KW - Structural integrity KW - Carbon-fibre-reinforced plastics KW - Fully developed fire KW - Composites PY - 2013 U6 - https://doi.org/10.1080/15685543.2013.816620 SN - 0927-6440 SN - 1568-5543 VL - 20 IS - 9 (Special Issue: ECCM15: Part 3) SP - 741 EP - 759 PB - VSP CY - Zeist AN - OPUS4-29647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flame Retarded Polymers: Heading Evidence-based Development T2 - Kolloquium des SFB 840 CY - Bayreuth, Germany DA - 2013-11-25 PY - 2013 AN - OPUS4-29646 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schartel, Bernhard A1 - Braun, Ulrike ED - Menachem Lewin, T1 - Flame retardancy mechanisms of aluminium phosphinate in glass fiber reinforced thermoplastics T2 - 19th Annual BCC Conference - Recent Advances in Flame Retardancy of Polymeric Materials CY - Stamford, Connecticut, USA DA - 2008-06-09 KW - Aluminium phosphinate KW - PA 66 KW - PBT KW - Flame retardancy KW - Cone calorimeter PY - 2008 SN - 1-59623-435-0 IS - CHM007I SP - 36 EP - 47 PB - BCC Research CY - Wellesley, MA, USA AN - OPUS4-19167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kempel, Florian A1 - Schartel, Bernhard A1 - Hofmann-Böllinghaus, Anja A1 - Linteris, G.T. A1 - Lyon, R.E. A1 - Walters, R.N. A1 - Stoliarov, S.I. T1 - Numerical simulation of polymer materials in standard fire tests: Pyrolysis and the impact of residue formation T2 - Interflam 2010 - 12th International conference CY - Nottingham, UK DA - 2010-07-05 KW - Cone calorimeter KW - Poly(butylene terephtalate) PBT KW - FDS KW - ThermaKin PY - 2010 SN - 978-0-9541216-5-5 N1 - Geburtsname von Hofmann-Böllinghaus, Anja: Hofmann, A. - Birth name of Hofmann-Böllinghaus, Anja: Hofmann, A. VL - 1 SP - 451 EP - 462 PB - Interscience Communications CY - London, UK AN - OPUS4-21668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Gallo, Emanuela A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Russo, P. A1 - Acierno, Domenico T1 - Synergistic flame retardant halogen-free combination of aluminium phosphinate and metal oxides in PBT T2 - Interflam 2010 - 12th International conference CY - Nottingham, UK DA - 2010-07-05 KW - Poly(butylene terephthalate) KW - Metal oxide KW - Phosphinate KW - Flammability PY - 2010 SN - 978-0-9541216-5-5 VL - 1 SP - 629 EP - 640 PB - Interscience Communications CY - London, UK AN - OPUS4-21669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kempel, Florian A1 - Schartel, Bernhard A1 - Hofmann-Böllinghaus, Anja A1 - Butler, K.M. A1 - Onate, E. A1 - Idelsohn, S.R. A1 - Rossi, R. A1 - Marti, J.M. T1 - Numerical simulation of polymeric materials in UL 94 test: Competition between gasification and melt flow/dripping T2 - Interflam 2010 - 12th International conference CY - Nottingham, UK DA - 2010-07-05 KW - Particle finite element method (PFEM) KW - UL 94 KW - Fire retardancy KW - PC/ABS KW - Melt flow KW - Dripping PY - 2010 SN - 978-0-9541216-5-5 N1 - Geburtsname von Hofmann-Böllinghaus, Anja: Hofmann, A. - Birth name of Hofmann-Böllinghaus, Anja: Hofmann, A. VL - 1 SP - 721 EP - 730 PB - Interscience Communications CY - London, UK AN - OPUS4-21670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kempel, Florian A1 - Hofmann-Böllinghaus, Anja A1 - Schartel, Bernhard A1 - Krause, Ulrich T1 - Investigations on a real fire case with downward fire spread in a family home T2 - 11th International symposium on fire protection CY - Leipzig, Germany DA - 2010-06-08 KW - Fire spread KW - Heat release rate KW - Fire simulation KW - Foam mattress PY - 2010 N1 - Geburtsname von Hofmann-Böllinghaus, Anja: Hofmann, A. - Birth name of Hofmann-Böllinghaus, Anja: Hofmann, A. SP - 1 EP - 12 AN - OPUS4-22354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perret, Birgit A1 - Schartel, Bernhard A1 - Stöß, K. A1 - Ciesielski, M. A1 - Diederichs, J. A1 - Döring, M. A1 - Krämer, J. A1 - Altstädt, V. T1 - Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for aviation N2 - Two novel, halogen-free, phosphorus-based oligomeric flame retardants are investigated in the commercial epoxy resin RTM6 and ~70 wt.% carbon fibre RTM6 composites (RTM6-CF) with respect to pyrolysis and fire behaviour. The flame retardants are based on 9,10-dihydro-9-oxy-10-phosphaphenanthrene-10-oxide (DOPO) units linked to the star-shaped aliphatic ground body tetra-[(acryloyloxy)ethyl] pentarythrit (DOPP), or heterocyclic tris-[(acryloyloxy)ethyl] isocyanurate (DOPI), respectively. The glass transition temperature is reduced by adding DOPP and DOPI, but the mechanical properties of the composites (e.g. interlaminar shear strength (ILSS) and Gc in mode I and II) remain unchanged. Decomposition models are proposed based on mass loss, evolved gas analysis (TG–FTIR) and condensed product analysis (hot stage cell within FTIR). The fire behaviour is investigated comprehensively (UL 94, limiting oxygen index (LOI) and cone calorimeter). Both flame retardants act in the gas phase through flame inhibition and in the condensed phase through charring. The UL 94 of RTM6 is improved from HB to V-1 and V-0; the LOI from 25% to 34–38%. Peak heat release rate (PHRR) and total heat evolved (THE) are lowered by 31-49% and 40–44%, respectively. Adding CF increases the residue, reduces the THE, but suppresses the charring due to RTM6 and flame retardants. Thus the THE of RTM6-CF is reduced by about 25% when DOPI and DOPP are added. However, UL 94: V-0 and LOI of 45% and 48% are achieved with ~0.6 wt.% phosphorus. KW - Epoxy resin (RTM6) KW - DOPO KW - Carbon fibre reinforced composites KW - Mechanical properties KW - Flame retardancy PY - 2011 U6 - https://doi.org/10.1016/j.eurpolymj.2011.02.008 SN - 0014-3057 SN - 1873-1945 VL - 47 IS - 5 SP - 1081 EP - 1089 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-23548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Pikacz, E. A1 - Seefeldt, Henrik A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Karrasch, Andrea A1 - Jäger, Christian T1 - Flame retardancy in PC/Silicone rubber blends using BDP and additional additives T2 - 20th Annual conference on recent advances in flame retardancy of polymeric materials CY - Stamford, CT, USA DA - 2009-06-01 KW - Flame retardancy KW - PC blend KW - Aryl phosphate PY - 2009 SN - 1-59623-509-8 VL - 20 IS - Chapter IV-B SP - 236 EP - 246 CY - Wellesley, MA, USA AN - OPUS4-20703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pawlowski, Kristin A1 - Schartel, Bernhard A1 - Fichera, Mario Augusto A1 - Jäger, Christian T1 - Flame retardancy mechanisms of bisphenol A bis(diphenyl phosphate) in combination with zinc borate in bisphenol A polycarbonate/Acrylonitrile-butadiene-styrene blends N2 - Bisphenol A polycarbonate/acrylonitrile–butadiene–styrene (PC/ABS) with and without bisphenol A bis(diphenyl phosphate) (BDP) and 5 wt.% zinc borate (Znb) were investigated. The pyrolysis was studied by thermogravimetry (TG), TG-FTIR and NMR, the fire behaviour with a cone calorimeter applying different heat fluxes, LOI and UL 94. Fire residues were examined with NMR. BDP affects the decomposition of PC/ABS and acts as a flame retardant in the gas and condensed phases. The addition of Znb results in an additional hydrolysis of PC. The fire behaviour is similar to PC/ABS, aside from a slightly increased LOI and a reduced peak heat release rate, both caused by borates improving the barrier properties of the char. In PC/ABS + BDP + Znb, the addition of Znb yields a borate network and amorphous phosphates. Znb also reacts with BDP to form alpha-zinc phosphate and borophosphates that suppress the original flame retardancy mechanisms of BDP. The inorganic–organic residue formed provides more effective flame retardancy, in particular at low irradiation in the cone calorimeter, and a clear synergy in LOI, whereas for more developed fires BDP + Znb become less effective than BDP in PC/ABS with respect to the total heat evolved. KW - Flame retardancy KW - PC/ABS KW - Aryl phosphate KW - Zinc borate KW - Flammability PY - 2010 U6 - https://doi.org/10.1016/j.tca.2009.10.007 SN - 0040-6031 SN - 1872-762X VL - 498 IS - 1-2 SP - 92 EP - 99 PB - Elsevier CY - Amsterdam AN - OPUS4-20746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Wachtendorf, Volker A1 - Grell, M. A1 - Bradley, D. A1 - Hennecke, Manfred T1 - Polarized fluorescence and orientational order parameters of a liquid crystalline conjugated polymer T2 - European Conference on Macromolecular Physics CY - Potsdam, Germany DA - 1999-09-30 PY - 1999 AN - OPUS4-23152 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Wachtendorf, Volker A1 - Damerau, T. A1 - Hennecke, Manfred T1 - Photooxidative and thermooxidative degradation of conjugated polymers T2 - 1st International Conference on Polymer Modification, Degradation and Stabilisation (MoDeSt) CY - Palermo, Italy DA - 2000-09-03 PY - 2000 AN - OPUS4-23156 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Wachtendorf, Volker A1 - Krüger, Simone A1 - Hennecke, Manfred T1 - Thermooxidative stability of poly(phenyl-1,4-phenylene vinylene) monitored with chemilumineszenz T2 - 200th Wilhelm and Else Heraeus Seminar CY - Wiesbaden, Germany DA - 1998-06-24 PY - 1998 AN - OPUS4-23145 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Hennecke, Manfred T1 - Chemiluminescence - A promising new testing method for plastic optical fibers T2 - 7th International Plastic Optical Fibres Conference CY - Berlin, Germany DA - 1998-10-12 PY - 1998 AN - OPUS4-23146 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard ED - Gibson, A.G. T1 - Fire retardancy in composites: a journey from nano to intermediate scale N2 - The fire behaviour of composites clearly differs in comparison to polymers. Even though fibres and inorganic particles may be inert with respect to pyrolysis, they are clearly not with respect to fire behaviour. They change heat absorption and transfer within the Condensed phase, the melt flow/dripping behaviour of pyrolysing melts, the amount and properties of the fire residue and so on. Flame retardancy concepts tailored to composites are needed. Furthermore tasks that are specific for composites such as the structural integrity in fire get into the focus. Thus understanding of fire behaviour and flame retardancy mechanisms in composites is a key for target-oriented future development. The field is illuminated by Spotlights on different length scales. The examples are taken from different projects carried out in the group of the authors in the recent years. Flame retardancy mechanisms in nanocomposites are discussed, advanced halogen-free flame retardants for carbon and glass fibre composites presented as well as an approach to mechanical intermediate scale testing of carbon fibre composites under fire. T2 - Composites in fire 6 - 6th International conference on composites in fire CY - Newcastle, UK DA - 09.06.2011 KW - Flame retardancy KW - Composite KW - Composite and fire KW - Flame retardants PY - 2011 SN - 978-0-9540459-9-9 SP - 55 EP - 62 PB - CompositeLink (Consultants) Limited AN - OPUS4-23857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Fire Retardancy in Composites: A Journey from Nano to Intermediate Scale T2 - Sixth International Conference on Composites In Fire: CIF6 CY - Newcastle upon Tyne, England DA - 2011-06-09 PY - 2011 AN - OPUS4-23826 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gallo, Emanuela A1 - Schartel, Bernhard A1 - Acierno, Domenico A1 - Cimino, F. A1 - Russo, P. T1 - Tailoring the flame retardant and mechanical performances of natural fiber-reinforced biopolymer by multi-component laminate N2 - The potential of a multi-component laminate composite material in terms of improved flame retardancy and adequate mechanical performance is discussed. A double-layer system based on a biodegradable polyhydroxyalkanoates blend was obtained by compression molding. A thin halogen-free flame-retarded layer was located at the top of a kenaf-fiber-reinforced core. Kenaf fibers acted as a carbonization compound promoting charring and building up a superficial insulating layer that protected the material throughout combustion. The impact of different skin/core thickness on the thermal and fire properties was investigated. Synergistic flame retardancy occurs in the cone calorimeter. Chemical and fire investigations confirmed a changed pyrolysis behavior in multicomponent materials. Promising results are obtained in terms of mechanical performance: higher flexural and impact properties were observed in the single fiber-reinforced layer. KW - A. Fibres KW - A. Layered structures KW - D. Thermal analysis KW - D. Mechanical testing PY - 2013 U6 - https://doi.org/10.1016/j.compositesb.2012.07.005 SN - 1359-8368 VL - 44 IS - 1 SP - 112 EP - 119 PB - Elsevier CY - Oxford [u.a.] AN - OPUS4-26741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lorenzetti, A. A1 - Modesti, M. A1 - Gallo, Emanuela A1 - Schartel, Bernhard A1 - Besco, S. A1 - Roso, M. T1 - Synthesis of phosphinated polyurethane foams with improved fire behaviour N2 - Both alkylphosphinates and inorganic phosphinates (based on sodium, calcium, magnesium or zinc) have been recently proposed as flame retardants for polyesters, polyamides and polyurethane foams as well. The main aim of this work was to compare the flame retardant effectiveness of inorganic (already proofed in PU foams) and organic phosphinates in PU foams which have never been used in polyurethane (PU) foams. The thermal stability in nitrogen and air as well as limiting oxygen index and cone calorimeter behaviour have been studied to assess the effectiveness of such flame retardants in PU foams. The results obtained showed that both inorganic and organic phosphinates are effective in enhancing fire behaviour of PU foams since they improve thermal stability, LOI and fire performance. Cone calorimetry highlighted the flame inhibition action in the gas phase due to the release of phosphorus-containing molecules. The better results obtained for inorganic phosphinate are probably related to the better quality of the char layer developed during burning, but may also be related to the higher phosphorus content of such flame retardant with respect the other ones. It was also verified that both inorganic and organic phosphinate containing N-synergic compound showed a fuel dilution effect, deriving from water and/or ammonia release in the gas phase. KW - Phosphinate KW - Polyurethane foam KW - Flame retardancy KW - Fire behaviour PY - 2012 U6 - https://doi.org/10.1016/j.polymdegradstab.2012.07.026 SN - 0141-3910 SN - 1873-2321 VL - 97 IS - 11 SP - 2364 EP - 2369 PB - Applied Science Publ. CY - London AN - OPUS4-26735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Guang Mei A1 - Schartel, Bernhard A1 - Bahr, Horst A1 - Kleemeier, M. A1 - Yu, D. A1 - Hartwig, A. T1 - Experimental and quantitative assessment of flame retardancy by the shielding effect in layered silicate epoxy nanocomposites N2 - A quantitative experimental assessment of flame retardancy by the heat shielding in epoxy layered silicate nanocomposite (EP/TPPMMT) is presented. Online heat flux measurements and temperature monitoring within the specimen are performed during the burning in the cone calorimeter. For EP the surface layer equals a pyrolysis front. The reradiation by the hot surface corresponds to the fourth power of the pyrolysis temperature. The surface reradiation (around 10 kW m-2) is thus fairly invariable over burning time and different external heat fluxes. Further, the thermal feedback of the flame is approximated to 20 kW m-2 for both EP and EP/TPPMMT and invariable over different irradiations. Thus the net heat fluxes transformed to the fuel release rate within the pyrolysis front of EP are increased to 45–80 kW m-2 when irradiations of 35–70 kW m-2 are applied. For a residue-forming EP/TPPMMT the surface temperature and thus the reradiation (42–68 kW m-2) crucially increases compared to EP and with increasing irradiation. The net heat fluxes are reduced to 13–22 kW m-2 accordingly. This quantitative assessment of the heat shielding in EP/TPPMMT goes along with proportional and consistent improvement in the fire performance, such as the pyrolysis front velocity, the heat release rate (HRR) characteristics such as averaged and quasi-steady-state HRR and the peak HRR (PHRR). The heat shielding is proven to be the only major flame retardancy effect occurring in nanocomposites based on non-charring polymers. KW - Nanocomposites KW - Heat shielding KW - Flame retardancy KW - Shielding effect PY - 2012 U6 - https://doi.org/10.1016/j.combustflame.2012.07.003 SN - 0010-2180 SN - 1556-2921 VL - 159 IS - 12 SP - 3616 EP - 3623 PB - Elsevier CY - New York, NY AN - OPUS4-26841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brehme, Sven A1 - Köppl, T. A1 - Schartel, Bernhard A1 - Fischer, O. A1 - Altstädt, V. A1 - Pospiech, D. A1 - Döring, M. T1 - Phosphorus polyester - an alternative to low-molecular-weight flame retardants in poly(butylene terephthalate)? N2 - Pyrolysis, fire behaviour and mechanical properties of a blend of poly(butylene terephthalate) (PBT) with a phosphorus polyester (PET-P-DOPO) are investigated and compared with PBT/aluminium diethylphosphinate (AlPi-Et) composites. The PBT/PET-P-DOPO is immiscible and exhibits gas-phase and condensed-phase activity, whereas AlPi-Et in PBT results mainly in flame inhibition. Only higher loadings of AlPi-Et yield significant condensed-phase activity. Using the same phosphorus content, PBT/PET-P-DOPO and PBT/AlPi-Et exhibit similar reductions in fire load (22%) and flame spread (17% assessed by fire growth rate, FIGRA), compared with PBT. In contrast to AlPi-Et, the addition of PET-P-DOPO does not decrease the tensile strength of PBT. Thus, PET-P-DOPO is an interesting alternative to low-molecular-weight flame retardants. KW - Aluminium phosphinate KW - Blends KW - 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide KW - Flame retardance KW - Polyesters PY - 2012 U6 - https://doi.org/10.1002/macp.201200072 SN - 1022-1352 SN - 1521-3935 VL - 213 IS - 22 SP - 2386 EP - 2397 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-26982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Despinasse, Marie-Claire A1 - Schartel, Bernhard T1 - Influence of the structure of aryl phosphates on the flame retardancy of polycarbonate/acrylonitrile-butadiene-styrene N2 - The impact of the chemical structure of four different aryl bisphosphates on the flame retardancy of bisphenol A polycarbonate/acrylonitrile–butadiene–styrene blends (PC/ABS) was investigated. The impact of the bridging unit was studied, by comparing bisphenol A bis(diphenyl phosphate) BDP with biphenyl bis(diphenyl phosphate) BBDP and hydroquinone bis(diphenyl phosphate) HDP; as well as the influence of an aromatic substitution by comparing BBDP with biphenyl bis (di-2,6-xylyl phosphate) BBXP. The blends were investigated in terms of pyrolysis (thermogravimetry TG, TG coupled with Fourier transformed infrared spectroscopy (FTIR) and mass spectrometry (MS)) and fire performance (cone calorimeter, LOI, UL 94). The decomposition temperature of the flame retardant is a main parameter enabling a condensed phase interaction with PC decomposition products. The phosphate esters reacting with phenolic groups during pyrolysis were shown to increase cross-linking and reduce the hydrolysis/alcoholysis of the carbonate group. Variation of the aromatic substitution with the use of biphenyl bis (di-2,6-xylyl phosphate) led to reduced performance, highlighting the importance of the reactivity of the flame retardant with the decomposing PC. KW - Bisphenol A polycarbonate/acrylonitrile–butadiene–styrene (PC/ABS) KW - Flame retardancy KW - Flammability KW - Phosphate esters KW - Pyrolysis PY - 2012 U6 - https://doi.org/10.1016/j.polymdegradstab.2012.07.005 SN - 0141-3910 SN - 1873-2321 VL - 97 IS - 12 SP - 2571 EP - 2580 PB - Applied Science Publ. CY - London AN - OPUS4-26969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Beck, Uwe A1 - Bahr, Horst A1 - Hertwig, Andreas A1 - Knoll, Uta A1 - Weise, Matthias T1 - Sub-micrometre coatings as an infrared mirror: a new route to flame retardancy N2 - Most of the polymeric materials used are easy to ignite and show extensive flame spread along their surfaces. Apart from extensive heat release rates, their short time to ignition (tig), in particular, is a key fire hazard. Preventing ignition eliminates fire hazards completely. Protection layers that shift tig by more than an order of magnitude are powerful flame retardancy approaches presenting an alternative to the usual flame retardancy concepts. Coatings are proposed that consist of a three-layer system to ensure adhesion to the substrate, acting as an infrared (IR) mirror and protecting against oxidation. The IR-mirror layer stack is realised by physical vapour deposition in the sub-micrometre (<1 µm) range, reducing heat absorption by up to an order of magnitude. Not only is the ease of ignition diminished (tig is increased by several minutes), the flame spread and fire growth indices are also remarkably reduced to as little as 1/10 of the values of the uncoated polymers open for further optimization. Sub-micrometre thin IR-mirror coatings yielding surface absorptivity <0.1 are proposed as a novel and innovative flame retardancy approach. KW - Coating KW - Fire protection KW - Physical vapour deposition (PVD) KW - IR mirror KW - Ignition PY - 2012 U6 - https://doi.org/10.1002/fam.1122 SN - 0308-0501 SN - 1099-1018 VL - 36 IS - 8 SP - 671 EP - 677 PB - Heyden CY - London AN - OPUS4-27210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wawrzyn, Eliza A1 - Schartel, Bernhard A1 - Seefeldt, Henrik A1 - Karrasch, A1 - Jäger, Christian T1 - What reacts with what in bisphenol A polycarbonate/silicon rubber/bisphenol A bis(diphenyl phosphate) during pyrolysis and fire behavior? N2 - The pyrolysis and flame retardancy of a bisphenol A polycarbonate/silicon rubber/bisphenol A bis(diphenyl phosphate) (PC/SiR/BDP) blend were investigated and compared to those of PC/BDP and PC/SiR. The impact modifier SiR consists mainly of poly(dimethylsiloxane) (PDMS > 80 wt %). The pyrolysis of PC/SiR/BDP was studied by thermogravimetry (TG), TG–FTIR to analyze the evolved gases, and a Linkam hot stage cell within FTIR as well as 29Si NMR and 31P NMR to analyze the solid residue. The fire performance was determined by PCFC, LOI, UL 94, and a cone calorimeter under different external irradiations. The fire residues were studied by using ATR-FTIR as well as the additional binary systems PC + PDMS, PC + BDP, and BDP + PDMS, focusing on the specific chemical interactions. The decomposition pathways are revealed, focusing on the competing interaction between the components. Fire retardancy in PC/SiR/BDP is caused by both flame inhibition in the gas phase and inorganic-carbonaceous residue formation in the condensed phase. The PC/SiR/BDP does not work as well superimposing the PC/SiR and PC/BDP performances. PDMS reacts with PC and BDP, decreasing BDP's mode of action. Nevertheless, the flammability (LOI > 37%, UL 94 V-0) of PC/SiR/BDP equals the high level of PC/BDP. Indeed, SiR in PC/SiR/BDP is underlined as a promising impact modifier in flame-retarded PC/impact modifier blends as an alternative to highly flammable impact modifiers such as acrylonitrile–butadiene–styrene (ABS), taking into account that the chosen SiR leads to PC blends with a similar mechanical performance. KW - PC KW - BDP KW - PDMS KW - Flame retardancy KW - Flammability KW - Decomposition KW - Pyrolysis PY - 2012 U6 - https://doi.org/10.1021/ie201908s SN - 0888-5885 SN - 1520-5045 VL - 51 IS - 3 SP - 1244 EP - 1255 PB - American Chemical Society CY - Washington, DC AN - OPUS4-25460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bier, A.K. A1 - Bognitzki, M. A1 - Schmidt, A. A1 - Greiner, A. A1 - Gallo, Emanuela A1 - Klack, Patrick A1 - Schartel, Bernhard T1 - Synthesis, properties, and processing of new siloxane-substituted poly(p-xylylene) via CVD N2 - The synthesis of a disiloxane-functionalized [2.2]paracyclophane and its polymerization to the corresponding siloxane-substituted poly(p-xylylene) via chemical vapor deposition (CVD) has been described. Because of the enhanced solubility of the siloxane substituted poly(p-xylylene) analysis of the molecular structure by NMR, molecular weight, and polydispersity by gel permeation chromatography (GPC), and processing by film casting as well as nanofiber formation by electrospinning was possible. Structural isomers were found by NMR which was expected due to the isomeric mixture of the precursor. High molecular weights at moderate polydispersities were found by GPC which was unexpected for a vapor phase deposition polymerization. The amorphous morphology in combination with a low glass transition temperature led to high elongation at break for the siloxane substituted poly(p-xylylene). Significant difference for the wetting versus water was found for as-deposited films, solution cast films, and nanofibers obtained by electrospinning with contact angles up to 135° close to superhydrophobic behavior. KW - Poly(p-xylylene) KW - Siloxane functionalized PPX KW - Chemical vapor deposition KW - Difunctionalized [2.2]paracyclophanes KW - Gorham process PY - 2012 U6 - https://doi.org/10.1021/ma2021369 SN - 0024-9297 SN - 1520-5835 VL - 45 IS - 2 SP - 633 EP - 639 PB - American Chemical Society CY - Washington, DC AN - OPUS4-25466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Guang Mei A1 - Schartel, Bernhard A1 - Yu, D. A1 - Kleemeier, M. A1 - Hartwig, A. T1 - Synergistic fire retardancy in layered-silicate nanocomposite combined with low-melting phenysiloxane glass N2 - Tetraphenyl phosphonium-modified layered silicate (LS) and low-melting phenylsiloxane glass (G) are combined for more efficient halogen-free flame retardancy in epoxy resin (EP_LSG). Particularly, the peak heat release rate (PHRR) is decreased (by up to 60%), but levels off at additive concentrations ≥10 wt%. The performance of EP_LSG is compared to EP_LS and EP_G assuming an absolute and a relative flame retardancy effect, respectively, and based on the same amount of each filler and, alternatively, with EP_G containing the same overall amount of filler. EP_LSG behaves close to superposition but shows a strong tendency toward synergism due to a superior structural integrity of the fire residues. Apart from LS, adding G in particular is a promising approach when its content is ≤5 wt%, as is LSG for ≥10 wt%. KW - Low-melting glass KW - Layered silicate KW - Flame retardancy KW - Nanocomposites KW - Epoxy resin PY - 2012 U6 - https://doi.org/10.1177/0734904111422417 SN - 0734-9041 SN - 1530-8049 VL - 30 IS - 1 SP - 69 EP - 87 PB - Sage CY - London AN - OPUS4-25359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturm, Heinz A1 - Schartel, Bernhard A1 - Weiß, André A1 - Braun, Ulrike T1 - SEM/EDX: Advanced investigation of structured fire residues and residue formation N2 - Heterogeneous, gradual or structured morphology of fire residues plays an important role in fire retardancy of polymers. A scanning electron microscope with an attached energy dispersive X-ray spectrometer (SEM/EDX) is highlighted as a powerful tool for the advanced characterization of such complex fire residues, since it offers high resolution in combination with both good depth of field and analysis of chemical composition. Two examples are presented: First, comprehensive SEM/EDX investigation on a complex structured fire residue of glass fibre reinforced polyamide 6,6 (PA 66-GF) flame retarded by diethylaluminium phosphinate, melamine polyphosphate and some zinc borate. A multilayered surface crust (thickness ~ 24 µm) covers a rather hollow area stabilized by GF glued together. The resulting efficient thermal insulation results in self-extinguishing before pyrolysis is completed, even under forced-flaming combustion. Second, sophisticated, quasi online SEM/EDX imaging of the formation of residual protection layer in layered silicate epoxy resin nanocomposites (LSEC). Burning specimens were quenched in liquid nitrogen for subsequent analyses. Different zones were distinguished in the condensed phase characterized by distinct processes such as melting and ablation of organic material, as well as agglomeration, depletion, exfoliation and reorientation of the LS. KW - Fire residue KW - SEM/EDX KW - Fire retardancy KW - PA 66 KW - Layered silicate KW - Diethylaluminium phosphinate PY - 2012 U6 - https://doi.org/10.1016/j.polymertesting.2012.03.005 SN - 0142-9418 VL - 31 IS - 5 SP - 606 EP - 619 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-25802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Fire Retardant Composites: A Journey from Nano to Intermediate Scale T2 - Trends im Brandschutz und innovative Flammschutzmittel bei Kunststoffen CY - Würzburg, Germany DA - 2012-05-23 PY - 2012 AN - OPUS4-26489 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Composites in Fire: Fire Behaviour Tailored for Diffenrent Applications T2 - 2. AVK-Fachtagung - "Flammschutz bei Composites-Anwendungen" CY - Frankfurt am Main, Germany DA - 2013-12-10 PY - 2013 AN - OPUS4-29725 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hofmann, D. A1 - Wartig, K.-A. A1 - Thomann, R. A1 - Dittrich, Bettina A1 - Schartel, Bernhard A1 - Mülhaupt, R. T1 - Functionalized graphene and carbon materials as additives for melt-extruded flame retardant polypropylene N2 - Functionalized graphene nanosheets TRGO and MLG 250, prepared from thermally reduced graphite oxide, represent attractive carbon additives for improving the performance of flame retardant polypropylene (PP-FR). The influence of carbon nanofiller type and content on morphology, thermal, mechanical, and electrical properties as well as the fire behavior of melt-extruded PP-FR is investigated. In contrast to conventional nano- and micron-sized carbon fillers such as expanded graphite (EG 40), nano-scaled carbon black (CB), and multiwall carbon nanotubes (CNT), only TRGO and MLG 250 afford uniform dispersion combined with simultaneously improved stiffness (+80%), electrical conductivity (3 × 10-5 S · cm-1) and enhanced flame retardancy of PP-FR, as expressed by lower peak heat release rate (-76%). KW - Extrusion KW - Flame retardance KW - Graphene KW - Nanocomposite KW - Polypropylene PY - 2013 U6 - https://doi.org/10.1002/mame.201200433 SN - 1438-7492 SN - 1439-2054 VL - 298 IS - 12 SP - 1322 EP - 1334 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-29817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Nanotechnologie hält Einzug im Flammschutz T2 - Fachtagung Nano-Additive CY - Berlin, Germany DA - 2012-11-19 PY - 2012 AN - OPUS4-29788 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Degradation of Flame Retardancy T2 - SCF Workshop: Degradation of fire-retarded polymers in environmental conditions CY - Mèze, France DA - 2013-09-24 PY - 2013 AN - OPUS4-29789 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Thermische Analyse im Bereich Flammschutz von Polymeren: Charakterisierung der Pyrolyse und Aufklärung von Flammschutzmechanismen T2 - Thermische Analyse für Polymeranwenungen CY - Berlin, Germany DA - 2014-01-22 PY - 2014 AN - OPUS4-30072 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chan, Yin Yam A1 - Schartel, Bernhard T1 - It Takes Two to Tango: Synergistic Expandable Graphite–Phosphorus Flame Retardant Combinations in Polyurethane Foams N2 - Due to the high flammability and smoke toxicity of polyurethane foams (PUFs) during burning, distinct efficient combinations of flame retardants are demanded to improve the fire safety of PUFs in practical applications. This feature article focuses on one of the most impressive halogen-free combinations in PUFs: expandable graphite (EG) and phosphorus-based flame retardants (P-FRs). The synergistic effect of EG and P-FRs mainly superimposes the two modes of action, charring and maintaining a thermally insulating residue morphology, to bring effective flame retardancy to PUFs. Specific interactions between EG and P-FRs, including the agglutination of the fire residue consisting of expanded-graphite worms, yields an outstanding synergistic effect, making this approach the latest champion to fulfill the demanding requirements for flame-retarded PUFs. Current and future topics such as the increasing use of renewable feedstock are also discussed in this article. KW - Synergy KW - Phosphorus-containing flame retardant KW - Expandable graphite KW - Polyurethane foams PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-551958 SN - 2073-4360 VL - 14 IS - 13 SP - 2562 PB - MDPI AN - OPUS4-55195 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Battig, Alexander A1 - Böhning, Martin A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Strommer, Bettina A1 - Tabaka, Weronika A1 - Wachtendorf, Volker T1 - Multifunctional Elastomer/Graphene Nanocomposites N2 - A few layer/multilayer graphene (MLG) with a specific surface area of BET=250 m2/g is proposed as an efficient multifunctional nanofiller for rubbers. The preparation method, i.e., ultrasonically-assisted solution mixing of master batches followed by two-roll milling, strongly influences the dispersion in the elastomeric matrix and is fundamental for the final properties. When homogenously dispersed, single stacks of only approximately 10 graphene sheets, with an aspect ratio of 34, work at low loadings, enabling the replacement of large amounts of carbon black (CB), an increase in efficiency, and a reduction in filler load. The appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing, gas barrier properties, electrical and thermal conductivity, as well as mechanical properties of different rubbers, as shown for chlorine-Isobutylene-Isoprene rubber (CIIR), nitrile-butadiene rubber (NBR), natural rubber (NR), and styrene-butadiene rubber (SBR). 3 phr of MLG tripled the Young’s modulus of CIIR, an effect equivalent to 20 phr of CB. The stronger interactions between MLG and NR or SBR also resulted in a reduction in the elongation at break by 20% and 50%, respectively, while the same parameter was hardly changed for CIIR/MLG and NBR/MLG. CIIR/MLG and NBR/MLG were stiffer but just as defomable than CIIR and NBR. The strong reinforcing effect of 3 phr MLG was confirmed by the increase of greater than 10 Shore A in hardness. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards flammability, the latter shown by the reduction in heat release rate in the cone calorimeter. We investigated MLG also as a synergist for reducing the aluminium trihydrate loading in flame retardant hydrogenated acrylonitrile-butadiene (HNBR), polybutadiene chloroprene (BR/CR), and chlorosulfonated polyethylene rubber(CSM). The higher the nanofiller concentration is, the greater the improvement in the properties. For instance, the permeability decreased by 30% at 3 phr of MLG, 50% at 5 phr and 60% at 10 phr, respectively. Moreover, the MLG nanocomposites improve stability of mechanical properties against the effects of weathering. In key experiments an increase in UV-absorption and a pronounced radical scavenging were proved as stabilizing mechanisms. In a nutshell, MLG is an efficient multifunctional nanofiller ready to be used for innovative rubber development. T2 - 19th European Polymer Congress, EPF 2022 CY - Prague, Czech Republic DA - 26.06.2022 KW - Graphene KW - Nanocomposite KW - Rubber KW - Elastomer PY - 2022 AN - OPUS4-55196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Battig, Alexander A1 - Garfias González, K. I. A1 - Gleuwitz, F. R. A1 - Sánchez Olivares, G. T1 - Non-vegan flame-retardant (adjuvants in) biocomposites N2 - Emanating from developing flame retarded biocomposites, we have proposed renewable natural fibers (including keratin) taken from industrial waste as an authentic sustainable approach. More recently, we have investigated non-vegan flame retardant approaches. This paper loves to give you an insight into our ongoing projects on biogenic industrial wastes like leather, bone meal, and insects. Materials were characterized multi-methodically, flame retardant modes of action quantified, decomposition mechanism proposed, and synergisms explained. Considering the large quantities of leather waste (LW) in industrial-scale production, we underline LW as multifunctional bio-adjuvants. LW enhances the flame retardancy of poly(ethylene-vinyl acetate) (EVA) containing phosphorus flame retardants (P-FR). Products/by-products of the invertebrate and vertebrate farming, respectively, are promising bio-based adjuvants in flame retarded bio-epoxy thermosets. While the addition of bone meal yields the formation of an inorganic shield, protein-based powders from insects provide an intumescent behavior. In combination with a P-FR superior charring and self-extinguishing are obtained. Acknowledgement: In part of this work was supported by the Volkswagen Foundation grant “Experiment!” No. 97437. T2 - Fire and Polymers, workshop, ACS Division of Polymer Chemistry CY - Napa, California, US DA - 05.06.2022 KW - Fire behaviour KW - Renewable KW - Circular economy KW - Biocomposite PY - 2022 AN - OPUS4-55025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Lin, Xuebao A1 - Tan, Yi A1 - Wachtendorf, Volker A1 - Klack, Patrick A1 - Schoch, R. A1 - Lang, M. A1 - Tröppner, O. A1 - Bosse, M. T1 - Weathering Resistance of Halogen-free Flame Retardancy in E&E Plastics N2 - - Durability of fire retardancy - Impact of different exposure conditions - Degradation with respect to different fire properties/tests T2 - Fire Resistance in Plastics CY - Cologne, Germany DA - 28.11.2022 KW - Durability KW - Flame retardant KW - Thermoplastic Polyurethane KW - Cable KW - EVA KW - Weathering PY - 2022 AN - OPUS4-56444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sanchez Olivares, G. A1 - Battig, Alexander A1 - Goller, Sebastian M. A1 - Rockel, Daniel A1 - Ramirez Gonzáles, V. A1 - Schartel, Bernhard T1 - Imparting Fire Retardancy and Smoke Suppression to Leather during Tanning Processes N2 - Leather is considered a luxury good when used in seating and upholstery. To improve safety, flame retardancy in leather is usually achieved through various finishing processes such as spray or roller coating. These treatments require processing steps that cost time and are laborintensive. One avenue to achieving flame retardancy in leather is to add flame retardants during the tanning process. However, the influence on flame retardancy exerted by specific intumescent additives specifically added during leather tanning has yet to be investigated. This work explores the roles played by intumescent additive compounds in flame retarding leather when they are added during tanning instead of applied as a coating. Via a systematic investigation of various compound mixtures, the flame retardant effects in the condensed and the gas phases are elucidated. The results show a strong impact of melamine in the gas phase and of polyphosphates in the condensed phase. Their impact was quantified in fire and smoke analysis, showing a 14% reduction in the peak of heat release rate, strongly reduced burning lengths, and a 20% reduction in total smoke release compared to nontreated leather. These results illuminate the key role played by specific compounds in the flame retardancy of leather, particularly when they are added specifically during the tanning process instead of being applied as a coating. This method has great potential to reduce processing steps, lower costs, and improve material safety. KW - Leather KW - Fire protection KW - Intumescent additives KW - Smoke suppression PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-564777 SN - 2470-1343 VL - 7 IS - 48 SP - 44156 EP - 44169 PB - ACS AN - OPUS4-56477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chan, Yin Y. A1 - Schartel, Bernhard T1 - It takes two to Tango: Industrial Benchmark PU-Foams with expandable Graphite/P-Flame Retardant Combinations N2 - Polyurethane foams (PUF) are generally flammable, so they are limited in some applications due to strict fire safety requirements. In this study, three distinct industrial benchmark polyurethane foams containing synergistic combinations of expandable graphite (EG) and phosphorous flame retardants (P-FR) were investigated one by one for their fire performance and smoke behavior. This paper aims to substantiate the hypothesis that the combination of EG and P-FR used in polyurethane foams yields a top-notch composite in terms of flame retardancy and smoke behavior by meeting the demanding requirement of low maximum average heat emission (MARHE) and smoke emission in a variety of applications, like advanced materials in construction, lightweight materials for railways, and more. KW - Polyurethane foam KW - Expandable graphite KW - Phosphorus flame retardant PY - 2022 SN - 0948-3276 SN - 0022-9520 VL - 75 IS - 6 SP - 39 EP - 46 PB - Hüthig AN - OPUS4-56501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gleuwitz, F. Robert A1 - Battig, Alexander A1 - Schartel, Bernhard T1 - Tenebrio molitor Beetle as a “Nonvegan” Adjuvant to Flame Retardants in Tannic Acid-Based Epoxy Thermosets N2 - Material solutions that meet both circular bioeconomy policies and high technical requirements have become a matter of particular interest. In this work, a prospectively abundant proteinrich waste resource for the manufacturing of flame-retardant epoxy biocomposites, as well as for the synthesis of biobased flame retardants or adjuvants, is introduced. Different biomass fillers sourced from the cultivation of the mealworm beetle Tenebrio molitor are embedded in a bioepoxy resin cured with tannic acid and investigated regarding the fire performance of the thermosets. By means of spectroscopic and thermal analysis (attenuated total reflectance FTIR spectroscopy, thermogravimetric analysis-coupled FTIR spectroscopy, and differential scanning calorimetry), the influence of the biomass microparticles on the curing and thermal degradation behavior is evaluated. The final performance of the biocomposites is assessed based on fire testing methodology (limited oxygen index, UL-94, and cone calorimetry). Providing a high charring efficiency in the specific tannic acid-based epoxy matrix, the protein-rich adult beetle is further investigated in combination with commercial environmentally benign flame retardants in view of its potential as an adjuvant. The results highlight a char forming effect of nonvegan fillers in the presence of tannic acid, particularly during thermal decomposition, and point toward the potential of protein-based flame retardants from industrial insect rearing for future formulations. KW - Tannic acid KW - Flame retardancy KW - Sustainable KW - Epoxy resin KW - Insects PY - 2022 U6 - https://doi.org/10.1021/acssuschemeng.2c00746 SN - 2168-0485 VL - 10 IS - 19 SP - 6313 EP - 6324 PB - ACS AN - OPUS4-54845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mund, M. A1 - Häßler, Dustin A1 - Schaumann, P. A1 - Hothan, Sascha A1 - Schartel, Bernhard T1 - Experimentelle Untersuchungen zur Dauerhaftigkeit von reaktiven Brandschutzsystemen N2 - Reaktive Brandschutzsysteme finden im baulichen Brandschutz Anwendung zur Erhöhung des Feuerwiderstands von Stahlkonstruktionen. Neben den Anforderungen an die Feuerwiderstandsdauer können damit auch Ansprüche an die Ästhetik erfüllt werden. Die profilfolgende Applikation und die geringen Trockenschichtdicken der Produkte ermöglichen es, das filigrane Erscheinungsbild von Stahlkonstruktionen aufrechtzuerhalten. Neben der thermischen Schutzwirkung muss auch die Dauerhaftigkeit der Brandschutzbeschichtung sichergestellt werden. Die Bewertungsmethoden, die auf europäischer Ebene durch das EAD 350402-00-1106 zur Verfügung stehen, zielen auf eine Nutzungsdauer von zehn Jahren ab. Prüfverfahren für einen darüber hinausgehenden Zeitraum sind nicht beschrieben. In diesem Beitrag werden experimentelle Untersuchungen zum Einfluss der Bewitterung auf das Expansionsverhalten, zur thermischen Schutzwirkung und zu den während des Aufschäumens im Brandfall stattfindenden Reaktionen vorgestellt. Die Versuche wurden an einem wasserbasierten und einem epoxidharzbasierten reaktiven Brandschutzsystem durchgeführt. Die Ergebnisse wurden im Rahmen des IGF-Forschungsvorhabens 20470 N erzielt. KW - Brandschutz KW - Reaktive Brandschutzsysteme KW - Brandversuche KW - Alterung KW - Dauerhaftigkeit PY - 2022 U6 - https://doi.org/10.1002/stab.202200063 SN - 0038-9145 VL - 92 IS - 2 SP - 93 EP - 102 PB - Ernst & Sohn CY - Berlin AN - OPUS4-56346 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xu, C. A1 - Battig, Alexander A1 - Schartel, Bernhard A1 - Siegel, R. A1 - Senker, J. A1 - von der Forst, I. A1 - Unverzagt, C. A1 - Agarwal, S. A1 - Möglich, A. A1 - Greiner, A. T1 - Investigation of the Thermal Stability of Proteinase K for the Melt Processing of Poly(L‑lactide) N2 - The enzymatic degradation of aliphatic polyesters offers unique opportunities for various use cases in materials science. Although evidently desirable, the implementation of enzymes in technical applications of polyesters is generally challenging due to the thermal lability of enzymes. To prospectively overcome this intrinsic limitation, we here explored the thermal stability of proteinase K at conditions applicable for polymer melt processing, given that this hydrolytic enzyme is well established for its ability to degrade poly(L-lactide) (PLLA). Using assorted spectroscopic methods and enzymatic assays, we investigated the effects of high temperatures on the structure and specific activity of proteinase K. Whereas in solution, irreversible unfolding occurred at temperatures above 75−80 °C, in the dry, bulk state, proteinase K withstood prolonged incubation at elevated temperatures. Unexpectedly little activity loss occurred during incubation at up to 130 °C, and intermediate levels of catalytic activity were preserved at up to 150 °C. The resistance of bulk proteinase K to thermal treatment was slightly enhanced by absorption into polyacrylamide (PAM) particles. Under these conditions, after 5 min at a temperature of 200 °C, which is required for the melt processing of PLLA, proteinase K was not completely denatured but retained around 2% enzymatic activity. Our findings reveal that the thermal processing of proteinase K in the dry state is principally feasible, but equally, they also identify needs and prospects for improvement. The experimental pipeline we establish for proteinase K analysis stands to benefit efforts directed to this end. More broadly, our work sheds light on enzymatically degradable polymers and the thermal processing of enzymes, which are of increasing economical and societal relevance. KW - Enzymatic degradation KW - Poly(L‑lactide) KW - Polyesters KW - biodegradation PY - 2022 U6 - https://doi.org/10.1021/acs.biomac.2c01008 SN - 1525-7797 SN - 1526-4602 VL - 23 IS - 11 SP - 4841 EP - 4850 PB - ACS Publications AN - OPUS4-56292 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Composites in Fire and Flame N2 - Overview over the research results of the BAM in the field fire retardancy of composites. In different applications the flame retardancy of composites targets on different fire protection goals in the fire scenarios ignition, developing fire, and fully developed fire. Efficient solutions are tailored to pass a distinct fire test and to fit to a specific material. Flame inhibition as main flame retardancy mode of action combined with a minor mode of action in the condensed phase is general very efficient approach for composites. Alternatively residue design is demanded to achieve good results with only condensed phase mechanisms. Improving the fire stability asks for protective fire residues. T2 - Climate Change @ Fire Science Workshop CY - Berlin, Germany DA - 10.11.2022 KW - Composites in fire KW - Flame retarded composites KW - Fire stability KW - Phosphorous flame retardants KW - Residue design PY - 2022 AN - OPUS4-56299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wachtendorf, Volker A1 - Schartel, Bernhard A1 - Lin, Xuebao A1 - Tan, Yi A1 - Schoch, R. A1 - Lang, M. A1 - Tröppner, O. A1 - Bosse, M. ED - Ziegahn, K.-F. T1 - Untersuchung der Witterungsbeständigkeit komplexer Funktionalitäten von Polymerwerkstoffen durch künstliche Bewitterung: Flammschutz N2 - In den letzten Jahrzehnten wurde die Degradation der polymeren Matrix von flammgeschützten Polymeren eingehend untersucht. Erst in den letzten Jahren jedoch hat sich die Frage der Lebensdauer der Funktionalität des Flammschutzes selbst als wichtige Fragestellung herauskristallisiert, z.B. bei Kabeln. Deshalb sollte diese Fragestellung durch systematisch-variierte künstliche Klima- und Bewitterungstests an flammgeschützten Polymerwerkstoffen untersucht werden. T2 - 50. Jahrestagung der Gesellschaft für Umweltsimulation (GUS) CY - Online meeting DA - 23.03.2022 KW - Flammschutz, Witterungsbeständigkeit, Langzeitbeständigkeit, UV, E&E PY - 2022 SN - 978-3-9818507-7-2 VL - 50 SP - 143 EP - 148 CY - Pfinztal (Berghausen) AN - OPUS4-54543 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard ED - Morgan, A.B. T1 - Multicomponent Flame Retardants N2 - The important take home message of this chapter: When multicomponent flame retardant systems are applied to polymeric materials, it becomes possible to address multiple fire properties, increase efficiency, and minimize flame retardant use to maximize polymer property balance. Flame retardants are combined or used together with adjuvants or synergists; fibers and fillers make a crucial contribution to their fire properties. Multicomponent systems are discussed in their capacity as an overall powerful strategy for achieving and optimizing non-halogenated flame-retardant polymeric materials. KW - Flame retardants KW - Synergy KW - Adjuvants KW - Fillers KW - Fibres PY - 2022 SN - 978-1-119-75056-7 SP - 413 EP - 474 PB - Scrivener Publishing LLC CY - Bevery ET - 2nd Edition AN - OPUS4-54426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Garfias González, Karla I. A1 - Schartel, Bernhard T1 - Valorizing “non-vegan” bio-fillers: Synergists for phosphorus flame retardants in epoxy resins N2 - Sustainable, biogenic flame retardant adjuvants for epoxy resins are receiving increased focus. Zoological products like insects, bone meal, and eggshells are available in large quantities, but remain uninvestigated as functional fillers to epoxy resins, although they are potential synergists to flame retardants. The efficacy and flame retardancy of “non-vegan” additives in combination with flame retardants is investigated and the fire behavior and thermal decomposition of bio-sourced epoxy resin composites is characterized. By comparing the fire performance of composites containing flame retardants or fillers at varying loadings (5, 10, and 20%), their role as synergists that enhance the function of organophosphorus flame retardants in bio-epoxy composites is identified and quantified. Peak heat release rates were 44% lower in composites containing both filler and flame retardant versus those containing only flame retardants, and fire loads were reduced by 44% versus the pure resin, highlighting the ability of “non-vegan” fillers to function as synergists. KW - Flame retardancy KW - Synergy KW - Bio-composite KW - Epoxy resin KW - Biogenic KW - Renewable PY - 2022 U6 - https://doi.org/10.1016/j.polymdegradstab.2022.109875 SN - 0141-3910 VL - 198 SP - 109875 PB - Elsevier Ltd. AN - OPUS4-54438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chan, Yin Yam A1 - Ma, C. A1 - Zhou, F. A1 - Hu, Y. A1 - Schartel, Bernhard T1 - A liquid phosphorous flame retardant combined with expandable graphite or melamine in flexible polyurethane foam N2 - A systematic series of flexible polyurethane foams (FPUF) with different concentrations of flame retardants, bis([dimethoxyphosphoryl]methyl) phenyl phosphate (BDMPP), and melamine (MA) or expandable graphite (EG) was prepared. The mechanical properties of the FPUFs were evaluated by a universal testing machine. The pyrolysis behaviors and the evolved gas analysis were done by thermogravimetric analysis (TGA) and TGA coupled with Fourier-transform infrared (TG-FTIR), respectively. The fire behaviors were studied by limiting oxygen index (LOI), UL 94 test for horizontal burning of cellular materials (UL 94 HBF), and cone calorimeter measurement. Scanning electronic microscopy (SEM) was used to examine the cellular structure's morphology and the postfire char residue of the FPUFs. LOI and UL 94 HBF tests of all the flame retarded samples show improved flame retardancy. BDMPP plays an essential role in the gas phase because it significantly reduces the effective heat of combustion (EHC). This study highlights the synergistic effect caused by the combination of BDMPP and EG. The measured char yield from TGA is greater than the sum of individual effects. No dripping phenomenon occurs during burning for FPUF-BDMPP-EGs, as demonstrated by the result of the UL 94 HBF test. EG performs excellently on smoke suppression during burning, as evident in the result of the cone calorimeter test. MA reduces the peak heat release rate (pHRR) significantly. The synergistic effect of the combination of BDMPP and EG as well as MA offers an approach to enhance flame retardancy and smoke suppression. KW - Bis([dimethoxyphosphoryl]methyl) phenyl phosphate KW - Expandable graphite KW - Flexible polyurethane foam KW - melamine KW - phosphorous flame retardant PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-541840 SN - 1099-1581 VL - 33 IS - 1 SP - 326 EP - 339 PB - Wiley AN - OPUS4-54184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marti, J. A1 - Schartel, Bernhard A1 - Oñate, E. T1 - Simulation of the burning and dripping cables in fire using the particle finite element method N2 - The behavior of the cable jacket in fire characterized by the tendency to melt and drip constitutes a major source of fire hazard. The reason is that the melted material may convey the flame from one point to another, expanding fire and contributing to the fire load. In this article, the capability of a new computational strategy based on the particle finite element method for simulating a bench-scale cables burning test is analyzed. The use bench-scale test has been previously used to simulate the full-scale test described in EN 50399. As the air effect is neglected, a simple combustion model is included. The samples selected are two cables consisting of a copper core and differently flame retarded thermoplastic polyurethane sheets. The key modeling parameters were determined from different literature sources as well as experimentally. During the experiment, the specimen was burned under the test set-up condition recording the process and measuring the temperature evolution by means of three thermocouples. Next, the test was reproduced numerically and compared with a real fire test. The numerical results show that the particle finite element method can accurately predict the evolution of the temperature and the melting of the jacket. KW - Dripping behavior KW - Particle finite element method KW - Cables in fire KW - Fire behavior KW - Fire simulation KW - Cable bundle PY - 2022 U6 - https://doi.org/10.1177/07349041211039752 SN - 0734-9041 VL - 40 IS - 1 SP - 3 EP - 25 PB - Sage AN - OPUS4-54185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strommer, Bettina A1 - Battig, Alexander A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Huth, Christian A1 - Böhning, Martin A1 - Schartel, Bernhard T1 - Multifunctional Property Improvements by Combining Graphene and Conventional Fillers in Chlorosulfonated Polyethylene Rubber Composites N2 - The incorporation of nanoparticles like multilayer graphene (MLG) into elastomeric composites boosts their technical performance, such as their mechanical behavior and electrical conductivity. Common filler types (carbon black (CB) and aluminum trihydroxide (ATH)) generally fulfill single, specific purposes and are often used in high loadings. CB typically reinforces rubber mechanically, while ATH increases flame retardancy. Small amounts of MLG reduce these high filler contents and maintain the multifunctional characteristics of rubber composites. In chlorosulfonated polyethylene (CSM) + ATH, an intrinsically flame-retardant rubber was designed to achieve the highest standards such as maximum average of heat emission (MARHE) <90 kW m−2, 3 phrMLG was substituted for 15 phr CB and/or 3 phr ATH via an industrially applicable processing approach. Replacing either CB or ATH resulted in a property profile that was multifunctionally improved in terms of features such as mechanical performance, reduced sorption, and flame retardance. MLG nanocomposites are reported to show promise as an industrially utilizable route to obtain multifunctional high-performance rubbers. KW - Nanocomposites KW - Rubber KW - Multilayer graphene KW - Flame retardancy KW - Synergy KW - Nanoparticles KW - Elastomers PY - 2022 U6 - https://doi.org/10.1021/acsapm.1c01469 SN - 2637-6105 VL - 4 IS - 2 SP - 1021 EP - 1034 PB - ACS Publ. CY - Washington, DC AN - OPUS4-54330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wahab, M. A. A1 - Kebelmann, Katharina A1 - Schartel, Bernhard A1 - Griffiths, G. T1 - Valorization of macroalgae digestate into aromatic rich bio-oil and lipid rich microalgal biomass for enhanced algal biorefinery performance N2 - The valorization of macroalgae digestate as a secondary resource for high value chemicals and nutrients will promote the sustainability and circularity of anaerobic digestion based biorefinery. In this study, three digestates from A. nodosum C.linum and L. digitata were separated into liquid and solid fractions to investigate the production of high value added chemicals through pyrolysis using Pyrolysis Gas Chromatography Mass Spectroscopy (Py-GC/MS) while the filtered liquid fractions were tested as an alternative culture media to grow C. sorokiniana under mixotrophic conditions. The digestates showed different thermal degradation and an improvement of bio-oil profiles compared to the starter material. Pyrolyzates from raw macroalgae were characterized by a high anhydrosugar content in contrast to high aromatics observed in the case of their digestates. Toluene, benzofuran and vinylphenol, base chemicals for many industries, represented together 30–37% of the total chemicals produced during pyrolysis of the three macroalgae digestate. On the other hand, C. sorokiniana cultured on digestate-based media showed a higher lipid content with an increase in monounsaturated fatty acids and a lower poly-unsaturated fatty acid content in comparison to microalgae grown in standard tris-acetate-phosphate media. Thus, the acyl composition was shifted in a direction more suitable for biodiesel production by this process. In addition, the increase of Chemical Oxygen Demand and Volatile Fatty Acids concentration in the digestate was found to reduce ammonium toxicity. Finally, 94% of Chemical Oxygen Demand and 83% of ammonium were removed by microalgae from the digestate-based media which will reduce the pollution risk of the biorefinery. Overall, the results indicate that using macroalgae solid digestates can generate improvements in the quality of products obtained by pyrolysis and the liquid digestate can positively influence microalgae growth and its products. KW - Macroalgae KW - Anaerobic digestion KW - Aromatics KW - Microalgae culture KW - Biorefinery PY - 2022 U6 - https://doi.org/10.1016/j.jclepro.2022.130925 SN - 0959-6526 VL - 341 SP - 1 EP - 10 PB - Elsevier Ltd. AN - OPUS4-54365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Schoch, R. A1 - Schartel, Bernhard A1 - Wachtendorf, Volker A1 - Tan, Yi A1 - Lin, Xuebao A1 - Tröppner, O. A1 - Lang, M. A1 - Hochrein, T. A1 - Bastian, M. T1 - Langzeit- und Witterungsstabilität von halogenfreiem Flammschutz in Polymeren N2 - Die Forderung, dass der Flammschutz von Kunststoffen nicht nur zum bei der Herstellung der jeweiligen Produkte, sondern auch über die gesamte Einsatzdauer im geforderten Maß wirksam ist, stellt eine große Aufgabe dar. Ferner ist die Anforderung für viele Produkte in der Praxis neu, da bisher vor allem der Einfluss der Flammschutzmittel auf die Stabilität der Polymerwerkstoffe, nicht aber die Stabilität des Flammschutzes untersucht wurde. Das Langzeitverhalten halogenfreier Systeme ist bis heute wenig untersucht, insbesondere weil Phosphor- und Stickstoff-basierte Systeme die oxidative Beständigkeit von Polymeren weniger zu beeinflussen scheinen als halogenhaltige FSM. Die Frage, wie zuverlässig der Flammschutz wirkt, wenn Kunststoffe einige Jahre im Innen- und Außenbereich im Einsatz sind und dabei wechselnden Beanspruchungen ausgesetzt waren, wurde bislang nur vereinzelt untersucht. Mögliche Auswirkungen von Witterungseinflüssen auf flammgeschützte Polymerwerkstoffe sind, dass die Flammschutzmittel selbst abbauen, ausgewaschen werden, oder auch durch Wechselwirkung mit den eingesetzten Additiven oder mit den Alterungsprodukten der Polymermatrix in ihrer Wirkung nachlassen. Hier bestand großer Forschungsbedarf, um an den Punkt zu gelangen, die Beständigkeit der Flammschutzeigenschaften eines Produktes über seine gesamte Lebensdauer zuverlässig garantieren zu können. Diese Fragestellung greift das durchgeführte Forschungsvorhaben auf. Ziel war die Untersuchung der Langzeitstabilität der Flammschutzwirkung von halogenfrei flammgeschützten Polymerwerkstoffen unter diversen Witterungseinflüssen. Dazu wurden die Schädigungsmechanismen der Polymerwerkstoffe und der Flammschutzmittel sowie die auftretenden Wechselwirkungen analysiert, um ein Verständnis für die ablaufenden Prozesse zu entwickeln und Empfehlung für die Reduzierung der Alterung zu erarbeiten. Gegenstand der Untersuchungen waren anwendungsrelevante Flammschutz-Konzepte, die miteinander verglichen wurden. Die Erarbeitung von Struktur-Eigenschafts-Beziehungen ermöglichte die Beschreibung der Empfindlichkeiten und den Vergleich zwischen den Systemen. Darauf basierend wurden für die FSM spezifische Leitlinien für die Optimierung der Langzeitstabilität des Flammschutzes erstellt. N2 - The requirement that the flame retardancy of plastics is still effective to the required degree not only at the time of manufacture of the respective products, but also over the entire period of use, is a major challenge in view of the very long periods of time involved. In addition, the requirement is new for many products in practice, as up to now the influence of flame retardants on the stability of the polymer materials has been investigated, but not the stability of the flame retardant itself. The long-term behaviour of halogen-free systems has been little studied to date, especially because phosphorus- and nitrogen-based systems seem to have a much smaller influence on the oxidative stability of polymers than halogene containing flame retardants. The question of how reliable flame retardancy is when plastic products have been in use for several years indoors and outdoors and have been exposed to a wide range of climatic stresses has only been investigated in isolated cases. Possible effects of weathering on flame-retarded polymer materials are that the flame retardants themselves degrade, migrate or are washed out, or that their effect diminishes through interaction with other additives used or with the ageing products of the polymer matrix. At this point, there was a great need for research in order to reach the point where the stability of the flame retardant properties of a product can be reliably guaranteed over its entire service life. This question is taken up by the research project carried out. The aim of the research project was the systematic investigation of the long-term stability of the flame-retardant effect of halogen-free flame-retardant polymer materials under various weather conditions. For this purpose, the predominant damage mechanisms of the polymers and the flame retardants as well as the interactions occurring were analysed in order to develop an understanding of the processes taking place and to work out recommendations for reducing ageing. Subject of the investigations were different applicationrelevant flame retardant concepts, which were compared with each other. The development of structure-property relationships enabled the description of the specific sensitivities and the comparison between the different systems. Based on this, specific guidelines for the optimisation of the long-term stability of the flame retardants were developed for the different flame retardants. KW - Durability KW - Flame retardant KW - Flammschutz KW - Weathering KW - Ethylene-vinyl acetate KW - Cables KW - Polyamid KW - Langzeitstabilität PY - 2021 SN - 978-3-8440-7781-0 SN - 2364-754X SP - 1 EP - 222 PB - Shaker CY - Düren AN - OPUS4-54274 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chan, Yin Yam A1 - Ma, C. A1 - Zhou, F. A1 - Hu, Y. A1 - Schartel, Bernhard T1 - Flame retardant flexible polyurethane foams based on phosphorous soybean-oil polyol and expandable graphite N2 - A phosphorous soybean-oil–based polyol was derived via epoxidation and ring opening reaction as an alternative to petrochemical-based polyol for the synthesis of flexible polyurethane foams (FPUFs). 5-wt.% and 10-wt.% of expandable graphite (EG) were added to further improve flame retardancy. The mechanical properties (tensile strength and compression stress) of the foams were investigated. Thermogravimetric analysis (TGA) coupled with Fourier-transform infrared (FTIR) were conducted to evaluate the pyrolysis; limiting oxygen index (LOI), UL 94 and cone calorimeter were performed to analyze the fire performance of the foams; smoke density chamber was used to investigate the smoke released during burning. When 10-wt.% of EG was used, the flame retardancy of the foams was much enhanced due to the synergistic effect between phosphorus and EG. The char yield was three times higher (54wt.%). The fire load MARHE approached 100 kWm−2, half of the value expected for a superposition. The combination of phosphorous polyols and EG is proposed as strategy for future flame retarded FPUFs. KW - Phosphorous soybean-oil–based polyol KW - Flexible polyurethane foam KW - Expandable graphite KW - Flame retardancy KW - Smoke measurement PY - 2021 U6 - https://doi.org/10.1016/j.polymdegradstab.2021.109656 SN - 0141-3910 VL - 191 SP - 9656 PB - Elsevier Ltd. AN - OPUS4-52907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhou, F. A1 - Ma, C. A1 - Zhang, K. A1 - Chan, Yin Yam A1 - Xiao, Y. A1 - Schartel, Bernhard A1 - Döring, M. A1 - Wang, B. A1 - Hu, W. A1 - Hu, Y. T1 - Synthesis of Ethyl (Diethoxymethyl)phosphinate Derivatives and Their Flame Retardancy in Flexible Polyurethane Foam: Structure-flame Retardancy Relationships N2 - Three novel liquid ethyl (diethoxymethyl)phosphinate derivatives (EDPs) were synthesized and incorporated into flexible polyurethane foams (FPUFs). The flame retardancy of FPUFs were evaluated by limiting oxygen index (LOI), vertical burning and cone calorimetry tests, and the results indicated the structure-flame retardancy relationship of EDPs. Among these EDPs, P-(diethoxymethyl)-N-phenylphosphonamidate (EDPPA) exhibited the best flame retardant effect, methyl 3-((diethoxymethyl)(ethoxy)phosphoryl)propanoate (EDPMA) the second, and ethyl phenyl (di-ethoxymethyl)phosphonate (EDPPO) the worst. When the incorporation of EDPPA was 10 wt%, the FPUFs could self-extinguish and pass the vertical burning test. Meanwhile, the LOI value of FPUF-PA increased to 23.6% with 20 wt% loading of flame retardant. According to the investigation of volatiles during the thermal degradation of FPUFs and the morphologies of char residues after cone test, we inferred the pos- sible flame retardant mechanism. The results indicated that EDPs could release phosphorus-containing compounds in the gas phase, which would generate phosphorus-containing radicals and play the role of radical scavenger. In the condensed phase, EDPs can promote the formation of dense, intact and thermal stably char layer on the surface of FPUFs. Moreover, we found that the structure influence on flame retardancy was attributed to the atoms linked to the central phosphorus. Our results indicate that these EDPs are promising flame retardants in FPUFs that can be applied to improve the flame retardancy of FPUFs in various practical applications. KW - Ethyl (diethoxymethyl)phosphinate derivatives KW - Flame retardant KW - Flexible polyurethane foam KW - Structure-flame retardancy relationship PY - 2021 U6 - https://doi.org/10.1016/j.polymdegradstab.2021.109557 SN - 0141-3910 VL - 188 SP - 109557 PB - Elsevier Ltd. AN - OPUS4-53085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Lin, Xuebao A1 - Tan, Yi A1 - Wachtendorf, Volker A1 - Klack, Patrick A1 - Schoch, R. A1 - Lang, M. A1 - Tröppner, O. A1 - Bosse, M. T1 - Weathering resistance of halogen-free flame retardancy in thermoplastics N2 - Weathering resistance of halogen-free flame retardancy in thermoplastics - Durability of fire retardancy - Impact of different exposure condition - Degradation with respect to different fire tests T2 - 17th SKZ Conference on Trends in Fire Safety and Innovative Flame Retardants for Plastics CY - Online Meeting DA - 18.05.2021 KW - Durability KW - Flame retardant KW - Aluminum hydroxide (ATH) KW - Weathering KW - Cable KW - TPU KW - EVA KW - Polyamide 6.6 KW - Aluminium diethylphosphinate PY - 2021 AN - OPUS4-52680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wahab, M. A. A1 - Kebelmann, Katharina A1 - Schartel, Bernhard A1 - Griffiths, G. T1 - Improving bio-oil chemical profile of seaweeds through anaerobic fermentation pre-treatment N2 - Biomass pre-treatments for bio-oil quality improvement are mainly based on thermal and chemical methods which are costly and hence reduce the sustainability of pyrolysis-based refineries. In this paper, anaerobic digestion (AD) and dark fermentation (DF) are proposed as alternative ‘green’ pre-treatments to improve this situation. For this purpose, three seaweeds namely Sargassum polycystum, (Phaephyta), Gracilaria tenuistipitata, (Rhodophyta) and Ulva reticulata, (Chlorophyta) with high ash and oxygen contents were pre-treated to improve their composition and structure prior to pyrolysis. The results reveal that both biological pre-treatments affected, positively, the composition and structure of the seaweed biomass with AD pre-treatment reducing N and S contents by 86% and 63%, respectively. DF was more efficient in terms of ash and moisture reduction with 25% and 70%, respectively. In addition, oxygen (O) reduction by 27% was observed after DF which was evidenced by FTIR spectroscopy indicating the reduction of most oxygen-containing functional groups in the biomass. On the other hand, the carbon (C) content increased in DF pre-treated seaweeds up to 42%, almost two times higher relative content than C in the raw seaweed. The changes in the composition of pre-treated seaweeds resulted in changes in their thermal degradation and the volatile profiles produced during pyrolysis. Interestingly, anhydrosugars and furans which account for some 70% (by area) in raw seaweeds markedly declined or become undetectable after DF pre-treatment and correspondingly more acetic acid and hydrocarbons were produced while after AD more aromatics with high toluene content (ca.17%) were generated. The results indicate that biooil with profiles more similar to petroleum-based composition i.e. rich in hydrocarbons and low in anhydrosugars, N and S can be generated by AD and DF pre-treatments and opens up the possibility of these approaches to effect cost reduction in the overall generation of bio-based fuels. KW - Anaerobic digestion KW - Dark fermentation KW - Pyrolysis KW - Seaweeds KW - Thermogravimetric analysis KW - Pyrolysis volatiles PY - 2021 U6 - https://doi.org/10.1016/j.enconman.2021.114632 SN - 0196-8904 VL - 245 SP - 1 EP - 12 PB - Elsevier CY - Amsterdam AN - OPUS4-53136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tabaka, Weronika A1 - Timme, Sebastian A1 - Lauterbach, Tobias A1 - Medina, L. A1 - Berglund, L. A. A1 - Carosio, F. A1 - Duquesne, S. A1 - Schartel, Bernhard T1 - Bench-scale fire stability testing - Assessment of protective systems on carbon fibre reinforced polymer composites N2 - Fire resistance testing of components made of carbon fibre reinforced polymers (CFRP) usually demands intermediate-scale or full-scale testing. A bench-scale test is presented as a practicable and efficient method to assess how different fire protective systems improve the structural integrity of CFRPs during fire. The direct flame of a fully developed fire was applied to one side of the CFRP specimen, which was simultaneously loaded with compressive force. Three different approaches (film, non-woven, and coatings) were applied: paper with a thickness in the range of μm consisting of cellulose nanofibre (CNF)/clay nanocomposite, nonwoven mats with thickness in the range of cm and intumescent coatings with a thickness in the range of mm. The uncoated specimen failed after just 17 s. Protection by these systems provides fire stability, as they multiply the time to failure by as much as up to 43 times. The reduced heating rates of the protected specimens demonstrate the reduced heat penetration, indicating the coatings’ excellent heat shielding properties. Bench-scale fire stability testing is shown to be suitable tool to identify, compare and assess different approaches to fire protection. KW - Fire stability KW - Bench-scale fire resistance KW - Carbon fibre reinforced polymer KW - Protective coatings PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-532401 SN - 0142-9418 SN - 1873-2348 VL - 102 SP - 7340 PB - Elsevier CY - Amsterdam AN - OPUS4-53240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - More Than the Sum of Its Parts: Multicomponent Flame Retardants N2 - Efficient flame retardancy is often achieved only when applying multicomponent systems. Flame retardants are combined or used together with adjuvants or synergists; fibres and fillers contribute to fire properties crucially. Multicomponent systems are discussed in their capacity as general and powerful strategy for achieving and optimizing flame retardant polymeric materials. T2 - 18th European Meeting on Fire Retardant Polymeric Materials, FRPM21 CY - Budapest, Hungary DA - 29.08.2021 KW - Fire Retardant KW - Synergy KW - Pseudo-synergy KW - Filler KW - Fibre reinforced polymers KW - Dripping Agent KW - Adjuvant KW - Synergist KW - Charring Agent KW - Mode of Action PY - 2021 AN - OPUS4-53198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flammschutzmittel in PUR: Eine alte, aktuelle und zukünftige Herausforderung N2 - Überblick über die Herausforderungen, Anforderungen und Lösungswege für den Flammschutz von Polyurethanwerkstoffen (thermoplastisches und elastomeres Polyurethan (TPU, PUR), PUR Hard- und Weichschäume, PIR, PUR Coatings). Die Werkstoffcharakteristika wie Pyrolyse, effektive Verbrennungswärme, Rückstandsausbeute, Verarbeitungsparameter und kg-Preis definieren die Anforderungen an Flammschutzlösungen. Der Flammschutz ist spezifisch für das Material ausgelegt, aber auch für die verschiedenen Anwendungen (Automobilbau, Schienenfahrzeuge, Bauwesen, Elektrotechnik, usw.), d.h. um spezielle Brandtests zu bestehen. Die Pyrolyse und das Brandverhalten von PUR und PUR-Schäumen sowie der flammgeschützten Varianten wird diskutiert. Die gängigen Flammschutzmittel(-kombinationen) werden zusammengefasst und mit Beispielen belegt. T2 - PUR Forum, Flammenschutz in der Polyurethanverarbeitung CY - Online meeting DA - 05.05.2021 KW - Polyurethan KW - Pyrolyse KW - Flammschutz KW - Expandierbarer Graphit KW - Schaum KW - TPU PY - 2021 AN - OPUS4-52590 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Müller, Patrick A1 - Bertin, Annabelle A1 - Schartel, Bernhard T1 - Hyperbranched Rigid Aromatic Phosphorus-Containing Flame Retardants for Epoxy Resins N2 - A rigid aromatic phosphorus-containing hyperbranched flame retardant structure is synthesized from 10-(2,5 dihydroxyphenyl)-10H-9-oxa- 10-phosphaphenanthrene-10-oxide (DOPO-HQ), tris(4-hydroxyphenyl)phosphine oxide (THPPO), and 1,4-terephthaloyl chloride (TPC). The resulting poly-(DOPO-HQ/THPPO-terephthalate) (PDTT) is implemented as a flame retardant into an epoxy resin (EP) at a 10 wt% loading. The effects on EP are compared with those of the monomer DOPO-HQ and triphenylphosphine oxide (OPPh3) as low molar mass flame retardants. The glass transition temperature, thermal decomposition, flammability (reaction to small flame), and burning behavior of the thermosets are investigated using differential scanning calorimetry, thermogravimetric analysis, pyrolysis combustion flow calorimetry, UL 94-burning chamber testing, and cone calorimeter measurements. Although P-contents are low at only 0.6 wt%, the study aims not at attaining V-0, but at presenting a proof of principle: Epoxy resinswith PDTT show promising fire performance, exhibiting a 25% reduction in total heat evolved (THE), a 30% reduction in peak heat release rate (PHRR) due to flame inhibition (21% reduction in effective heat of combustion (EHC)), and an increase in Tg at the same time. This study indicates that rigid aromatic hyperbranched polymeric structures offer a promising route toward multifunctional flame retardancy. KW - Hyperbranched KW - Aromatic KW - Phosphorus KW - Phosphine oxide KW - DOPO KW - Flame retardant KW - Xpoxy resin KW - Rigid PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-525910 SN - 1439-2054 VL - 306 IS - 4 SP - 731 PB - Wiley AN - OPUS4-52591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard ED - Troitzsch, J. ED - Antonatus, E. T1 - The Burning of Plastics N2 - The burning of a polymer is a physico–chemical process strongly influenced by the coupling of a chemical reaction – oxidation of fuel – in the gas phase with a chemical decomposition reaction – pyrolysis – in the condensed phase via heat and mass transfer. The heat and mass flux control the intensity of fire and the ablation of fuel. Indeed, the temperature profile as a function of time may be one of the most important responses of a specimen to understand its burning behavior. Further, several physical phenomena, such as the heat absorption of the materials, thermal conductivity, and also melt flow and dripping, play a major role in determining ignition, flammability, and fire behavior. The burning of a polymer is very complex. The various phenomena interact with each other, e. g., pyrolysis also influences the viscosity of the melt, and, thus, whether dripping or charring results in a protective layer, increasing the shielding effect of the residual protective layer. Only a detailed and comprehensive description opens the door to a well-founded understanding of the burning behavior of polymeric materials. KW - Fire behaviour KW - Plastics KW - Pyrolysis KW - Decomposition KW - Ignition KW - Smoldering KW - Flame spread KW - Steady burning KW - Fire load KW - Fire resistance PY - 2021 SN - 978-1-56990-762-7 SP - 23 EP - 52 PB - Hanser CY - Munich ET - 4th Edition AN - OPUS4-52684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Sanchez-Olivares, G. A1 - Rockel, Daniel A1 - Maldonado-Santoyo, M. A1 - Schartel, Bernhard T1 - Waste not, want not: The use of leather waste in flame retarded EVA N2 - Leather is among the most ancient, widely used materials worldwide. Industrial-scale leather production produces large quantities of organic waste attained during shaving and buffing steps during processing. In this study, leather wastes (LW) are used as fillers in flame retarded polymer composites. LW is investigated as a multifunctional bio-filler that enhances the fire performance of flame retarded poly(ethylene–vinyl acetate) (EVA) containing phosphorus flame retardants (P-FRs) ammonium polyphosphate (APP) or a melamine-encapsulated APP (eAPP). Using LW from tanneries as adjuvants to enhance P-FRs in EVA reduces industrial wastes that otherwise require costly waste management solutions. Materials are characterized multi-methodically via mechanical tests, electron microscopy, rheology, thermogravimetric analysis, evolved gas analysis, and condensed phase FTIR, also reaction-to-small-flames and cone calorimeter tests. EVA containing 10 wt-% LW and 20 wt-% P-FRs achieve 20% reductions in fire loads versus EVA, and up to 10% reduction in effective heats of combustion versus EVA with equal (30 wt-%) P-FR loadings. Enhanced char stabilization of EVA composites with LW and P-FRs lowered peaks of heat release rates up to 53% compared to EVA, and up to 40% compared to equal P-FRs loadings. Synergisms between LW and P-FRs in EVA are quantified. A chemical decomposition mechanism is proposed. KW - Leather waste KW - Tannery industry KW - EVA KW - Fire protection KW - Flame retardancy KW - Charring PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-532977 SN - 0264-1275 VL - 210 SP - 1 EP - 16 PB - Elsevier CY - Amsterdam AN - OPUS4-53297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Bio, Waste, Non-vegan – Fun, Food for Thought, or Future N2 - Overview of the state of the art and current trends with the main topics: - renewable sources in flame retardant polymers (flame retarded bio-polymers and biocomposites; bio-flame retardants, renewable adjuvants from industrial waste) - flame retardancy meets sustainability - concepts between analogy and out-of-the-box. T2 - 18th SKZ International Conference on Trends in Fire Safety and InnovativeRFlame retardants for Plastics CY - Würzburg/Rottendorf, Germany DA - 27.09.2022 KW - Bio-polymer KW - Bio-composite KW - Renewable source KW - Renewable adjuvants KW - Vitrimer KW - Bio-flame retardant PY - 2022 AN - OPUS4-55840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strommer, Bettina A1 - Schulze, Dietmar A1 - Schartel, Bernhard A1 - Böhning, Martin T1 - Networking Skills: The Effect of Graphene on the Crosslinking of Natural Rubber Nanocomposites with Sulfur and Peroxide Systems N2 - Tailored crosslinking in elastomers is crucial for their technical applications. The incorporation of nanoparticles with high surface-to-volume ratios not only leads to the formation of physical networks and influences the ultimate performance of nanocomposites, but it also affects the chemical crosslinking reactions. The influence of few-layer graphene (FLG) on the crosslinking behavior of natural rubber is investigated. Four different curing systems, two sulfur-based with different accelerator-to-sulfur ratios, and two peroxide-based with different peroxide concentrations, are combined with different FLG contents. Using differential scanning calorimetry (DSC), vulcametry (MDR) and swelling measurements, the results show an accelerating effect of FLG on the kinetics of the sulfur-based curing systems, with an exothermic reaction peak in DSC shifted to lower temperatures and lower scorch and curing times in the MDR. While a higher accelerator-to-sulfur ratio in combination with FLG leads to reduced crosslinking densities, the peroxide crosslinkers are hardly affected by the presence of FLG. The good agreement of crosslink densities obtained from the swelling behavior confirms the suitability of vulcameter measurements for monitoring the complex vulcanization process of such nanocomposite systems in a simple and efficient way. The reinforcing effect of FLG shows the highest relative improvements in weakly crosslinked nanocomposites. KW - Nanocomposite KW - Elastomers KW - Graphene KW - Crosslinking KW - Network KW - Rubber KW - Vulcanization PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-560409 VL - 14 IS - 20 PB - MDPI AN - OPUS4-56040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Sustainability Meets Flame Retardancy – Fun, Food for Thought, or Future N2 - Überblick über den State-of-the-Art und aktuelle Trends mit den Schwerpunkten: - nachwachsende Rohstoffe in flammgeschützten Polymerwerkstoffen (flammgeschützte Biopolymere und Biokomposite; biomass-basierte Flammschutzmittel, nachwachsende Hilfsstoffe aus Abfallströmen) - Nachhaltigkeit und Flammschutz - Konzepte von Analogie bis Out-of-the-Box. T2 - IK 2022, 10. Institutskolloquium Biozide & Flammschutzmittel - Materialien, Anwendungen und Trends CY - Weißandt-Gölzau, Germany DA - 11.10.2022 KW - Nachhaltigkeit KW - Nachwachsende Rohstoffe KW - Flammschutz KW - Biopolymerkomposite PY - 2022 AN - OPUS4-55983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Hupp, Vitus A1 - Flothmeier, K. A1 - Hartwig, A. T1 - Flammschutz trifft geklebte Verbindungen N2 - Produkte, Bauteile und Konstruktionen im Transport- und Bauwesen bestehen mehr und mehr aus Klebverbunden. Allein die Menge des verwendeten Klebstoffes oder die Anzahl geklebter Verbindungen schließen für eine verlässliche Betrachtung und Bewertung der Brandrisiken aus, deren Beitrag zur Brandentstehung, Flammenausbreitung oder Feuerwiderstand von Baugruppen und Konstruktionen zu vernachlässigen. Anforderungen an die Leistungsbeschreibungen von flammgeschützten Klebstoffen bzw. Haftklebebändern werden definiert, oft ohne ein ausreichendes Verständnis der Beiträge von Klebverbunden zum Brandverhalten der Bauteile zu haben. Der Vortrag beleuchtet diese Problematik und stellt die verschiedenen komplexen Anforderungen aus dem Brandschutz in Hinblick auf Auswahlkriterien und Entwicklungsziele für flammgeschützte Klebstoffe dar. Dabei ist dieser Transfer des Brandverhaltens, sprich der Systemantwort einer Komponente oder Bauteils in einem spezifischen Brandszenario, in Materialeigenschaften des Klebstoffes eine intrinsische und anspruchsvolle Herausforderung. Im abgeschlossenen IGF-Projekt Nr. 20762 N (Forschungsvereinigung DECHEMA) haben wir für Klebebänder eine systematisch-wissenschaftliche Studie durchgeführt und aussagekräftige Erkenntnisse zu Verfügung gestellt. Die Untersuchungen zur Entflammbarkeit zu Brandbeginn, zur Flammenausbreitung (Wärmeentwicklung) im sich entwickelnden Brand und zum Feuerwiderstand im Vollbrand machen die sehr unterschiedlichen Einflüsse von Klebverbunden, d. h. auch die unterschiedlichen Anforderungen an die Modifikation der Klebebänder, deutlich. Die thermische Analyse verschiedener Klebstoffe zusammen mit den Brandtest freistehender Haftklebebänder, an einseitig geklebten Substraten und an Klebverbundprobekörpern skizzieren eindrucksvoll die komplexen Zusammenhänge zwischen Materialeigenschaften der Klebebänder und dem Brandverhalten von Klebverbunden. Der Vergleich von verschiedenen Substraten wie Stahlbleche, Holz, Mineralwolle und verschiedene Polymermaterialien belegt darüber hinaus, dass der Einfluss der Klebverbindungen auf das Brandverhalten der Klebverbunde substratspezifisch ist. Gerade der Vergleich zwischen Holz, Polymethylmethacrylat (PMMA) und Bisphenol A Polycarbonat (PC) liefert überraschend unterschiedliche Ergebnisse. Die Variation der Klebstoffe und Trägermaterialien der Klebebänder skizziert die verschiedenen Möglichkeiten für die Materialentwicklung. Abhängig vom Material und Brandszenario können Klebverbunde im Vergleich zu gleich dicken Probekörpern aus demselben Substrat sowohl eine deutliche Erhöhung der Brandrisiken, ein praktisch unverändertes Brandverhalten oder eine Reduktion des Brandrisikos hervorrufen. Grundsätzlich kann keine Lösung bzw. kein Tape gefunden werden, die mit allen Substraten einen guten Brandschutz gewährleistet. Substrate, Carrier und Klebstoff müssen nicht nur aufeinander abgestimmt werden, sondern auch auf das Brandszenario, in welchem der Verbund eine gute Performance liefern soll.Das IGF-Projekt (20762) der Forschungsgemeinschaft (DECHEMA Deutsche Gesellschaft für Chemische Technik und Biotechnologie e V, Theodor Heuss Allee 25, 60486 Frankfurt am Main) wurde durch die AiF im Rahmen des Programms „Förderung der Industriellen Gemeinschaftsforschung (IGF)” des Bundesministeriums für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. T2 - 23. Kolloquium Gemeinsame Forschung in der Klebtechnik CY - Frankfurt am Main, Germany DA - 28.02.2023 KW - Klebebänder KW - Entflammbarkeit KW - Brandverhalten KW - Feuerwiderstand KW - Flammschutz PY - 2023 AN - OPUS4-57073 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strommer, Bettina A1 - Schulze, Dietmar A1 - Schartel, Bernhard A1 - Böhning, Martin T1 - The quantification of anisotropy in graphene/natural rubber nanocomposites: Evaluation of the aspect ratio, concentration, and crosslinking N2 - In the processing of nanocomposites, high shear stresses at elevated tempera-tures orient two-dimensional nanoparticles like graphene. This orientationleads to anisotropic mechanical, thermal or barrier properties of the nanocom-posite. This anisotropy is addressed in this study by comparing graphene (few-layer graphene, FLG) with a nanoscaled carbon black (nCB) at a filler contentof 3 phr, by varying the vulcanization, and by comparing different FLG con-tents. Transmission electron microscopy gives insight into the qualitative ori-entation in the nanocomposite with FLG or nCB. The storage moduli paralleland normal to the orientation reveal the direction dependency of reinforce-ment through dynamic mechanical analysis (DMA). Dimensional swellingmeasurements show a restriction of the expansion parallel to the FLG orienta-tion, and an increased expansion normal to the orientation. The vulcanizationsystem and crosslinking determine the respective level of property values, andhigher crosslinking densities increase the anisotropy in DMA resulting invalues of up to 2.9 for the quantified anisotropy factor. With increasing FLGcontent, the anisotropy increases. A comparison of the results reveals swellingmeasurements as the most suitable method for the determination of anisot-ropy. Compared to recent literature, the presented processing induces higheranisotropy, leading to higher reinforcing effects in the direction of orientation KW - Natural rubber KW - Graphene KW - Nanocomposite KW - Mechanical properties KW - Swelling PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-571522 SN - 1097-4628 VL - 140 IS - 16 SP - 1 EP - 15 PB - Wiley online library CY - Hoboken, New Jersey (USA) AN - OPUS4-57152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Gluth, Gregor A1 - Watolla, Marie-Bernadette A1 - Morys, Michael A1 - Häßler, Dustin A1 - Schartel, Bernhard T1 - Neue Wege: Reaktive Brandschutzbeschichtungen für Extrembedingungen N2 - Wesentlich für das Sicherheitsniveau und damit die nachhaltige Wettbewerbsfähigkeit des Technologiestandortes Deutschland ist der Brandschutz in Industrieanlagen, in Gebäuden und im Transportwesen. Der vorbeugende bauliche Brandschutz hat u. a. das Ziel, die Brand- und Rauchausbreitung im Brandfall für eine gewisse Zeit zu behindern, damit die erforderlichen Lösch- und Rettungsarbeiten durchgeführt werden können. Dies geschieht u.a. durch Anforderungen an die Feuerwiderstandsfähigkeit brandbeanspruchter Bauteile. Der Feuerwiderstand eines Bauteils ist die Fähigkeit während eines angegebenen Zeitraums in einer genormten Feuerwiderstandsprüfung bezüglich mechanischer Stabilität und/oder thermischer Isolierung nicht zu versagen. Reaktive Brandschutzbeschichtungen erhöhen für viele Bauteile sehr effektiv den Feuerwiderstand. Die Beschichtungen und die Brandprüfungen müssen jedoch an die immer komplexeren Anwendungen und/oder extremeren Anforderungen angepasst und weiterentwickelt werden. Aktuelle Forschungsschwerpunkte liegen dabei in der Entwicklung neuer Materialien (z.B. Geopolymere, keramisierende Beschichtungen, silikonbasierte Beschichtungen) für extreme Brandszenarien (extreme Temperaturen, lange Beanspruchungszeiten) und in der Realisierung komplexer Funktionalitäten (komplexe Geometrien, bewegliche Komponenten) sowie in der Entwicklung neuer Testmethoden (Feuerwiderstand als bench-scale Tests, kostengünstiges Screening, Feuerwiderstand in extremen Brandszenarien). Die Entwicklung geht dabei weg von der präskriptiven Bewertung hin zur leistungsorientierten (performance-based) Bewertung in individuellen Brandszenarien oder von komplexen Bauteilen. Im Rahmen dieser Arbeit werden Lösungsansätze für die neuen Herausforderungen an die reaktiven Brandschutzsysteme unter Extrembedingungen und deren Testmöglichkeiten vorgestellt und diskutiert. Im Mittelpunkt stehen dabei neu entwickelte bench-scale Testmethoden zum Screening von neuen Beschichtungsmaterialien sowie zur Beurteilung spezieller bzw. materialspezifischer Aspekte des Feuerwiderstands unter Extrembedingungen. KW - Reaktive Brandschutzsysteme KW - Brandtest PY - 2016 U6 - https://doi.org/10.1002/bate.201600032 SN - 0932-8351 SN - 1437-0999 VL - 93 IS - 8 SP - 531 EP - 542 PB - Ernst & Sohn Verlag CY - Berlin AN - OPUS4-37115 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Tailored bench-scale fire testing in research and development N2 - Research and development of flame retarded polymeric materials generate a strong demand for bench-scale fire testing saving costs, time, and material. Hereby the good correlation to the fire tests mandatory for later products is the key challenge. Three examples are presented for tailored bench-scale fire test set-ups based on recent projects in my working group: - STT MuFu+: A bench-scale set-up was designed to investigate intumescent coatings protecting steel. An electric oven was modified, so that the standard time temperature curve is applied to a 75 mm x 75 mm coated steel plate. The plate is tested in a vertical position the temperature increase is measured at its back. A high temperature endoscope is used for online observation of the intumescence. Perfect fire residues are produced ready for further investigation. - Rapid Mass Calorimeter: A bench-scale set-up was designed to speed up cone calorimeter testing. Specimen size reduction and using a modified mass loss calorimeter deliver crucial reduction in time and material needed for screening materials. More than 70 different materials, polymers and flame retarded polymers, have been used to understand the meaning of the results and to check the correlation with cone calorimeter results. - Bench-scale Cable Testing Module: A bench-scale set-up was designed to screen cables with respect to their performance in the large scale test (EN 50399). A module is proposed replacing the cone heater and balance in the cone calorimeter. Thus the whole set-up of the cone calorimeter is used determining the heat release by means of oxygen consumption, whereas the novel cable module become cheap and easy. A good correlation to EN 50399 was observed indicating the module being an excellent screening tool for the development of flame retardant cables. The three examples show how close tailored bench-scale testing comes to simulate the performance in larger mandatory fire tests. Proper bench-scale approaches are used for reliable inexpensive assessment when screening novel materials and products. Acknowledgements Thanks go to Michael Morys, who has elaborated the STT MuFu+ in his PhD, and Sebastian Rabe, who has elaborated the Rapid Mass Calorimeter in his PhD. Thanks go to Corning Optical Communications (Emanuela Gallo and Waldemar Stöcklein) for the joint project developing the Bench-scale Cable Testing Module. Thanks go to Patrick Klack elaborating the cable module. T2 - 252nd ACS National Meeting Fall 2016 CY - Philadelphia, USA DA - 21.08.2016 KW - Bench-scale fire testing PY - 2016 AN - OPUS4-37377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Krafft, Bernd A1 - Böhning, Martin A1 - Rybak, Thomas A1 - Wachtendorf, Volker T1 - Rubber / Multilayer graphene nanocomposites N2 - Rubbers are usually reinforced with a high content (> 40 phr) of carbon black (CB) and silica. In recent years several nanofillers have been proposed, including expanded graphite/graphene. Extremely low loading of nanoparticles can considerably improve the properties. In this contribution multilayer graphene (MLG) is investigated as efficient nanofiller for rubbers. MLG has a BET specific surface area of 250 m2/g. Compared to a single graphene sheet, the MLG used constitutes only approximately 10 graphene sheets. When homogenously dispersed, it works at low loadings enabling the replacement of CB, increase in efficiency, or reduction in filler concentration. Actually the appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing and mechanical properties of different rubbers, as shown for Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR), and Styrene-Butadiene Rubber (SBR). A mere 3 phr of MLG tripled the Young’s modulus of CIIR, an effect equivalent to 20 phr of carbon black. Similar equivalents are observed for MLG/CB mixtures. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards fire behavior. The higher the nanofiller concentration is (3 phr, 5 phr, and 10 phr was investigated), the greater the improvement in the properties of the nanocomposites. Moreover, the MLG nanocomposites improve stability of mechanical properties against weathering. An increase in UV-absorption as well as a pronounced radical scavenging are proposed and were proved experimentally. To sum up, MLG is interesting as multifunctional nanofiller and seems to be quite ready for rubber development. T2 - 9th International Conference on Modification, Degradation and Stabilization of Polymers, MoDeSt 2016 CY - Cracow, Poland DA - 04.09.2016 KW - Graphene KW - Nanocomposites KW - Rubber KW - Reinforcement KW - Weathering stability PY - 2016 AN - OPUS4-37378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Wachtendorf, Volker A1 - Krafft, Bernd A1 - Morys, Michael A1 - Böhning, Martin A1 - Rybak, Thomas T1 - Multilayer graphene rubber nanocomposites N2 - Multilayer Graphene (MLG), a nanoparticle with a specific surface of BET = 250 m²/g and thus made of only approximately 10 graphene sheets, is proposed as a nanofiller for rubbers. When homogenously dispersed, it works at low loadings enabling the replacement of carbon black (CB), increase in efficiency, or reduction in filler concentration. Actually the appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing and mechanical properties of different rubbers, as shown for Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR), and Styrene-Butadiene Rubber (SBR). A mere 3 phr of MLG tripled the Young’s modulus of CIIR, an effect equivalent to 20 phr of carbon black. Similar equivalents are observed for MLG/CB mixtures. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards fire behavior. The later shown by the reduction in heat release rate in the cone calorimeter. The higher the nanofiller concentration is (3 phr, 5 phr, and 10 phr was investigated), the greater the improvement in the properties of the nanocomposites. Moreover, the MLG nanocomposites improve stability of mechanical properties against weathering. An increase in UV-absorption as well as a pronounced radical scavenging are proposed and were proved experimentally. To sum up, MLG is interesting as a multifunctional nanofiller and seems to be quite ready for rubber development. T2 - TOP 2016, VIII International Conference on “Times of Polymers and Composites” CY - Naples, Italy DA - 19.06.2016 KW - Graphene KW - Nanocomposite KW - Rubber PY - 2016 SN - 978-0-7354-1390-0 U6 - https://doi.org/10.1063/1.4949621 SN - 0094-243X SN - 1551-7616 VL - 1736 SP - 020046, 1 EP - 4 PB - AIP AN - OPUS4-36864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scarfato, Paola A1 - Incarnato, L. A1 - Di Maio, L. A1 - Dittrich, Bettina A1 - Schartel, Bernhard T1 - Influence of a novel organo-silylated clay on the morphology, thermal and burning behavior of low density polyethylene composites N2 - The functionalization of a natural sodium montmorillonite (MMT) with (3-glycidyloxypropyl)trimethoxysilane by a silylation procedure is presented, and its use as nanofiller in the melt compounding of low density polyethylene (LDPE) nanocomposites. In particular, the effects on the thermal stability and flame retardant properties of melt compounded LDPE nanocomposites are analyzed, with and without magnesium hydroxide (MH) as an additional conventional flame retardant. The purpose was to investigate possible synergistic effects between the two inorganic fillers on fire behavior. The obtained organosilylated clay showed higher interlayer spacing than the original MMT and good thermal stability, higher than that of many commercial organoclays modified with alkylammonium salts. Its addition to LDPE allowed the production of hybrids with nanoscale dispersion of the filler, as demonstrated by X-ray diffraction. The simultaneous presence of MH, which strongly interacts with the nanoclay, hindered intercalation of the polymer chains between the clay galleries and clay layer exfoliation within the LDPE resin. The investigation of the thermal and burning behavior of the LDPE nanocomposites indicated that the organosilylated clay alone shows only a limited residual protection layer effect. In combination with MH the nanocomposites have a small adverse effect on the reaction to small flame as measured by the Oxygen index and UL 94 testing, and, surprisingly, no effect on the peak heat release rate in the cone calorimeter. The quality of the fire residue was lacking on the microscopic scale. The ternary LDPE/MH/ organoclay systems investigated did not open the door to reducing MH content in halogen-free flame retardant LDPE yet, but demand further research. KW - Nano structures KW - Polymer-matrix composites KW - High-temperature properties KW - Thermoplastic resin KW - Burning behavior KW - Fire retardancy PY - 2016 U6 - https://doi.org/10.1016/j.compositesb.2016.05.053 SN - 1359-8368 VL - 98 SP - 444 EP - 452 PB - Elsevier AN - OPUS4-36865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Wachtendorf, Volker A1 - Morys, Michael A1 - Schartel, Bernhard T1 - Multilayer graphene/chlorine-isobutene-isoprene rubber nanocomposites: the effect of dispersion N2 - Multilayer graphene (MLG) is composed of approximately 10 sheets of graphene. It is a promising nanofiller just starting to become commercially available. The Dispersion of the nanofiller is essential to exploit the properties of the nanocomposites and is dependent on the preparation method. In this study, direct incorporation of 3 parts per hundred of rubber (phr) MLG into chlorine-isobutene- isoprene rubber (CIIR) on a two-roll mill did not result in substantial enhancement of the material properties. In contrast, by pre-mixing the MLG (3 phr) with CIIR using an ultrasonically assisted solution mixing procedure followed by two-roll milling, the properties (rheological, curing, and mechanical) were improved substantially compared with the MLG/CIIR nanocomposites mixed only on the mill. The Young’s moduli of the nanocomposites mixed in solution increased by 38%. The CIIR/MLG nanocomposites produced via solution showed superior durability against weathering exposure. KW - Multilayer graphene KW - Nanocomposite KW - Dispersion KW - Rubber PY - 2016 U6 - https://doi.org/10.1002/pat.3740 SN - 1042-7147 SN - 1099-1581 VL - 27 IS - 7 SP - 872 EP - 881 PB - Wiley AN - OPUS4-36866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Wachtendorf, Volker A1 - Krafft, Bernd A1 - Morys, Michael A1 - Böhning, Martin A1 - Rybak, Thomas T1 - Multilayer graphene rubber nanocomposites N2 - Multilayer Graphene (MLG), a nanoparticle with a specific surface of BET = 250 m2/g and thus made of only approximately 10 graphene sheets, is proposed as a nanofiller for rubbers. When homogenously dispersed, it works at low loadings enabling the replacement of carbon black (CB), increase in efficiency, or reduction in filler concentration. Actually the appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing and mechanical properties of different rubbers, as shown for Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR), and Styrene-Butadiene Rubber (SBR). A mere 3 phr of MLG tripled the Young’s modulus of CIIR, an effect equivalent to 20 phr of carbon black. Similar equivalents are observed for MLG/CB mixtures. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards fire behavior. The later shown by the reduction in heat release rate in the cone calorimeter. The higher the nanofiller concentration is (3 phr, 5 phr, and 10 phr was investigated), the greater the improvement in the properties of the nanocomposites. Moreover, the MLG nanocomposites improve stability of mechanical properties against weathering. An increase in UV-absorption as well as a pronounced radical scavenging are proposed and were proved experimentally. To sum up, MLG is interesting as a multifunctional nanofiller and seems to be quite ready for rubber development. T2 - 8th Conference on Times of Polymers (TOP) & Composites CY - Ischia, Italy DA - 19.06.2016 KW - Graphene KW - Rubber KW - Nanocomposite PY - 2016 AN - OPUS4-36869 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Timme, Sebastian A1 - Hörold, Andreas A1 - Trappe, Volker A1 - Korzen, Manfred T1 - Composites in fire: Intermediate-scale testing of sandwich panels and shells N2 - Intermediate-scale testing is indispensable when investigating the fire resistance under simultaneous compressive load of components made of glass- and carbon-fibre-reinforced composites (GFRP and CFRP). BAM is successfully operating an intermediate-scale test stand, developed for a specimen size of 500 mm x 500 mm (1000 mm). The fire resistance in terms of fire stability of CFRP and GFRP sandwiches are investigated, e.g. at 20 % of their compressive failure load at room temperature. Times to failure increase by up to a factor of 4 due to intumescent coatings. For GFRP sandwiches, different core structures with and without additional flame retardants show an astonishing impact on time to failure. CFRP shell structures are investigated on the intermediate scale with and without stringer reinforcements, resulting in completely different mechanical failure behaviour in the ultimate load test as opposed to the fire resistance test. The stringers become the only load-carrying part, while the shell acts as a protective layer. Thus the design exploiting this self-protection potential, i.e. the residue of the front skin protecting the load-bearing structure, is highlighted as a most promising route to enhance the fire resistance of lightweight materials. T2 - Interflam 2016, 14th International Interflam Conference CY - Egham, UK DA - 04.07.2016 KW - Composites KW - Carbon fibre KW - Shells KW - Sandwich panels KW - Fire resistance KW - Fire stabiliy KW - Stringer reinforced components PY - 2016 AN - OPUS4-36870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Timme, Sebastian A1 - Hörold, Andreas A1 - Trappe, Volker A1 - Korzen, Manfred T1 - Composites in fire: Intermediate-scale testing of sandwich panels and shells N2 - Intermediate-scale testing is indispensable when investigating the fire resistance under simultaneous compressive load of components made of glass- and carbon-fibre-reinforced composites (GFRP and CFRP). BAM is successfully operating an intermediate-scale test stand, developed for a specimen size of 500 mm x 500 mm (1000 mm). The fire resistance in terms of fire stability of CFRP and GFRP sandwiches are investigated, e.g. at 20 % of their compressive failure load at room temperature. Times to failure increase by up to a factor of 4 due to intumescent coatings. For GFRP sandwiches, different core structures with and without additional flame retardants show an astonishing impact on time to failure. CFRP shell structures are investigated on the intermediate scale with and without stringer reinforcements, resulting in completely different mechanical failure behaviour in the ultimate load test as opposed to the fire resistance test. The stringers become the only load-carrying part, while the shell acts as a protective layer. Thus the design exploiting this self-protection potential, i.e. the residue of the front skin protecting the load-bearing structure, is highlighted as a most promising route to enhance the fire resistance of lightweight materials. T2 - Interflam 2016 CY - Egham, Surrey, UK DA - 04.06.2016 KW - composite KW - fire stability KW - fire resistance KW - sandwich panels KW - shells KW - intermediate-scale testing PY - 2016 SN - 978-0-9933933-2-7 SN - 978-0-9933933-3-4 VL - 2 SP - 1465 EP - 1470 PB - Interscience communications AN - OPUS4-36892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Böhning, Martin A1 - Krafft, Bernd A1 - Schartel, Bernhard T1 - Multilayer graphene chlorine isobutyl isoprene rubber nanocomposites: influence of the multilayer graphene concentration on physical and flame-retardant properties N2 - In recent years, different nanoparticles have been proposed and successfully introduced as nanofillers in rubber nanocomposites. In this study, multilayer graphene (MLG) is proposed as a nanoparticle that functions efficiently at low concentrations. MLG consists of just 10 or so graphene sheets. Chlorine isobutyl isoprene rubber (CIIR)/MLG nanocomposites with different MLG loadings were prepared using an ultrasonically assisted solution mixing procedure followed by two-roll milling. The incorporation of MLG provides a clear improvement in the rheological, mechanical, curing, and gas barrier properties of the nanocomposites. Adding only 3 phr ofMLGto CIIR increased the Young’s modulus by more than two times and reduced the permeability ofO2 andCO2 by 30%. Higher nanofiller concentrations yielded further improvement in the properties of the nanocomposites. Moreover, CIIR/MLG nanocomposites showed reduced flammability. KW - Graphene KW - Rubber KW - Nanocomposites KW - Flammability KW - Reinforcement PY - 2016 U6 - https://doi.org/10.5254/rct.15.84838 SN - 0035-9475 VL - 89 IS - 2 SP - 316 EP - 334 AN - OPUS4-37595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flame Retardant Solutions: Nanomaterials T2 - COST MP1105 Training School on Flame Retardant Solutions for Fibre Reinforced Composites CY - Oporto, Portugal DA - 2014-03-26 PY - 2014 AN - OPUS4-30522 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Testing Methods T2 - COST MP1105 Training School on Flame Retardant Solutions for Fibre Reinforced Composites CY - Porto, Portugal DA - 2014-03-26 PY - 2014 AN - OPUS4-30523 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittrich, Bettina A1 - Wartig, K.-A. A1 - Mülhaupt, R. A1 - Schartel, Bernhard T1 - Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene N2 - Thermally reduced graphite oxide (TRGO), containing only four single carbon layers on average, was combined with ammonium polyphosphate (APP) and magnesium hydroxide (MH), respectively, in polypropylene (PP). The nanoparticle's influence on different flame-retarding systems and possible synergisms in pyrolysis, reaction to small flame, fire behavior and mechanical properties were determined. TRGO has a positive effect on the yield stress, which is decreased by both flame-retardants and acts as a synergist with regard to Young's modulus. The applicability and effects of TRGO as an adjuvant in combination with conventional flame-retardants depends strongly on the particular flame-retardancy mechanism. In the intumescent system, even small concentrations of TRGO change the viscosity of the pyrolysing melt crucially. In case of oxygen index (OI) and UL 94 test, the addition of increasing amounts of TRGO to PP/APP had a negative impact on the oxygen index and the UL 94 classification. Nevertheless, systems with only low amounts (≤1 wt%) of TRGO achieved V-0 classification in the UL 94 test and high oxygen indices (>31 vol%). TRGO strengthens the residue structure of MH and therefore functions as a strong synergist in terms of OI and UL 94 classification (from HB to V-0). KW - Graphene KW - Intumescence KW - Ammonium polyphosphate KW - Magnesium hydroxide KW - Synergy KW - Polypropylene PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-320685 SN - 2073-4360 VL - 6 IS - 11 SP - 2875 EP - 2895 PB - MDPI CY - Basel AN - OPUS4-32068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pospiech, D. A1 - Fischer, O. A1 - Korwitz, A. A1 - Hoffmann, T. A1 - Köppl, T. A1 - Altstädt, V. A1 - Ciesielski, M. A1 - Döring, M. A1 - Brehme, Sven A1 - Schartel, Bernhard A1 - Vollmerhausen, D. T1 - Designed flame retardancy with phosphorus polymers N2 - Polymeric flame retardants offer the possibility to match effective flame retardancy with the requirements of new regulations. Synthesis, properties and efficiency in polymer matrices are discussed for two systems, epoxy resins as well as poly(butylene terephthalate). T2 - 25th Annual conference: Recent advances in flame retardancy of polymeric materials CY - Stamford, Connecticut, USA DA - 18.05.2014 KW - Flame retardancy KW - Phosphorus polymer KW - Poly(butylene terephthalate) KW - Epoxy resin PY - 2014 SP - 1 EP - 5 AN - OPUS4-30951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wawrzyn, Eliza A1 - Schartel, Bernhard A1 - Karrasch, Andrea A1 - Jäger, Christian T1 - Flame-retarded bisphenol A polycarbonate/silicon rubber/bisphenol A bis(diphenyl phosphate): Adding inorganic additives N2 - Various inorganic additives belonging to four different groups: layered materials, metal hydroxides, metal oxides/carbonate and metal borates are investigated in bisphenol A polycarbonate/silicon rubber/bisphenol A bis(diphenyl phosphate) (PC/SiR/BDP) to improve flame retardancy. The pyrolysis, reaction to small flame and fire behaviour of the blends are characterised and structure–property relationships discussed. Among the added layered materials, talc functions as an inert filler with potential for commercialisation, whereas organically modified montmorillonite (LS) enhances decomposition. PC/SiR/BDP + talc and PC/SiR/BDP + LS reinforce the char and induce a flow limit. The different dispersion and location of boehmite (AlO(OH)) nano-particles and Mg(OH)2 micro-particles determine the impact on performance. PC/SiR/BDP + Mg(OH)2 shows additional hydrolysis and thus reduced flame retardancy. AlO(OH) is embedded in SiR and thus behaves as an inert filler. Both additives worked as smoke suppressants. Using selective filling with nano-particles is proposed as an interesting route for flame retardancy in PC/SiR blends. Adding metal oxides and carbonate (MgO, CaCO3 and SiO2) changes the decomposition pathways of PC/SiR/BDP, worsening the fire performance of PC/SiR/BDP. CaCO3 harbours the potential to intumescence, even though an early collapse of the char structure occurred. Adding hydrated metal borates, CaB, MgB and ZnB, changes the pyrolysis and flame retardancy action. Smoke suppression occurs; LOI is improved as well as UL 94 classification. ZnB performs better than MgB and CaB. The comprehensive study, also based on systematic material variation, delivers valuable guidelines for future development of flame-retarded multi-component PC blends. KW - Flame retardancy KW - Polycarbonate blends KW - Aryl phosphate KW - Inorganic fillers PY - 2014 U6 - https://doi.org/10.1016/j.polymdegradstab.2013.08.006 SN - 0141-3910 SN - 1873-2321 VL - 106 SP - 74 EP - 87 PB - Applied Science Publ. CY - London AN - OPUS4-30952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Nanotechnology Getting in Fire Retardancy T2 - 3rd International Symposium on Flame-Retardant Materials & Technologies (ISFRMT) CY - Hefei, China DA - 2014-06-17 PY - 2014 AN - OPUS4-30957 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Heading Evidence-based Development of Flame-Retardant Polymers T2 - SCU Europe Joint Seminar on Flame Retardance/Fire Chemistry CY - Chengdu, China DA - 2014-06-13 PY - 2014 AN - OPUS4-30960 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Nanotechnology Finding Its Way Into Flame Retardancy T2 - 7th International Conference Times of Polymers (TOP) and Composites CY - Ischia, Italy DA - 2014-06-22 PY - 2014 AN - OPUS4-30961 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard ED - D'Amore, A. ED - Acierno, Domenico ED - Grassia, L. T1 - Nanotechnology finding its way into flame retardancy N2 - Nanotechnology is one of the key technologies of the 21st century. The exploitation of 'new' effects that arise from materials structured on the nano-scale has also been proposed successfully for flame retardancy of polymers since the end of the 90s. Of all of the approaches these include, at this time the use of nanocomposites offers the best potential for industrial application, also some other ideas are sketched, such as using electrospun nanofibers mats or layer-by-layer deposits as protection coatings, as well as sub-micrometer multilayer coatings as effective IR-mirrors. The general phenomena, inducing a flow limit in the pyrolysing melt and changing the fire residue, are identified in nanocomposites. Key experiments are performed such as quasi online investigation of the protection layer formation to understand what is going on in detail. The flame retardancy mechanisms are discussed and their impact on fire behaviour quantified. With the latter, the presentation pushes forward the state of the art. For instance, the heat shielding is experimentally quantified for a layered silicate epoxy resin nanocomposite proving that it is the only import mechanism controlling the reduction in peak heat release rate in the investigated system for different irradiations. The flame retardancy performance is assessed comprehensively illuminating not only the strengths but also the weak points of the concepts. Guidelines for materials development are deduced and discussed. Apart from inorganic fillers (layered silicate, boehmite, etc.) not only carbon nanoobjects such as multiwall carbon nanotubes, multilayer graphene and graphene are investigated, but also nanoparticles that are more reactive and harbor the potential for more beneficial interactions with the polymer matrix. T2 - Times of polymers (TOP) and composites 2014 - 7th international conference on times of polymers (TOP) and composites CY - Ischia, Italy DA - 2014-06-22 KW - Nanotechnology KW - Flame retardancy KW - Nanocomposites KW - Fire behavior KW - Layered silicate KW - Graphene KW - Nanotubes KW - Nanofibers KW - Flammability KW - Cone calorimeter PY - 2014 SN - 978-0-7354-1233-0 U6 - https://doi.org/10.1063/1.4876766 SN - 0094-243X N1 - Serientitel: AIP conference proceedings – Series title: AIP conference proceedings VL - 1599 SP - 14 EP - 17 PB - AIP Publishing CY - Melville, New York AN - OPUS4-30994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flame retardancy of polymers: novel halogen-free and nanotechnologie solutions T2 - Fire Science Workshop CY - Berlin, Germany DA - 2013-11-29 PY - 2013 AN - OPUS4-30983 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Täuber, Karoline A1 - Marsico, F. A1 - Wurm, F. R. A1 - Schartel, Bernhard T1 - Hyperbranched poly(phosphoester)s as flame retardants for technical and high performance polymers N2 - A structurally novel hyperbranched halogen-free poly(phosphoester) (hbPPE) is proposed as a flame retardant in poly(ester)s and epoxy resins. hb polymeric flame retardants combine several advantages that make them an extraordinary approach for future flame retardants. hbPPE was synthesized by olefin metathesis polymerization according to a straightforward two-step protocol. The impact of hbPPE on pyrolysis, flammability (reaction-to-small-flame), and fire behavior under forced flaming conditions (cone calorimeter) was investigated for a model substance representing poly(ester)s, i.e. ethyl 4-hydroxybenzoate, and an epoxy resin of bisphenol A diglycidyl ether cured with isophorone diamine. The flame retardancy performance and mechanisms are discussed and compared to a commercial bisphenol A bis(diphenyl phosphate) (BDP). Both hbPPE and BDP combined gas-phase and condensed-phase activity; hbPPE is the more efficient flame retardant, and is proposed to be efficient in a greater variety of polymeric matrices. The hydrolysis of hbPPE is suggested to produce phosphorous acids, which, when available at the right temperatures, enhance the charring of the polymer in the condensed phase. The better fire protection behavior of the hbPPE is due not only to its higher phosphorus content, but also to the higher efficiency of the phosphorus it contains. KW - Hyperbranched polymers KW - Flame retardancy KW - Flammability KW - Poly(phosphoester)s PY - 2014 U6 - https://doi.org/10.1039/c4py00830h SN - 1759-9954 SN - 1759-9962 VL - 5 IS - 24 SP - 7042 EP - 7053 AN - OPUS4-32014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brehme, Sven A1 - Köppl, T. A1 - Schartel, Bernhard A1 - Altstädt, V. T1 - Competition in aluminium phosphinate-based halogen-free flame retardancy of poly(butylene terephthalate) and its glass-fibre composites N2 - Aluminium diethylphosphinate (AlPi-Et) and inorganic aluminium phosphinate with resorcinol-bis(di-2,6-xylyl phosphate) (AlPi-H+RXP) were compared with each other as commercially available halogen-free flame retardants in poly(butylene terephthalate) (PBT) as well as in glass-fibre-reinforced PBT (PBT/GF). Pyrolysis behaviour and flame retardancy performance are reported in detail. AlPi-H+RXP released phosphine at very low temperatures, which can become a problem during processing. AlPi-Et provided better limiting oxygen index (LOI) values and UL 94 ratings for bulk and PBT/GF than AlPi-H+RXP. Both flame retardants acted via three different flame-retardancy mechanisms in bulk as well as in PBT/GF, namely, flame inhibition, increased amount of char, and a protection effect of the char. AlPi-Et was more efficient in decreasing the total heat evolved of PBT in the cone calorimeter test. AlPi-H+RXP reduced the peak heat release rate of PBT more efficiently than AlPi-Et. An optimum loading of AlPi-Et in PBT/GF was found, which was below the supplier's recommendation. This loading provides a maximum increase in LOI and a maximum decrease in total heat evolved. KW - Aluminium phosphinate KW - Flame retardancy KW - Glass-fibre composite KW - Poly(butylene terephthalate) PY - 2014 U6 - https://doi.org/10.1515/epoly-2014-0029 SN - 1618-7229 VL - 14 IS - 3 SP - 193 EP - 208 PB - De Gruyter CY - [S.l.] AN - OPUS4-30648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Fire Retardants T2 - AircraftFire Colloquium CY - Brussels, Belgium DA - 2014-07-08 PY - 2014 AN - OPUS4-31056 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Bahr, Horst A1 - Schartel, Bernhard T1 - Fire retardancy effect of aluminium phosphinate and melamine polyphosphate in glass fibre reinforced polyamide 6 N2 - The fire retardancy mechanism of aluminium diethyl phosphinate (AlPi) and AlPi in combination with melamine polyphosphate (MPP) was investigated in glass-fibre reinforced polyamide 6 (PA6/GF) by analysing the pyrolysis, flammability and fire behaviour. AlPi in PA6/GF-AlPi partly vaporises as AlPi and partly decomposes to volatile diethylphosphinic acid (subsequently called phosphinic acid) and aluminium phosphate residue. In fire a predominant gas-phase action was observed, but the material did not reach a V-0 classification for the moderate additive content used. For the combination of both AlPi and MPP in PA6/GF-AlPi-MPP a synergistic effect occurred, because of the reaction of MPP with AlPi. Aluminium phosphate is formed in the residue and melamine and phosphinic acid are released in the gas phase. The aluminium phosphate acts as a barrier for fuel and heat transport, whereas the melamine release results in fuel dilution and the phosphinic acid formation in flame inhibition. The higher amount of aluminium phosphate in PA6/GF-AlPi-MPP stabilised the residue in flammability tests in comparison to PA6/GF-AlPi, so that this material achieved a V-0 classification in the UL 94 test. PY - 2010 U6 - https://doi.org/10.1515/epoly.2010.10.1.443 SN - 1618-7229 IS - 041 SP - 1 EP - 14 PB - De Gruyter CY - [S.l.] AN - OPUS4-19821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard T1 - Phosphorus-based flame retardancy mechanisms - Old hat or a starting point for future development? N2 - Different kinds of additive and reactive flame retardants containing phosphorus are increasingly successful as halogen-free alternatives for various polymeric materials and applications. Phosphorus can act in the condensed phase by enhancing charring, yielding intumescence, or through inorganic glass formation; and in the gas phase through flame inhibition. Occurrence and efficiency depend, not only on the flame retardant itself, but also on its interaction with pyrolysing polymeric material and additives. Flame retardancy is sensitive to modification of the flame retardant, the use of synergists/adjuvants, and changes to the polymeric material. A detailed understanding facilitates the launch of tailored and targeted development. KW - Fire retardancy KW - Red phosphorus KW - Phosphate KW - Phosphonate KW - Phosphinate KW - Phosphine oxide KW - Flame inhibition KW - Charring KW - Intumescence PY - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-220368 SN - 1996-1944 VL - 3 IS - 10 SP - 4710 EP - 4745 PB - MDPI CY - Basel AN - OPUS4-22036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flammschutzmechanismen in Polymeren - Hintergrund und Nutzen für die Praxis T2 - 10. Fachtagung SKZ: Kunststoffe, Brandschutz und Flammschutzmittel CY - Würzburg, Germany DA - 2009-05-13 PY - 2009 AN - OPUS4-19390 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flammschutzprüfungen zur Charakterisierung einer Schlüsseleigenschaft von Polymerwerkstoffen T2 - 5. Würzburger Compoundiertage, SKZ CY - Würzburg, Germany DA - 2009-05-13 PY - 2009 AN - OPUS4-19402 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard ED - Wilkie, C. A. ED - Morgan, A.B. T1 - Uses of fire tests in materials flammability development PY - 2010 SN - 978-1-4200-8399-6 IS - Chapter 15 SP - 387 EP - 420 PB - CRC Press CY - Boca Raton, FL, USA ET - Second Edition AN - OPUS4-21085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karrasch, Andrea A1 - Wawrzyn, Eliza A1 - Schartel, Bernhard A1 - Jäger, Christian T1 - Solid-state NMR on thermal and fire residues of bisphenol A polycarbonate/silicone acrylate rubber/bisphenol A bis(diphenyl-phosphate)/(PC(SiR/BDP) and PC/SiR/BDP/zinc borate (PC/SiR/BDP/ZnB) - Part 1: PC charring and the impact of BDP and ZnB N2 - Structural changes in the condensed phase of bisphenol A polycarbonate (containing 0.45 wt% poly (tetrafluoroethylene))/silicone acrylate rubber/bisphenol A bis(diphenyl-phosphate) (PC/SiR/BDP) and PC/SiR/BDP/zinc borate (PC/SiR/BDP/ZnB) during thermal treatment in nitrogen atmosphere and in fire residues were investigated by solid-state NMR. H-1, B-11, C-13 and P-31 NMR experiments using direct excitation with a single pulse and H-1-P-31 cross-polarization (CP) were carried out including 31P(1 H) and C-13{P-31}double-resonance techniques (REDOR: Rotational Echo Double Resonance) on a series of heat-treated samples (580 K-850 K). Because many amorphous phases occur in the solid residues, and solid-state NMR spectroscopy addresses the most important sites carbon, phosphorus and boron, this paper is the key analytical approach for understanding the pyrolysis and flame retarding phenomenon in the condensed phase of PC/SiR/BDP and PC/SiR/BDP/ZnB. For the system PC/SiR/BDP it is shown that (i) at temperatures around 750-770 K (main decomposition step) carbonaceous charring of PC occurs and arylphosphate structures are still present, reacted in part with the decomposing PC; (ii) for higher temperatures from 770 K the phosphorus remaining in the solid phase increasingly converts to amorphous phosphonates and inorganic orthophosphates with a minor amount of crystalline orthophosphates; and (iii) H-1-P-31{H-1} CP REDOR and H-1-C-13{P-31} CP REDOR NMR experiments suggest that the phosphates and phosphonates are bound via oxygen to aromatic carbons, indicating the interaction with the carbonaceous char. When ZnB is added to the system PC/SiR/BDP, (i) ZnB leads to a slightly enhanced PC decomposition for temperatures below 750 K; (ii) alpha-Zn-3(PO4)(2) and borophosphate (BPO4) are formed in small amounts at high temperatures suggesting a reaction between BDP and ZnB during thermal decomposition; and (iii) most of the borate remains in the solid residues, forming an amorphous pure borate network, with the BO3/BO4 ratio increasing with higher temperatures. The NMR data of thermal and fire residues are highly correlated, underlining the importance of this work for understanding the pyrolysis and flame retardancy mechanisms in the condensed phase during the burning of the PC/SiR blends. (C) 2010 Elsevier Ltd. All rights reserved. KW - Flame retardance KW - NMR KW - Polycarbonate (PC) blends KW - Bisphenol-A bis(diphenyl)phosphate (BDP) KW - Zinc borate PY - 2010 U6 - https://doi.org/10.1016/j.polymdegradstab.2010.07.034 SN - 0141-3910 SN - 1873-2321 VL - 95 IS - 12 SP - 2525 EP - 2533 PB - Applied Science Publ. CY - London AN - OPUS4-22647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karrasch, Andrea A1 - Wawrzyn, Eliza A1 - Schartel, Bernhard A1 - Jäger, Christian T1 - Solid-state NMR on thermal and fire residues of bisphenol A polycarbonate/silicone acrylate rubber/bisphenol A bis(diphenyl-phosphate)/(PC(SiR/BDP) and PC/SiR/BDP/zinc borate (PC/SiR/BDP/ZnB) - Part II: The influence of SiR N2 - Solid residues of bisphenol A polycarbonate (containing 0.45 wt% poly(tetrafluoroethylene))/silicone acrylate rubber/bisphenol A bis(diphenyl-phosphate) (PC/SiR/BDP) and PC/SiR/BDP/zinc borate (PC/SiR/BDP/ZnB) after thermal treatment were investigated by solid-state and liquid-state NMR, focusing on the role and interaction of SiR with the other components of the polymer blend. In PC/SiR/BDP, part of the SiR reacts to an amorphous silicate network rather than being completely released in the gas phase. The silicate network consists of Q4 and Q3 groups formed via intermediate D and T groups. The D groups are formed by a reaction of SiR with bisphenol-A units as well as phenyl groups of PC and BDP. In addition a small amount of silicon diphosphate was observed after thermal treatment at temperatures higher than 810 K. The same decomposition products (without SiP2O7) occur in the solid residues of PC/SiR/BDP/ZnB samples. The formation of intermediate D and T groups occurs earlier, at slightly lower temperatures. Any formation of a borosilicate network was excluded. The results also apply for the fire residues of PC/SiR/BDP and PC/SiR/BDP/ZnB and are thus valuable for understanding the impact of SiR on pyrolysis and flame retardancy mechanisms in the condensed phase during the burning of PC/SiR/BDP blends. SiR was found to influence the pyrolysis and the char formed. Beyond the replacement of highly combustible mechanical modifiers, SiR harbours the potential to enhance flame retardancy. KW - Flame retardance KW - 29Si NMR KW - Polycarbonate (PC) blends KW - Bisphenol A bis(diphenyl)phosphate (BDP) KW - Silicone rubber PY - 2010 U6 - https://doi.org/10.1016/j.polymdegradstab.2010.07.030 SN - 0141-3910 SN - 1873-2321 VL - 95 IS - 12 SP - 2534 EP - 2540 PB - Applied Science Publ. CY - London AN - OPUS4-22648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Wachtendorf, Volker A1 - Geburtig, Anja A1 - Bahr, Horst A1 - Schartel, Bernhard T1 - Weathering resistance of halogen-free flame retardance in thermoplastics N2 - The influence of weathering on the fire retardancy of polymers is investigated by means of a cone calorimeter test, before and after artificial weathering. The surface degradation was monitored using different techniques (ATR–FTIR, microscopy, colour measurement). Different kinds of polymeric materials were chosen, all as they are used in practice: polycarbonate (PC) blends, polyamide (PA) and polypropylene (PP) flame-retarded with arylphosphate, melamine cyanurate (MC) and intumescent formulation based on ammonium polyphosphate (APP), respectively. All samples show material degradation at the surface due to weathering. No significant weathering influence occurs on the flame retardancy when it is a bulk property, as was observed for aryl phosphates in PC blends and MC in PA. When the fire retardancy is dominated by a surface mechanism, dependence on the duration of weathering is detected: for intumescent formulations based on ammonium APP in PP, a worsening in the formation of the intumescent network was observed. KW - Fire retardancy KW - Weathering resistance KW - Degradation KW - Intumescence KW - Cone calorimeter PY - 2010 U6 - https://doi.org/10.1016/j.polymdegradstab.2010.08.020 SN - 0141-3910 SN - 1873-2321 VL - 95 IS - 12 SP - 2421 EP - 2429 PB - Applied Science Publ. CY - London AN - OPUS4-22612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yu, D. A1 - Kleemeier, M. A1 - Wu, Guang Mei A1 - Schartel, Bernhard A1 - Liu, W.Q. A1 - Hartwig, A. T1 - The absence of size- dependency in flame retarded composites containing low-melting organic-inorganic glass and clay: Comparison between micro- and nanocomposites N2 - Due to optimised processing of epoxy based composite materials containing a low-melting organic–inorganic glass together with an organo clay, the size of the glass particles could be successfully reduced. Thus truly nano-dispersed composites were obtained, with glass particles in the range of 10 nm to 200 nm. The small particle size allowed efficient interaction of glass particles and organo clay layers. The flame retardancy as well as the thermo-mechanical properties were tested, and the results showed that the low-melting glass led to a remarkable reduction of peak heat release rate by forming an enhanced barrier layer. Nevertheless no further improvement could be achieved by lowering the particle size to the nanometre region. For good flame retardancy a microdispersion of the low-melting glass was already sufficient. KW - Epoxy resin KW - Nanocomposites KW - Low-melting glass KW - Clay KW - Flame retardancy PY - 2011 U6 - https://doi.org/10.1016/j.polymdegradstab.2011.06.003 SN - 0141-3910 SN - 1873-2321 VL - 96 IS - 9 SP - 1616 EP - 1624 PB - Elsevier Ltd. CY - London AN - OPUS4-24211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gallo, Emanuela A1 - Schartel, Bernhard A1 - Acierno, Domenico A1 - Russo, P. T1 - Flame retardant biocomposites: Synergism between phosphinate and nanometric metal oxides N2 - The known flame-retardant synergism between phosphorus-based additives and metal oxides, already used for petroleum-based plastics, has been extended to bio-based materials. The pyrolysis and the flame-retardancy properties of aluminium phosphinate (AlPi) in combination with nanometric iron oxide and antimony oxide on a poly(3-hydroxy-butyrate-co-3-hydroxyvalerate)/poly(butylene adipate-co-terephthalate) (PHBV/PBAT) blend were investigated. Better fire retardancy, ascribed to increases in intermediate char, favoured improvements in the UL 94 classification. Both the phosphorus and the nanofiller components participate simultaneously in the flame-retardancy mechanism: the first acting as flame inhibition in the gas phase, and the second promoting cross-linking in the solid phase. Redox reactions between iron oxide and the phosphinate additive were confirmed by XRD analysis and provided further evidence of the activity of metal compounds. KW - Aliphatic biopolyesters KW - Metal oxide KW - Flame retardancy KW - Aluminium phosphinate PY - 2011 U6 - https://doi.org/10.1016/j.eurpolymj.2011.04.001 SN - 0014-3057 SN - 1873-1945 VL - 47 IS - 7 SP - 1390 EP - 1401 PB - Elsevier CY - Oxford AN - OPUS4-23889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yu, D. A1 - Kleemeier, M. A1 - Wu, Guang Mei A1 - Schartel, Bernhard A1 - Liu, W.Q. A1 - Hartwig, A. T1 - A low melting organic-inorganic glass and its effect on flame retardancy of clay/epoxy composites N2 - A low-melting organic-inorganic glass with a high molecular weight soluble in solvents was synthesized by hydrolytic polycondensation of phenyltriethoxysilane followed by a subsequent heat treatment. Softening point and thermostability were strongly increased after heat treatment. The composites of glass/epoxy and glass/clay/epoxy were studied with respect to their thermal properties, fire behavior and mechanical properties. Heat release rate as measured by cone calorimetry was remarkably reduced in the presence of glass, relative to neat epoxy resin and polymer/clay composites. The combination of glass and clay is a promising approach. It showed mainly superposition and even synergistic effects in some fire properties for higher filler concentrations due to the formation of an enhanced barrier. The structure of residue was investigated by transmission electron microscopy (TEM). KW - Low-melting glass KW - Clay KW - Epoxy resin PY - 2011 U6 - https://doi.org/10.1016/j.polymer.2011.03.033 SN - 0032-3861 SN - 1873-2291 VL - 52 IS - 10 SP - 2120 EP - 2131 PB - Elsevier Ltd. AN - OPUS4-23858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Development of Fire-Retarded Materials - Interpretation of Cone Calorimeter Data T2 - Sixth International Conference on Composites In Fire CY - Newcastle upon Tyne, England DA - 2011-06-09 PY - 2011 AN - OPUS4-23898 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perret, Birgit A1 - Schartel, Bernhard T1 - TGA-FTIR: Von der Untersuchung der Pyrolyse zur Aufklärung von Flammschutzmechanismen KW - TGA-FTIR KW - Flammschutz KW - Pyrolyse PY - 2010 VL - 32 SP - 16 EP - 19 AN - OPUS4-23904 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perret, Birgit A1 - Schartel, Bernhard T1 - TGA-FTIR: From the investigation of pyrolysis to the elucidation of fire retardancy mechanisms KW - TGA-FTIR KW - Flammschutz KW - Pyrolyse PY - 2010 VL - 32 SP - 16 EP - 19 AN - OPUS4-23905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perret, Birgit A1 - Schartel, Bernhard T1 - TGA-FTIR: Détermination des mécanismes ignifuges par l´étude de la pyrolyse KW - TGA-FTIR KW - Flammschutz KW - Pyrolyse PY - 2010 VL - 32 SP - 16 EP - 19 AN - OPUS4-23906 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gallo, Emanuela A1 - Fan, Z. A1 - Schartel, Bernhard A1 - Greiner, A. T1 - Electrospun nanofiber mats coating - new route to flame retardancy N2 - A novel route toward halogen-free fire retardancy of polymers through innovative surface coating is described. Nanofiber mats based on polyimide are deposited on PA66 through electrospinning. Scanning electron microscopy is used to characterize the nanofibers. Cone calorimeter tests were performed to evaluate the fire performance. Because of their low thermal conductivity, electrospun nanofiber mats act not only as sacrificial layers but also as a protective surface that delays ignition. The effect is influenced by the fiber diameters and the imidization. KW - Electrospinning KW - Polyimide KW - Nanofibers KW - Fire retardancy PY - 2011 U6 - https://doi.org/10.1002/pat.1994 SN - 1042-7147 SN - 1099-1581 VL - 22 IS - 7 SP - 1205 EP - 1210 PB - John Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-24093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Composites and Fire: A Journey from 1 nm to 50 cm T2 - 13th European Meeting on Fire retardant Polymers, FRPM CY - Alessandria, Italy DA - 2011-06-26 PY - 2011 AN - OPUS4-24069 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brehme, Sven A1 - Schartel, Bernhard A1 - Goebbels, Jürgen A1 - Fischer, O. A1 - Pospiech, D. A1 - Bykov, Y. A1 - Döring, M. T1 - Phosphorus polyester versus aluminium phosphinate in poly(butylene terephthalate) (PBT): Flame retardancy performance and mechanisms N2 - Pyrolysis and fire behaviour of a phosphorus polyester (PET-P-DOPO) have been investigated. The glycol ether of the hydroquinone derivative of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide was used as a reactive halogen-free flame retardant in PET-P-DOPO. PET-P-DOPO is proposed as an alternative to poly(butylene terephthalate) (PBT) with established halogen-free additives. It exhibits a high LOI (39.3%) and achieves V-0 classification in the UL 94 test. Three different mechanisms (flame inhibition, charring and a protection effect by the intumescent char) contribute to the flame retardancy in PET-P-DOPO and were quantified with respect to different fire risks. The fire load was reduced by 66% of the PBT characteristic. The reduction is the superposition of the relative reduction due to flame inhibition (factor 0.625) and charring (factor 0.545). The peak of heat release rate (pHRR) was reduced by 83% due to flame inhibition, charring and the protection properties of the char (factor 0.486). The strength of all three mechanisms is in the same order of magnitude. The intumescent multicellular structure enables the char to act as an efficient protection layer. PBT flame-retarded with aluminium diethylphosphinate was used as a benchmark to assess the performance of PET-P-DOPO absolutely, as well as versus the phosphorus content. PET-P-DOPO exhibits superior fire retardancy, in particular due to the additional prolongation of the time to ignition and increase in char yield. PET-P-DOPO is a promising alternative material for creating halogen-free flame-retarded polyesters. KW - Poly(butylene terephthalate) (PBT) KW - Fire retardancy KW - Aluminium phosphinate KW - 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) PY - 2011 U6 - https://doi.org/10.1016/j.polymdegradstab.2011.01.035 SN - 0141-3910 SN - 1873-2321 VL - 96 IS - 5 SP - 875 EP - 884 PB - Applied Science Publ. CY - London AN - OPUS4-23469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Bench scale methods in flame-retarded polymers development - Labormethoden zur Entwicklung flammgeschützter Polymere T2 - 11th National and 1st International Conference Trends in Fire Dafety and Innovative Flame Retardants for Plastics CY - Würzburg, Germany DA - 2010-11-24 PY - 2010 AN - OPUS4-23414 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gallo, Emanuela A1 - Braun, Ulrike A1 - Schartel, Bernhard A1 - Russo, P. A1 - Acierno, Domenico T1 - Halogen-free flame retarded poly(butylene terephthalate) (PBT) using metal oxides/PBT nanocomposites in combination with aluminium phosphinate N2 - The flame retardancy of poly(butylene terephthalate) (PBT) containing aluminium diethlyphosphinate (AlPi) and/or nanometric metal oxides such as TiO2 or Al2O3 was investigated. In particular the different active flame retardancy mechanisms were discovered. Thermal analysis, evolved gas analysis (TG-FTIR), flammability tests (LOI, UL 94), cone calorimeter measurements and chemical analyses of residues (ATR-FTIR) were used. AlPi acts mainly in the gas phase through the release of diethylphosphic acid, which provides flame inhibition. Part of AlPi remains in the solid phase reacting with the PBT to phosphinate-terephthalate salts that decompose to aluminium phosphate at higher temperatures. The metal oxides interact with the PBT decomposition and promote the formation of additional stable carbonaceous char in the condensed phase. A combination of metal oxides and AlPi gains the better classification in the UL 94 test thanks to the combination of the different mechanisms. KW - Poly(butylene terephthalate) KW - Flammability KW - Metal oxide nanocomposite KW - Metal phosphinate PY - 2009 U6 - https://doi.org/10.1016/j.polymdegradstab.2009.04.014 SN - 0141-3910 SN - 1873-2321 VL - 94 IS - 8 SP - 1245 EP - 1253 PB - Applied Science Publ. CY - London AN - OPUS4-19516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flammschutznormen für den Einsatz von Kunststoffen in den Bereichen Bau, Elektronik/Elektrotechnik und Mobilität T2 - Trends und Entwicklungen flammgeschützter Kunststoffe CY - Blankenhain, Germany DA - 2009-06-09 PY - 2009 AN - OPUS4-19486 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Wachtendorf, Volker A1 - Geburtig, Anja A1 - Braun, Ulrike A1 - Schartel, Bernhard A1 - Trubiroha, Peter T1 - Influence of weathering on the stability of flame retardancy in polymeric materials for outdoor use T2 - 4th European weathering symposium - Natural and artificial ageing of polymers CY - Budapest, Hungary DA - 2009-09-16 KW - Flame retardancy KW - Weathering KW - Stability KW - Polymeric material KW - Outdoor PY - 2009 SN - 978-3-9810472-8-8 IS - CEEES Publication No. 11 SP - 313 EP - 326 PB - DWS Werbeagentur und Verlag GmbH CY - Karlsruhe AN - OPUS4-20060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Braun, Ulrike T1 - UNDERSTANDING FLAME RETARDANCY MECHANISMS IN COMPOSITES: A KEY FOR TAILORED DEVELOPMENT T2 - FRPM'09 12th European Meeting on Fire Retardant Polymers CY - Poznan, Poland DA - 2009-08-31 PY - 2009 AN - OPUS4-20013 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perret, Birgit A1 - Pawlowski, Kristin A1 - Schartel, Bernhard T1 - Fire retardancy mechanisms of arylphosphates in polycarbonate (PC) and PC/acrylonitrile-butadiene-styrene N2 - The pyrolysis of polycarbonate (PC) and PC/acrylonitrile-butadiene-styrene (PC/ABS) with and without arylphosphates (triphenylphosphate TPP, resorcinol-bis(diphenyl phosphate) RDP and bisphenol A bis(diphenyl phosphate) BDP) is investigated by thermal analysis as key to understanding the flame retardancy mechanisms and corresponding structure-property relationships. The correspondence between the decomposition temperature range of arylphosphates and PC is pointed out as prerequisite for the occurrence of the reaction between arylphosphate and structures that are typical for the beginning of PC decomposition. Resulting cross-linking enhances charring in the condensed phase and competes with the alternative release of phosphate in the gas phase and thus flame inhibition. Flame inhibition was identified as the main flame retardancy mechanism. The additional condensed phase mechanisms optimise the performance. KW - Arylphosphates KW - BDP KW - Flame retardance KW - PC KW - PC/ABS PY - 2009 U6 - https://doi.org/10.1007/s10973-009-0379-7 SN - 1388-6150 SN - 1418-2874 SN - 0368-4466 SN - 1572-8943 VL - 97 IS - 3 SP - 949 EP - 958 PB - Kluwer Academic Publ. CY - Dordrecht AN - OPUS4-20330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perret, Birgit A1 - Schartel, Bernhard T1 - The effect of different impact modifiers in halogen-free flame retarded polycarbonate blends - II. Fire behaviour N2 - In this second of a series of two papers, the fire behaviour of halogen-free flame retarded polycarbonate (PC) blends with different impact modifiers was studied. The impact modifiers were acrylonitrile-butadiene-styrene (ABS), a poly(n-butyl acrylate) rubber (PBA) with a poly(methyl methacrylate) (PMMA) shell and two silicone-acrylate rubbers consisting of PBA with different amounts of polydimethylsiloxane (PDMS) and different shell materials (PMMA and styrene-acrylonitrile, SAN). The flame retardant was bisphenol A bis(diphenyl phosphate) (BDP). Flammability was determined by LOI and UL 94. The burning behaviour under forced flaming conditions was studied by cone calorimeter under different external irradiations and by pyrolysis combustion flow calorimeter measurements. The exchange of ABS with the pure acrylate rubber worsened flammability, while similar results were obtained in cone calorimeter measurements. The exchange of ABS with the silicone-acrylate rubbers is promising, particularly with higher amounts of PDMS. In flammability tests strongly enhanced LOI values were obtained and therefore silicone-acrylate rubbers look like promising alternatives for ABS. KW - Polycarbonate blends KW - Flammability KW - Flame retardance KW - Aryl phosphate PY - 2009 U6 - https://doi.org/10.1016/j.polymdegradstab.2009.09.004 SN - 0141-3910 SN - 1873-2321 VL - 94 IS - 12 SP - 2204 EP - 2212 PB - Applied Science Publ. CY - London AN - OPUS4-20331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perret, Birgit A1 - Schartel, Bernhard T1 - The effect of different impact modifiers in halogen-free flame retarded polycarbonate blends - I. Pyrolysis N2 - In this first of two papers, the thermal decomposition of bisphenol A bis(diphenyl phosphate)-flame retarded polycarbonate (PC) blends with different impact modifiers was studied. The impact modifiers were an acrylonitrile-butadiene-styrene (ABS), a poly(n-butyl acrylate) (PBA) rubber with a poly(methyl methacrylate) (PMMA) shell and two silicone-acrylate rubbers consisting of PBA with different amounts of polydimethylsiloxane (PDMS) and different shells (PMMA and styrene-acrylonitrile, SAN). The focus of this work was to study the impact of the acrylate and silicon-acrylate rubbers with respect to pyrolysis and flame retardancy in comparison to common ABS. Thermogravimetry (TG) was performed to investigate the pyrolysis behaviour and reaction kinetics. TG in combination with FTIR identified the pyrolysis gases. Solid residues were investigated by FTIR-ATR. PC/ABS shows two-step decomposition, with PC decomposing independently from ABS at higher temperatures. Pure acrylate rubber destabilises PC due to interactions between the rubber and PC, which leads to earlier decomposition of PC. Using silicone-acrylate rubbers led to similar results as PC/ABS with respect to pyrolysis, reaction kinetics and analysis of the solid residue; hence the exchange of ABS for the silicone-acrylate rubbers is possible. KW - Polycarbonate blends KW - Decomposition KW - Flammability KW - Flame retardance KW - Pyrolysis PY - 2009 U6 - https://doi.org/10.1016/j.polymdegradstab.2009.09.005 SN - 0141-3910 SN - 1873-2321 VL - 94 IS - 12 SP - 2194 EP - 2203 PB - Applied Science Publ. CY - London AN - OPUS4-20332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Weiß, André T1 - Temperature inside burning polymer specimens: Pyrolysis zone and shielding N2 - On the basis of two examples, temperature measurements are proposed within burning polymer specimen during the cone calorimeter test; especially to gain deeper insight into the actual pyrolysis conditions and flame retardancy mechanism. The heating and pyrolysis within a poly(methyl methacrylate) specimen were characterized, discussing the characteristic maximum heating rates (165-90°Cmin-1 decreasing with depth within the specimen and >275°Cmin-1 at the initial surface), pyrolysis temperature (454-432°C decreasing in accordance with decreasing heating rates), thickness of the pyrolysis zone (0.5-1.3 mm) and its velocity (1.2-2.1 mm min-1) as a function of sample depth and burning time. Thermally thick behaviour corresponds to a pyrolysis zone thickness of 0.74 mm and a velocity of 1.51 mm min-1 and occurs until the remaining specimen thickness is less than 8 mm. The shielding effect against radiation occurring in a layered silicate epoxy resin nanocomposite was investigated. It is the main flame retardancy effect of the silicate-carbon surface layer formed under fire. The reradiation from the hot surface is increased by a factor of around 4-5 when an irradiance of 70kWm-2 is applied. The energy impact into the pyrolysis zone is crucially reduced, resulting in a reduction of fuel production and thus heat release rate. KW - Cone calorimeter KW - Pyrolysis KW - Nanocomposite KW - Poly(methyl methacrylate) KW - Pyrolysis zone KW - Pyrolysis front KW - Shielding effect PY - 2010 U6 - https://doi.org/10.1002/fam.1007 SN - 0308-0501 SN - 1099-1018 VL - 34 IS - 5 SP - 217 EP - 235 PB - Heyden CY - London AN - OPUS4-21724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Weiß, André A1 - Mohr, F. A1 - Kleemeier, M. A1 - Hartwig, A. A1 - Braun, Ulrike T1 - Flame retarded epoxy resins by adding layered silicate in combination with the conventional protection-layer-building flame retardants melamine borate and ammonium polyphosphate N2 - The pyrolysis and flammability of phosphonium-modified layered silicate epoxy resin nanocomposites (EP/LS) were evaluated when LS was combined with two flame retardants, melamine borate (MB) and ammonium polyphosphate (APP), that also act via a surface protection layer. Thermogravimetry (TG), TG coupled with Fourier Transform Spectroscopy (TG-FTIR), oxygen index (LOI), UL 94 burning chamber (UL 94) and cone calorimeter were used. The glassy coating because of 10 wt % MB during combustion showed effects in the cone calorimeter test similar to nanodispersed LS, and somewhat better flame retardancy in flammability tests, such as LOI and UL 94. Adding APP to EP resulted in intumescent systems. The fire retardancy was particularly convincing when 15 wt % APP was used, especially for low external heat flux, and thus, also in flammability tests like LOI and UL 94. V0 classification is achieved when 15 wt % APP is used in EP. The flame retardancy efficiency of the protection layers formed does not increase linearly with the MB and APP concentrations used. The combination of LS with MB or APP shows antagonism; thus the performance of the combination of LS with MB or APP, respectively, was disappointing. No optimization of the carbonaceous-inorganic surface layer occurred for LS-MB. Combining LS with APP inhibited the intumescence, most probably through an increase in viscosity clearly above the value needed for intumescent behavior. KW - Nanocomposites KW - Fire retardance KW - Thermosets KW - Organoclay KW - Ammonium polyphosphate KW - Melamine borate PY - 2010 U6 - https://doi.org/10.1002/app.32512 SN - 0021-8995 SN - 1097-4628 VL - 118 IS - 2 SP - 1134 EP - 1143 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-21725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Bahr, Horst A1 - Braun, Ulrike A1 - Recknagel, Christoph T1 - Short communication: Fire risks of burning asphalt N2 - Eyewitnesses describe burning pavement surfaces in extreme fire scenarios. However, it was believed that the pavement plays a negligible role in comparison to other items feeding such an extreme fire at the same time. The asphalt mixtures used differ widely, thus raising the question as to whether this conclusion holds for all kinds of such materials. Three different kinds of asphalt mixtures were investigated with the aim of benchmarking the fire risks. Cone calorimeter tests are performed at an irradiance of 70kWm-2. All three investigated asphalts burn in extreme fire scenarios. The fire response (fire load, time to ignition, maximum heat release rate and smoke production) is quite different and varies by factors of up to 10 when compared to each other. The fire load per mass is always very low due to the high content of inert minerals, whereas the effective heat of combustion of the volatiles is quite typical of non-flame retarded organics. The heat release rate and fire growth indices are strongly dependent on the fire residue and thus the kind of mineral filler used. Comparing with polymeric materials, the investigated Mastic Asphalt and Stone Mastic Asphalt may be called intrinsically flame resistant, whereas the investigated Special Asphalt showed a pronouncedly greater fire risk with respect to causing fire growth and smoke. Thus the question is raised as to whether the use of certain kinds of asphalts in tunnels must be reconsidered. Apart from the binder used, the study also indicates varying the kind of aggregate as a possible route to eliminate the problem. KW - Asphalt KW - Cone calorimeter KW - Fire behaviour PY - 2010 U6 - https://doi.org/10.1002/fam.1027 SN - 0308-0501 SN - 1099-1018 VL - 34 IS - 7 SP - 333 EP - 340 PB - Heyden CY - London AN - OPUS4-22172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Perret, Birgit A1 - Schartel, Bernhard A1 - Stöß, K. A1 - Diederichs, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Krämer, J. A1 - Altstädt, V. ED - Lewin, M. T1 - Novel phosphorus-based flame retardants for epoxy resins and carbon fiber composites: Decomposition mechanisms and fire behavior T2 - 21st Annual conference on recent advances on flame retardancy of polymeric materials CY - Stamford, USA DA - 2010-05-24 KW - DOPO KW - Fire retardancy KW - Flammability KW - Pyrolysis KW - Epoxy resin KW - Composites PY - 2010 SN - 1-59623-619-1 VL - 21 SP - 134 EP - 145 PB - BCC Research AN - OPUS4-22162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Understanding Fire Retardancy Mechanisms in Polymer Composites: A Key for Future Development T2 - Institutskolloquium DLR CY - Braunschweig, Germany DA - 2010-08-18 PY - 2010 AN - OPUS4-22224 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perret, Birgit A1 - Schartel, Bernhard A1 - Stöß, K. A1 - Ciesielski, M. A1 - Diederichs, J. A1 - Döring, M. A1 - Krämer, J. A1 - Altstädt, V. T1 - A new halogen-free flame retardant based on 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide for epoxy resins and their carbon fiber composites for the automotive and aviation industries N2 - The pyrolysis and fire behavior of halogen-free flame-retarded DGEBA/DMC, RTM6 and their corresponding 60 vol.-% carbon fibers (CF) composites were investigated. A novel phosphorous compound (DOPI) was used. Its action is dependent on the epoxy matrix. DGEBA/DMC and DOPI decompose independently of each other. Only flame inhibition occurs in the gas phase. RTM6 shows flame inhibition and a condensed phase interaction increasing charring. Both mechanisms decrease with increasing irradiance, whereas in RTM6-CF charring is suppressed at low ones. RTM6+DOPI shows a higher LOI (34.2%) than DGEBA/DMC+DOPI and a V-0 classification in UL 94. Adding CF only enhances the LOI, DOPI+CF leads to a superposition in LOI for DGEBA/DMC-CF+DOPI (31.8%, V-0) and a synergism for RTM6-CF+DOPI (47.7%, V-0). KW - Composites KW - Flame retardancy KW - Glass transition KW - Pyrolysis KW - Thermosets PY - 2011 U6 - https://doi.org/10.1002/mame.201000242 SN - 1438-7492 SN - 1439-2054 VL - 296 IS - 1 SP - 14 EP - 30 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-22957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sut, Aleksandra A1 - Greiser, Sebastian A1 - Jäger, Christian A1 - Schartel, Bernhard T1 - Aluminium diethylphosphinate versus ammonium polyphosphate: A comprehensive comparison of the chemical interactions during pyrolysis in flame-retarded polyolefine/poly(phenylene oxide) N2 - A systematic comparison of chemical interactions and fire behaviour is presented for the thermoplas-tic elastomer (block copolymer styrene-ethylene-butadiene-styrene) (TPE-S)/diethyl- and methylvinylsiloxane (Si)/poly(phenylene oxide) (PPO), flame-retarded with aluminium diethylphosphinate (AlPi)and with ammonium polyphosphate (APP), respectively. TPE-S/APP/Si/PPO performed better in the conecalorimeter test (reduction in peak heat release rate from 2042 to 475 kW m−2), but TPE-S/AlPi/Si/PPO inthe flammability tests (oxygen index (OI) and UL 94). This difference was caused by the different modes ofaction of APP (more in the condensed phase) and AlPi (mainly in the gas phase). Thermogravimetry cou-pled with Fourier transform infrared spectroscopy (TG-FTIR) was used to analyse the mass loss and theevolved gas products, while a Linkam hot-stage cell to investigate the decomposition in the condensedphase. Moreover, a detailed analysis of the fire residues was done using solid-state NMR.13C MAS NMRshowed that both flame-retarded compositions form graphite-like amorphous carbonaceous char, orig-inating from PPO.31P MAS NMR and29Si MAS NMR delivered important information about interactionbetween phosphorus and the siloxane. For TPE-S/AlPi/Si/PPO aluminium phosphate and silicon dioxideoccurred, while also silicophosphate was produced in TPE-S/APP/Si/PPO. The direct comparison of two ofthe most prominent halogen-free flame retardants containing phosphorus delivered meaningful insightsinto the modes of action and molecular mechanisms controlling flame retardancy. KW - Aluminium diethylphosphinate KW - Ammonium polyphosphate KW - Flame retardancy KW - Solid-state NMR KW - SEBS PY - 2016 SN - 0040-6031 SN - 1872-762X VL - 640 SP - 74 EP - 84 PB - Elsevier AN - OPUS4-37802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Wilkie, Charles A. A1 - Camino, Giovanni T1 - Recommendations on the scientific approach to polymer flame retardancy: Part 1—Scientific terms and methods N2 - The correct use of scientific terms, performing experiments accurately, and discussing data using unequivocal scientific concepts constitute the basis for good scientific practice. The significance and thus the quality of scientific communication rely on the proper use of terms and methods. It is the aim of this two-part article to support the community with recommendations for discussing the flame retardancy of polymers by addressing some of the most relevant points. The first article (part one of two) clarifies some scientific terms and, in some cases, such as for ‘‘pyrolysis,’’ ‘‘thermal decomposition,’’ and ‘‘fire resistance,’’ critically discusses their definitions in the field of fire science. Several comments are made on proper fire testing and thermal analysis, including some thoughts on uncertainty in fire testing. The proper use of distinct concepts in flame retardancy is discussed briefly in the subsequent second article (part two). This article tries to Balance imparting background on the subject with recommendations. It encourages to check scientific practice with respect to communication and applying methods. KW - Pyrolysis KW - Fire testing KW - Char KW - Flame retardant KW - Flammability KW - Fire property PY - 2016 U6 - https://doi.org/10.1177/0734904116675881 SN - 0734-9041 SN - 1530-8049 VL - 34 IS - 6 SP - 447 EP - 467 PB - SAGE AN - OPUS4-38115 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Dittrich, Bettina A1 - Hofmann, D. A1 - Wartig, K.-A. A1 - Mülhaupt, R. T1 - Born in fire to kill fire – graphene in flame retardant nanocomposites N2 - Carbon black, multiwall carbon nanotubes, expanded graphite, multilayer graphene and graphene are compared comprehensively as flame retardants in nanocomposites to each other. Different polymer matrices are investigated as well as changing the concentration of the carbon fillers. Distinct combinations of graphene with conventional flame retardants are investigated. Phenomena and mechanisms are identified controlling the pyrolysis and fire behavior. The viscosity of the nanocomposites and their thermal conductivity as well are dramatically changed compared to the polymers influencing the time to ignition and flammability. During pyrolysis graphene functioned as inert filler and formed a residual protective layer reducing the peak heat release rate. The influence of graphene on the effectivity of various conventional halogen-free flame retardants depends strongly on their modes of action. The addition of a small amount of graphene to an intumescent flame retardant poly(propylene) led to an improvement in the cone calorimeter. The further increase of graphene content gained deceleration of swelling and a decrease of the final height of the intumescent layer. In combination with metal hydroxide, 1 wt% graphene closed the macroscopic surface structure and densified the microscopic structure of the fire residues tremendously. Due to this improved residue structure, metal hydroxides and graphene showed synergistic cooperation in terms of oxygen index and UL 94 classification (HB/V-1 to V-0). T2 - Rudolstädter Kunststoff-Tag CY - Rudolstadt, Germany DA - 12.10.2016 KW - Graphene KW - Nanocomposite KW - Flame retardant KW - Flammability KW - Pyrolysis PY - 2016 AN - OPUS4-38116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Matzen, Melissa A1 - Kandola, B. A1 - Huth, Christian A1 - Schartel, Bernhard T1 - Influence of flame retardants on the melt dripping behaviour of thermoplastic polymers N2 - Melt flow and dripping of the pyrolysing polymer melt can be both a benefit and a detriment during a fire. In several small-scale fire tests addressing the ignition of a defined specimen with a small ignition source, well-adjusted melt flow and dripping are usually beneficial to pass the test. The presence of flame retardants often changes the melt viscosity crucially. The influence of certain flame retardants on the dripping behaviour of four commercial polymers, poly(butylene terephthalate) (PBT), polypropylene (PP), polypropylene modified with ethylene-propylene rubber (PP-EP) and polyamide 6 (PA 6), is analysed based on an experimental monitoring of the mass loss due to melt dripping, drop size and drop temperature as a function of the furnace temperature applied to a rod-shaped specimen. Investigating the thermal transition (DSC), thermal and thermo-oxidative decomposition, as well as the viscosity of the polymer and collected drops completes the investigation. Different mechanisms of the flame retardants are associated with their influence on the dripping behaviour in the UL 94 test. Reduction in decomposition temperature and changed viscosity play a major role. A flow limit in flame-retarded PBT, enhanced decomposition of flame-retarded PP and PP-EP and the promotion of dripping in PA 6 are the salient features discussed. KW - Fire retardant KW - Viscosity KW - Melt dripping KW - Reaction-to-small-flame KW - UL 94 PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-338941 SN - 1996-1944 VL - 8 IS - 9 SP - 5621 EP - 5646 PB - MDPI CY - Basel AN - OPUS4-33894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kempel, Florian A1 - Schartel, Bernhard A1 - Marti, J.M. A1 - Butler, K.M. A1 - Rossi, R. A1 - Idelsohn, S.R. A1 - Onate, E. A1 - Hofmann-Böllinghaus, Anja T1 - Modelling the vertical UL 94 test: competition and collaboration between melt dripping, gasification and combustion N2 - An experimental and numerical investigation of the effect of bisphenol A bis(diphenyl phosphate) (BDP) and polytetrafluoroethylene (PTFE) on the fire behaviour of bisphenol A polycarbonate/acrylonitrile butadiene styrene (PC/ABS) in the vertical UL 94 scenario is presented. Four PC/ABS blends were discussed, which satisfy different UL 94 classifications due to the competing effects of gasification, charring, flame inhibition and melt flow/dripping. For numerical investigation, the particle finite element method (PFEM) is used. Its capability to model the complex fire behaviour of polymers in the UL 94 is analysed. The materials' properties are characterised, in particular the additives impact on the dripping behaviour during thermal exposure. BDP is an efficient plasticiser; adding PTFE prevents dripping by causing a flow limit. PFEM simulations reproduce the dripping and burning behaviour, in particular the competition between gasification and dripping. The thermal impact of both the burner and the flame is approximated taking into account flame inhibition, charring and effective heat of combustion. PFEM is a promising numerical tool for the investigation of the fire behaviour of polymers, particularly when large deformations are involved. Not only the principal phenomena but also the different UL 94 classifications and the extinction times are well predicted. KW - Melt dripping KW - UL 94 KW - Particle finite element method (PFEM) KW - Simulation KW - Bisphenol A polycarbonate/acrylonitrile butadiene styrene (PC/ABS) KW - Polytetrafluoroethylene (PTFE) KW - Bisphenol A bis(diphenyl phosphate) (BDP) PY - 2015 U6 - https://doi.org/10.1002/fam.2257 SN - 0308-0501 SN - 1099-1018 VL - 39 IS - 6 SP - 570 EP - 584 PB - Heyden CY - London AN - OPUS4-34285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Dittrich, Bettina A1 - Hofmann, D. A1 - Wartig, K.-A. A1 - Mülhaupt, R. T1 - Graphene - Born in Fire to kill Fire? T2 - Fire Resistance in Plastics 2014 CY - Köln, Deutschland DA - 2014-12-09 PY - 2014 AN - OPUS4-32360 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Ulmer, Bernhard A1 - Wilke, Antje A1 - Andrievici, V. A1 - Langfeld, Kirsten A1 - Limbach, Patrick A1 - Sut, Aleksandra A1 - Bastian, Martin A1 - Hörold, Andreas A1 - Kretzschmer, K. T1 - Mission Impossible: Halogen-free flame retardant SEBS T2 - 14th Conference Trends in Fire Safety and Innovative Flame Retardants for Plastics CY - Würzburg, Germany DA - 2015-03-18 PY - 2015 AN - OPUS4-32886 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sut, Aleksandra A1 - Greiser, Sebastian A1 - Jäger, Christian A1 - Schartel, Bernhard T1 - Interactions in multicomponent flame-retardant polymers: Solid-state NMR identifying the chemistry behind it N2 - Distinct approaches are used to reduce the fire risks of polymers, a key issue for many industrial applications. Among the variety of approaches, the use of synergy in halogen-free multicomponent systems is one of the most auspicious. To optimize the composition of such flame-retardant systems it is essential to understand the mechanisms and the corresponding chemistry in the condensed phase. In this work different methods are used, including cone calorimeter, thermogravimetry (TG), and TG-FTIR, with the main focus on the solid-state NMR analysis of the solid residues. The structural changes in the condensed phase of two thermoplastic elastomer systems based on copolymer styrene-ethylene-butadiene-styrene (TPE-S) were investigated: TPE-S/aluminium diethylphosphinate (AlPi)/magnesium hydroxide (MH) and TPE-S/AlPi/zinc borate (ZB)/poly(phenylene oxide) (PPO). Strong flame inhibition is synergistically combined with protective layer formation. 13C-, 27Al-, 11B- and 31P MAS NMR (magic angle spinning nuclear magnetic resonance) experiments using direct excitation with a single pulse and 1H–31P cross-polarization (CP) were carried out as well as double resonance techniques. Magnesium phosphates were formed during the pyrolysis of TPE-S/AlPi/MH, while for the system TPE-S/AlPi/ZB/PPO zinc phosphates and borophosphates were observed. Thus, the chemistry behind the chemical interaction was characterized unambiguously for the investigated systems. KW - Synergy KW - Solid-state NMR KW - Flame retardancy KW - SEBS KW - Aluminium diethylphosphinate KW - Magnesium hydroxide KW - Zinc borate KW - Poly(phenylene) oxide PY - 2015 U6 - https://doi.org/10.1016/j.polymdegradstab.2015.08.018 SN - 0141-3910 SN - 1873-2321 VL - 121 SP - 116 EP - 125 PB - Applied Science Publ. CY - London AN - OPUS4-34306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittrich, Bettina A1 - Wartig, K.-A. A1 - Hofmann, D. A1 - Mülhaupt, R. A1 - Schartel, Bernhard T1 - The influence of layered, spherical, and tubular carbon nanomaterials' concentration on the flame retardancy of polypropylene N2 - The characteristic influences of increasing concentrations of graphene, expanded graphite (EG), carbon black (CB), and multiwall carbon nanotubes (MWNT) are investigated on pyrolysis, reaction to small flame, burning behavior, and on electrical, thermal, and rheological properties of flame retarded polypropylene (PP-FR). The property-concentration dependency is different for the various material properties, as threshold, linear, and leveling off functions were observed. Increasing concentrations of carbon nanoparticles resulted in a decrease in the electrical resistivity of the polymer by crossing the percolation threshold. The developing nanoparticle network changes melt flow behavior for small shear rates, increases thermal conductivity and therefore, affects the UL 94 classification and oxygen index. The onset temperature of PP decomposition is shifted to temperatures up to 37°C higher; the peak heat release rate is reduced by up to 74% compared to PP-FR. Both effects leveled off with increasing particle concentration. Among the four carbon nanomaterials tested, graphene presents superior influence on composite properties over the tested concentration range and outperforms commercial CB, MWNT, and EG. POLYM. COMPOS., 36:1230–1241, 2015. KW - Graphene KW - Flame retardancy KW - Concentration dependency KW - Nanocomposite KW - Carbon nanomaterial PY - 2015 U6 - https://doi.org/10.1002/pc.23027 SN - 0272-8397 SN - 1548-0569 VL - 36 IS - 7 SP - 1230 EP - 1241 PB - Society of Plastics Engineers CY - Manchester, NH AN - OPUS4-33619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Dittrich, Bettina A1 - Farooq, Muhammad A1 - Kerling, S. A1 - Wartig, K.-A. A1 - Hofmann, D. A1 - Huth, Christian A1 - Okolieocha, C. A1 - Altstädt, V. A1 - Schönhals, Andreas A1 - Schartel, Bernhard T1 - Carbon-based nanofillers/poly(butylene terephthalate): thermal, dielectric, electrical and rheological properties N2 - The influence of distinct carbon based nanofillers: expanded graphite (EG), conducting carbon black (CB), thermally reduced graphene oxide (TRGO) and multi-walled carbon nanotubes (CNT) on the thermal, dielectric, electrical and rheological properties of polybutylene terephthalate (PBT) was examined. The glass transition temperature (Tg) of PBT nanocomposites is independent of the filler type and content. The carbon particles act as nucleation agents and significantly affect the melting temperature (Tm), the crystallization temperature (Tc) and the degree of crystallinity of PBT composites. PBT composites with EG show insulating behaviour over the tested concentration range of 0.5 to 2 wt.-% and hardly changed rheological behaviour. CB, CNT and TRGO induce electrical conductivity to their particular PBT composites by forming a conducting particle network within the polymer matrix. CNT reached the percolation threshold at the lowest concentration (<0.5 wt.-%), followed by TRGO (<1 wt.-%) and CB (<2 wt.-%). With the formation of a particle network, the flow behaviour of composites with CB, CNT and TRGO is affected, i.e., a flow limit occurs and the melt viscosity increases. The degree of influence of the carbon nanofillers on the rheological properties of PBT composites follows the same order as for electrical conductivity. Electrical and rheological results suggest an influence attributed to the particle dispersion, which is proposed to follow the order of EG<< CB 2000 kW m-2, oxygen index = 17.2 vol%, no UL-94 horizontal burn rating) since it burns without residue and with a very high effective heat of combustion. Adding aluminum diethylphosphinate results in efficient flame inhibition and improves the reaction to small flame, but it is less effective in the cone calorimeter. Its efficacy levels off for amounts >~25 wt%. As the most promising synergistic system, aluminum diethylphosphinate/melamine polyphosphate was identified, combining the main gas action of aluminum diethylphosphinate with condensed phase mechanisms. The protection layer was further improved with several adjuvants. Keeping the overall flame retardant content at 30 wt%, aluminum diethylphosphinate/melamine polyphosphate/titanium dioxide and aluminum diethylphosphinate/melamine polyphosphate/boehmite were the best approaches. An oxygen index of up to 27 vol% was achieved and a horizontal burn rating in UL 94 with immediate self-extinction; peak heat release rate decreased by up to 85% compared to thermoplastic styrene–ethylene–butylene–styrene elastomers, to <300 kW m-2. KW - Flame retardancy KW - Aluminium phosphinate KW - Thermoplastic elastomers KW - Cone calorimetry KW - Flammability PY - 2015 U6 - https://doi.org/10.1177/0734904114565581 SN - 0734-9041 SN - 1530-8049 VL - 33 IS - 2 SP - 157 EP - 177 PB - Sage CY - London AN - OPUS4-32692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hörold, Andreas A1 - Schartel, Bernhard A1 - Trappe, Volker A1 - Korzen, Manfred A1 - Bünker, J. T1 - Fire stability of glass-fibre sandwich panels: The influence of core materials and flame retardants N2 - Fire resistance has become a key property for structural lightweight sandwich components in aviation, shipping, railway vehicles, and construction. The development of future composite materials and components demands adequate test procedures for simultaneous application of compression and fully developed fire. Therefore an intermediate-scale approach (specimen size = 500 mm x 500 mm) is applied with compressive loads (up to 1 MN) and direct application of a burner to one side of the specimens, as established in aviation for severe burn-through tests. The influence of different core structures (polyvinylchloride foam, polyisocyanorate foam reinforced by stitched glass bridges, and balsa wood) was investigated for glass-fibre-reinforced sandwich specimens with and without flame retardants applied on the fabrics, in the matrix, and on surface for each specimen at the same time. Times to failure were increased up to a factor of 4. The intumescent coating prolongs the time to failure significantly. What is more, using the intrinsic potential of the front skin together with the core to protect a load bearing back skin in sandwich panels, the design of the core – here using the wood core – is the most promising approach. KW - Fire resistance KW - Fire stability KW - Glass-fibre-reinforced plastics KW - Composite KW - Core materials PY - 2017 U6 - https://doi.org/10.1016/j.compstruct.2016.11.027 SN - 0263-8223 SN - 1879-1085 VL - 160 SP - 1310 EP - 1318 PB - Elsevier AN - OPUS4-38622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, Sebastian A1 - Schartel, Bernhard T1 - The rapid mass calorimeter: Understanding reduced-scale fire test results N2 - The effects of reducing specimen size on the fire behavior of polymeric materials were investigated by means of the rapid mass calorimeter, a high-throughput Screening instrument. Results from the rapid mass calorimeter were compared with those from the cone calorimeter. Correlation coefficients between the different measures of each method and between the two methods are discussed to elucidate the differences and similarities in the two methods. Materials with characteristic heat release rate (HRR) curves in the cone calorimeter were evaluated in detail. The rapid mass calorimeter produces valuable and interpretable results with HRR curve characteristics similar to cone calorimeter results. Compared to cone calorimeter measurements, material savings of 96% are achieved, while maintaining the Advantages of a macroscopic fire test. KW - Rapid mass calorimeter KW - High throughput KW - Cone calorimeter KW - Flame retardancy PY - 2017 U6 - https://doi.org/10.1016/j.polymertesting.2016.11.027 SN - 0142-9418 VL - 57 SP - 165 EP - 174 PB - Elsevier AN - OPUS4-38739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Schubert, Martina A1 - Schartel, Bernhard A1 - Lang, M. A1 - Yin, Huajie A1 - Dittrich, Bettina A1 - Heidemeyer, P. A1 - Bastian, Martin T1 - Wirkungsweise von halogenfreien Flammschutzmitteln in WPC N2 - Das Ziel des Forschungsvorhabens war die Untersuchung der Wirkungsweise von halogenfreien Flammschutzmitteln in WPC. Eine große Anzahl verschiedener Flammschutzmittel wurde hinsichtlich ihrer Wirkmechanismen umfassend untersucht, um ein Verständnis für die ablaufenden Prozesse zu entwickeln. Hierbei wurden verschiedene Brandtests eingesetzt, um die Materialien bezüglich verschiedener Applikationen (E&E, Transportwesen, Bauwesen) zu beleuchten. Die verschiedenen Untersuchungen liefern aber auch ein umfassendes Bild vom Brandverhalten in den verschiedenen Eigenschaften, wie Entflammbarkeit und Brandausbreitung. Die prinzipiellen Ansätze wurden anhand von verschiedenen Flammschutzmitteln beleuchtet, ihre Pyrolyse und ihre Performance in verschiedenen Brandtests gegenübergestellt. Bei der angestrebten geringen Zusatzmenge ist durch den Zusatz eines einzigen Flammschutzmittels keine zufriedenstellende Reduktion der Brandeigenschaften zu erwarten. Multikomponentensysteme zur Steigerung der Effizienz sind angezeigt. Einige prinzipielle Kombinationsmöglichkeiten wurden für alle Hauptflammschutzmittel durchgespielt. Die teilweise deutlichen Verbesserungen zeigen Wege zur erfolgreichen Produktentwicklung auf. So konnten bei den Spritzgießcompounds Eigenschaften erzielt werden, die eine UL 94 V0 Klassifizierung ermöglichen. Ein Einsatz der im Forschungsvorhaben hergestellten Compounds als Baustoff ist aufgrund des Brandverhaltens in den baustoffspezifischen Prüfungen nicht möglich. Hier sind weitere Flammschutz-Konzepte zu erproben. Gleitmittel nehmen bei den untersuchten Extrusionscompounds keinen Einfluss auf das Brandverhalten. Haftvermittler nehmen ebenfalls keinen signifikanten Einfluss auf das untersuchte Brandverhalten, können aber zu einer veränderten Verteilung der Füllstoffe und damit zur Ausbildung einer effektiveren Schutzschicht führen. Feinere Holzpartikel schneiden bei den Brandprüfungen besser ab als grobe Holzpartikel. Bei Einsatz von grobem Holz wird eine schlechtere Rückstandsstruktur ausgebildet, was das Brandverhalten negativ beeinflusst. Der Einsatz von vorbehandeltem Holz brachte nicht die erwartete Verbesserung. Die neu konzipierte Aufbereitungsanlage auf Basis des Planetwalzenextruders konnte erfolgreich in Betrieb genommen werden. Vergleichende Versuche mit dem Doppelschneckenextruder zeigten, dass der PWE-Aufbau eine gute Alternative zur etablierten DSE-Aufbereitung darstellt. Zusätzlich wurden an Compounds vielversprechender Flammschutzansätze weitere Materialprüfungen (Biegeversuch, Schlagversuch, Wasseraufnahme) durchgeführt, um den Einfluss der FSM auf die spezifischen Eigenschaften der WPC zu beleuchten. N2 - The objective of the research project was to investigate the effect of halogen-free flame retardants in WPC. A large number of different flame retardants was thoroughly examined regarding their effect mechanisms to develop an understanding for the processes taking place. Different fire tests were used to examine the materials with respect to the different applications (E&E, transportation, construction). Additionally, the different investigations provide a comprehensive picture of the fire behavior regarding the different properties, such as flammability and fire spread. The fundamental approaches were examined by means of different flame retardants and their pyrolysis and performance were compared in different fire tests. A satisfactory reduction of the fire properties by adding only one flame retardant cannot be expected with the intended low added amount. Multi-component systems to increase the efficiency are indicated. Some basic combination options were tried out for all main flame retardants. The partially considerable improvements illustrate ways for successful product development. This way, properties could be achieved in injection molding compounds, which allow for a UL 94 V0 classification. It is not possible to use the compounds introduced in the research project as building material due to the fire behavior in the building material specific tests. Further flame protection concepts need to be tested in this area. Slip agents do not have an influence on the fire behavior of the examined extrusion compounds. Adhesion promoters also do not have a significant influence on the examined fire behavior but can lead to a change in the distribution of the fillers and thus to the formation of a more effective protective layer. Finer wood particles performed better in the fire tests than coarse wood particles. When using coarse wood, an inferior residual structure is formed, which has an adverse effect on the fire behavior. The use of pretreated wood fibers did not bring the expected improvement. The newly conceived processing technique based on a planetary roller extruder (PRE) was successfully put into operation. Comparative tests with twin-screw extruders (TSE) showed that the PRE configuration is a good alternative to the established TSE processing. Additionally, further material testing (bending test, impact test, water absorption) was performed on promising flame retarded compounds to examine the influence of the fire retardants on the specific properties of the WPC. KW - Wood plastic composite KW - Halogen free KW - Flame retardancy PY - 2016 SN - 978-3-8440-4645-8 SN - 2364-754X SP - 1 EP - 88 PB - Shaker Verlag CY - Aachen AN - OPUS4-37482 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flame and fire retardancy of fibre reinforced polymer composites N2 - Carbon fibre (CF) and glass fibre (GF) reinforced polymers are used for diverse applications such as electronics/electrical engineering, transportation (railway vehicles, shipping, aviation) and construction. The fire behaviour of composites differs in comparison to polymers. Fibres behave often inert with respect to pyrolysis, but they change the melt flow and dripping behaviour, the heat absorption and transfer, the amount and properties of the fire residue and so on. Flame and fire retardancy concepts are needed not only suitable for the different fire protection goals typical for each application, but also tailored for composites. The field is illuminated by examples taken from different projects carried out in the group of the author in the recent years. The examples target on different applications through achieving V0 in UL 94 testing (reaction to small flame controlling the fire risks in the beginning of a fire), reducing heat release rate and fire load in the cone calorimeter (fire risks under forced flaming combusting controlling the contribution to developing fires) and investigating the fire stability when a severe flame is directly applied (key property in fully developed fires). Approaches to halogen-free flame retardancy in GF reinforced thermoplastics and CF reinforced thermosets are presented as well as building up a bench and intermediate scale testing of composites in fire applying mechanical load and direct flame exposure simultaneously. The understanding of fire behaviour and flame retardancy mode of actions in composites is a promising basis for target-oriented development. The role of flame inhibition, charring and protective layer formation is discussed in composites. Successful concepts are presented for flame retardancy tailored for different application as well as general guidelines for future development. Different phosphorus flame retardants are proposed to achieve halogen-free flame retardancy in applications demanding limited fire risks with respect to ignition and developing fires. Different protective approaches are sketched for addressing the fire resistance of composite that is the most important fire risk for structural applications. T2 - International Workshop on Nanostructured Materials and Their Use in Fire Retardancy Applications CY - Stockholm, Sweden DA - 23.11.2016 KW - Composites KW - Fire resistance KW - Flame retardancy KW - Composites in fire KW - Fire testing PY - 2016 AN - OPUS4-38565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, S. A1 - Wachtendorf, Volker A1 - Klack, Patrick A1 - Qian, Lijun A1 - Dong, Y. A1 - Schartel, Bernhard T1 - Enhanced flame-retardant effect of montmorillonite/phosphaphenanthrene compound in an epoxy thermoset N2 - A phosphaphenanthrene and triazinetrione group containing flame retardant (TAD) is combined with organically modified montmorillonite (OMMT) in epoxy resin thermosets (EP) to improve the performance of the flame-retardant system. When only 1 wt% OMMT/4 wt% TAD is introduced into the EP, the limited oxygen index (LOI) rises from 26% to 36.9% and a V-0 rating is achieved in a UL 94 test. The decomposition and pyrolysis products in the gas phase and condensed phase were characterized using thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR). The influence on the decomposition of EP, such as the increase in char yield, is limited with the incorporation of OMMT; a large amount of the phosphorus is released into the gas phase. The flame-retardant effect evaluation based on cone calorimeter data testified that OMMT improves the protective-barrier effect of the fire residue of OMMT/TAD/EP on the macroscopic scale, while TAD mainly causes flame inhibition. The fire residues showed a corresponding macroscopic appearance (digital photo) and microstructure (scanning electron microscope [SEM] results). The protective barrier effect of OMMT and the flame-inhibition effect of TAD combined to exert a superior flame-retardant effect, resulting in sufficient flame-retardant performance of OMMT/TAD/EP KW - Flame retardant KW - Nanocomposite KW - DOPO KW - Thermoset KW - Epoxy resin KW - TG-FTIR PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-388865 SN - 2046-2069 VL - 7 IS - 2 SP - 720 EP - 728 AN - OPUS4-38886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, M. S. S. A1 - Schartel, Bernhard A1 - Magalhães, F. D. A1 - Pereira, C. M. C. T1 - The effect of traditional flame retardants, nanoclays and carbon nanotubes in the fire performance of epoxy resin composites N2 - The effectiveness of distinct fillers, from micro to nano-size scaled, on the fire behaviour of an epoxy resin and its carbon fibre reinforced composites was assessed by cone calorimetry. The performance was compared not only regarding the reaction to fire performance, but also in terms of thermal stability, glass transition temperature and microstructure. Regarding the fire reaction behaviour of nanofilled epoxy resin, anionic nanoclays and thermally oxidized carbon nanotubes showed the best results, in agreement with more compact chars formed on the surface of the burning polymer. For carbon fibre reinforced composite plates, the cone calorimeter results of modified resin samples did not show significant improvements on the heat release rate curves. Poorly dispersed fillers in the resin additionally caused reductions on the glass transition temperature of the composite materials. KW - Epoxy resin KW - Carbon fibre reinforced composite KW - Nanoclays KW - Carbon nanotubes KW - Flame retardants PY - 2017 U6 - https://doi.org/10.1002/fam.2370 SN - 1099-1018 SN - 0308-0501 VL - 41 IS - 2 SP - 111 EP - 130 PB - Wiley & Sons, Ltd. AN - OPUS4-39085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Wilkie, Charles A. A1 - Camino, G. T1 - Recommendations on the scientific approach to polymer flame retardancy: Part 2 - concepts N2 - The usage of concepts in scientific communication is critical to our ability to inform the reader about work that has been performed. The significance and thus the quality of scientific discussion rely on the precise use of concepts. In this second part of a two-part paper, concerning the scientific basis of polymer fire retardancy, the proper use of concepts is addressed. Distinct concepts in flame retardancy are discussed, such as fire residue, the correlation of fire performance with char yield according to van Krevelen, catalysis, and wicking. Synergy is discussed in detail, as well as approaches to quantify it, due to its importance for flame retardant polymers. The preceding first paper (part 1) discussed the proper use of scientific terms, thermal analysis, and fire testing. Thus, together these two papers support the community by offering recommendations and addressing some of the most relevant points. They encourage to review scientific practice in the field of flame retardancy of polymers. KW - Char KW - Synergism KW - Flame retardancy KW - Flammability KW - Fire growth indices KW - Synergy index PY - 2017 U6 - https://doi.org/10.1177/0734904116675370 SN - 0734-9041 SN - 1530-8049 VL - 35 IS - 1 SP - 3 EP - 20 PB - Sage AN - OPUS4-39084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwarzer, M. A1 - Korwitz, A. A1 - Komber, H. A1 - Häußler, L. A1 - Dittrich, Bettina A1 - Schartel, Bernhard A1 - Pospiech, D. T1 - Phosphorus-containing polymer flame retardants for aliphatic polyesters N2 - Polyesters with 9,10-dihydro-9-oxy-10-phosphaphenanthrene-10-oxide-containing comonomers are synthesized aiming to improve the flame retardancy of aliphatic polyesters such as poly(butylene succinate) and poly(butylene sebacate). The influence of the chemical structure on the thermal decomposition and pyrolysis is examined using a combination of thermogravimetric analysis (TGA), TGA-Fourier transform infrared (FTIR) spectroscopy, pyrolysis-gas chromatography/mass spectrometry, and microscale combustion flow calorimetry. Thermal decomposition pathways are derived and used to select suitable candidates as flame retardants for PBS. The fire behavior of the selected polymers is evaluated by forced-flaming combustion in a cone calorimeter. The materials show two modes of action for flame retardancy: strong flame inhibition due to the release of a variety of molecules combined with charring in the solid state. KW - Synthesis KW - Flame retardant KW - Aliphatic polyester KW - DOPO PY - 2018 U6 - https://doi.org/10.1002/mame.201700512 SN - 1438-7492 SN - 1439-2054 VL - 303 IS - 2 SP - 1700512-1 EP - 1700512-16 PB - Wiley VCH Verlag AN - OPUS4-44334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flame retardancy of polyolefins a bunch of thoughts N2 - After introducing into the activities and competence of BAM in the field of fire science, several aspects of successful and tailored flame retardancy of polyolefins are discussed. The talk gives an overview of the works relevant for developing flame retardant polyolefins performed in the working group flame retardancy of polymers. The hypothesis of conservation of effective heat of combustion is proposed. The role of charring, inert fillers, protection layer, and intumescence is assessed for flame retarded polyolefins. Distinct routes of optimization sketched. Examples of controlling the dripping and melt flow to obtain the desired fire behaviour are discussed. Finally the cable modul for the cone calorimeter is presented. T2 - Corning FR Workshop CY - Berlin, Germany DA - 20.06.2018 KW - Flame retardancy KW - Bench scale fire testing KW - Flame retardant modes of action KW - Polyolefins KW - Melt dripping KW - Cables PY - 2018 AN - OPUS4-45324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zirnstein, Benjamin A1 - Tabaka, Weronika A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Graphene / hydrogenated acrylonitrile-butadiene rubber nanocomposites: Dispersion, curing, mechanical reinforcement, multifunctional filler N2 - Elastomers are usually mechanically reinforced with high loadings of carbon black (CB) to achieve the properties demanded; high amounts of mineral flame retardants are used to fulfill fire safety requirements. In this study, multilayer graphene (MLG), a nanoparticle made of only 10 graphene sheets, is applied in low loadings, 3 parts per hundred rubber (phr) to reduce the total amount of filler or boost performance in hydrogenated acrylonitrilebutadiene rubber (HNBR). In the HNBR/MLG nanocomposites, 3 phr MLG replaced 15 phr CB, 3 phr aluminum trihydroxide (ATH), or 15 phr CB + 3 phr ATH. The nanocomposites were prepared via master batch by ultrasonically assisted solution mixing and subsequent conventional two-roll milling. A comprehensive study is presented, illustrating the impact of MLG on curing and mechanical properties; e.g. replacing 2.5 phr ATH with 3 phr MLG increased the Young's modulus by over 60% and hardness by 10%, while improving flame retardancy, and reducing the total heat evolved by 10%. MLG is a multifunctional filler, as demonstrated by various enhancements in terms of the mechanical and flame retardancy properties of the rubber composites. KW - Nanocomposite KW - Rubber KW - Graphene PY - 2018 U6 - https://doi.org/10.1016/j.polymertesting.2018.01.035 SN - 0142-9418 SN - 1873-2348 VL - 66 SP - 268 EP - 279 PB - Elsevier Ltd. AN - OPUS4-44457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markwart, Jens C. A1 - Battig, Alexander A1 - Zimmermann, Lisa A1 - Wagner, Martin A1 - Fischer, Jochen A1 - Schartel, Bernhard A1 - Wurm, Frederik R. T1 - Systematically controlled decomposition mechanism in phosphorus flame retardants by precise molecular architecture: P−O vs P−N N2 - Flame retardants (FR) are inevitable additives to many plastics. Halogenated organics are effective FRs but are controversially discussed due to the release of toxic gases during a fire or their persistence if landfilled. Phosphorus-containing compounds are effective alternatives to halogenated FRs and have potential lower toxicity and degradability. In addition, nitrogencontaining additives were reported to induce synergistic effects with phosphorus-based FRs. However, no systematic study of the gradual variation on a single phosphorus FR containing both P−O and P−N moieties and their comparison to the respective blends of phosphates and phosphoramides was reported. This study developed general design principles for P−O- and P−N-based FRs and will help to design effective FRs for various polymers. We synthesized a library of phosphorus FRs that only differ in their P-binding pattern from each other and studied their decomposition mechanism in epoxy resins. Systematic control over the decomposition pathways of phosphate (PO(OR)3), phosphoramidate (PO(OR)2(NHR)), phosphorodiamidate (PO(OR)(NHR)2), phosphoramide (PO(NHR)3), and their blends was identified, for example, by reducing cis-elimination and the formation of P−N-rich char with increasing nitrogen content in the P-binding sphere. Our FR epoxy resins can compete with commercial FRs in most cases, but we proved that the blending of esters and amides outperformed the single molecule amidates/diamidates due to distinctively different decomposition mechanisms acting synergistically when blended. KW - Phosphorus KW - Flame retardants KW - Epoxies KW - Mechanistic study KW - Toxicity PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-481549 SN - 2637-6105 VL - 1 IS - 5 SP - 1118 EP - 1128 PB - ACS AN - OPUS4-48154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Schartel, Bernhard A1 - Schoch, Rebecca A1 - Schubert, Martina T1 - Holz-Kunststoff-Verbundwerkstoffe - Wie beeinflussen Flammschutzmittel die Rauchgaszusammensetzung im Brandfall? N2 - Der steigende Einsatz von Holz-Kunststoff-Verbundwerkstoffen (Wood Plastic Composite, WPC) erfordert das Wissen um seine spezifischen Eigenschaften, insbesondere dem Brand risiko. Dabei können Flammschutzmittel die Entflammbarkeit, Wärmeabgabe und die Brandausbreitung des Materials verringern. Deshalb sind der gezielte und effiziente Einsatz und die Kenntnis über die Wirkungsweise der Flammschutzmittel im WPC für den Brandschutz von enormer Bedeutung. Dazu gehört auch die Rauchentwicklung im Brandfall. Rauch beeinflusst aufgrund seiner Toxizität und seiner Sichttrübung die Fluchtmöglichkeit der betroffenen Personen. In der Rauchkammer nach ISO 5659-2 wird die Rauchentwicklung von flachen Werkstoffproben ermittelt. Die Rauchgastoxizität bzw. die Rauchgaszusammensetzung wird mithilfe der FTIR (Fourier Transformierte Infrarot)-Spektroskopie ermittelt. Frei werdende Partikel schädigen die Atemorgane und beeinflussen damit auch die Fluchtfähigkeit von Personen im Brandfall. Aussagen zur Partikelemission können mithilfe eines an die Rauchkammer gekoppelten Partikelanalysators getroffen werden. Im Rahmen dieser Arbeit wurden verschiedene flammgeschützte WPC-Systeme hinsichtlich ihres Rauchverhaltens in der Rauchkammer untersucht. Die Ergebnisse zu emittierten toxischen Gasen, Partikeln und zur Rauchentwicklung werden vorgestellt und in Abhängigkeit von den eingesetzten Flammschutzmitteln im WPC diskutiert. KW - Rauchgase KW - Holz-Kunststoff-Verbundwerkstoffe KW - Partikel KW - Flammschutz PY - 2019 U6 - https://doi.org/10.1002/bate.201900020 VL - 96 SP - 1 EP - 12 PB - Wiley AN - OPUS4-48157 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Rabe, Sabastian A1 - Sánchez-Olivares, Guadalupe T1 - Digging in the dirt: Using natural fibers from industrial waste in flame retarded thermoplastic starch biocomposites N2 - To exploit application fields beyond packaging for biodegradable materials, flame retardancy and increased mechanical strength are usually required. This work focuses on the flammability of a thermoplastic starch/polyester blend reinforced with natural fibers derived from Mexican industry processes wastes, such as keratin fibers from the tannery industry, coconut fibers (coconut industry), and agave tequilana fibers and henequen fibers from tequila industry. Different fiber contents as well as combinations of varying contents of aluminum trihydroxide, expandable graphite, aluminum diethylphosphinate or ammonium polyphosphate are investigated. It is the goal to propose sustainable waste fibers as adjuvants improving the flame retardancy. This work provides the proof of principle for sustainable biodegradable flame retarded biocomposites. T2 - Flame 2018, 30th Annual Conference on Recent Advances in Flame Retardancy of Polymeric Materials CY - San Antonio, TX, USA DA - 19.05.2019 KW - biocomposite KW - sustainable KW - natural fibers KW - renewable KW - industrial waste KW - sustainability KW - thermoplastic starch KW - flame retardant PY - 2019 AN - OPUS4-48143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zirnstein, Benjamin A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Mechanical and fire properties of multicomponent flame retardant EPDM rubbers using aluminum trihydroxide, ammonium polyphosphate, and polyaniline N2 - In this study, multicomponent flame retardant systems, consisting of Ammonium polyphosphate (APP), aluminum trihydroxide (ATH), and polyaniline (PANI), were used in ethylene propylene diene monomer (EPDM) rubber. The multicomponent system was designed to improve flame retardancy and the mechanical properties of the rubber compounds, while simultaneously reducing the amount of filler. PANI was applied at low loadings (7 phr) and combined with the phosphorous APP (21 phr) and the mineral flame retardant ATH (50 phr). A comprehensive study of six EPDM rubbers was carried out by systematically varying the fillers to explain the impact of multicomponent flame retardant systems on mechanical properties. The six EPDM materials were investigated via the UL 94, limiting oxygen index (LOI), FMVSS 302, glow wire tests, and the cone calorimeter, showing that multicomponent flame retardant systems led to improved fire performance. In cone calorimeter tests the EPDM/APP/ATH/PANI composite reduced the maximum average rate of heat emission (MARHE) to 142 kW·m-2, a value 50% lower than that for the unfilled EPDM rubber. Furthermore, the amount of phosphorus in the residues was quantified and the mode of action of the phosphorous flame retardant APP was explained. The data from the cone calorimeter were used to determine the protective layer effect of the multicomponent flame retardant systems in the EPDM compounds. KW - EPDM KW - Rubber KW - Flame retardant KW - Polyaniline KW - Aluminum trihydroxide (ATH) PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-482769 SN - 1996-1944 VL - 12 IS - 12 SP - 1932, 1 EP - 22 PB - MDPI AN - OPUS4-48276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tomiak, F. A1 - Schartel, Bernhard A1 - Wolf, M. A1 - Drummer, D. T1 - Particle Size Related Effects of Multi-Component Flame-Retardant Systems in poly(butadiene terephthalate) N2 - Aluminum tris (diethylphosphinate) (AlPi) is known to have an efficient flame-retardant effect when used in poly(butadiene terephthalates) (PBT). Additionally, better flame-retardant effects can be achieved through the partial substitution of AlPi by boehmite in multi-component systems, which have been shown to be an effective synergist due to cooling effects and residue formation. Although the potential of beneficial effects is generally well known, the influence of particle sizes and behavior in synergistic compositions are still unknown. Within this paper, it is shown that the synergistic effects in flammability measured by limiting oxygen index (LOI) can vary depending on the particle size distribution used in PBT. In conducting thermogravimetric analysis (TGA) measurements, it was observed that smaller boehmite particles result in slightly increased char yields, most probably due to increased reactivity of the metal oxides formed, and they react slightly earlier than larger boehmite particles. This leads to an earlier release of water into the system enhancing the hydrolysis of PBT. Supported by Fourier transformation infrared spectroscopy (FTIR), we propose that the later reactions of the larger boehmite particles decrease the portion of highly flammable tetrahydrofuran in the gas phase within early burning stages. Therefore, the LOI index increased by 4 vol.% when lager boehmite particles were used for the synergistic mixture. KW - Flame retardants KW - Aluminum diethylphosphinate KW - Boehmite KW - Poly(butadiene terephthalates) (PBT) KW - Mechanical properties PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-509286 SN - 2073-4360 VL - 12 IS - 6 SP - 1315 PB - MDPI AN - OPUS4-50928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markwart, J. C. A1 - Battig, Alexander A1 - Urbaniak, T. A1 - Haag, K. A1 - Koschek, K. A1 - Schartel, Bernhard A1 - Wurm, F. R. T1 - Intrinsic flame retardant phosphonate-based vitrimers as a recyclable alternative for commodity polymers in composite materials N2 - Recycling of crosslinked fiber-reinforced polymers is difficult. Moreover, as they are often based on flammable resins, additional additives are needed. So-called “vitrimers” open the possibility of Recycling and reprocessing and repairing with dynamically crosslinked chemistries. To date, vitrimer-based composites still need flame retardant additives, such as organophosphates. An additive-free vitrimer composite has not been reported. Herein, we synthesized an intrinsic flame-retardant vitrimer, relying on vinylogous polyurethanes containing covalently installed phosphonates as flame-retardant units and prepared glassfiber-reinforced composites. We studied recycling and flame retardant properties and compared the data to phosphorus-free vitrimers and conventional epoxy resins (with and without additive flame retardant). Our phosphonate-based vitrimer proved in first tests, a flame retardant effect comparable to commercial flame retardant resins. The bending strength and bending modulus for the phosphorus-vitrimer glass fiber composites were comparable to glass fiber composites with permanently cross-linked epoxies. In summary, we were able to prove that the covalent installation of phosphonates into vitrimers allows the preparation of recyclable and intrinsic flame retardant composites that do not need flame retardant additives. We believe this concept can be expanded to other polymer networks and additives to generate recyclable and sustainable high-performance materials. KW - Vitrimer KW - Flame retardant KW - Recyclable KW - Organophosphonate KW - Polyurethane PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-510889 VL - 11 IS - 30 SP - 4933 EP - 4941 AN - OPUS4-51088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Günther, Martin A1 - Levchik, S. V. A1 - Schartel, Bernhard T1 - Bubbles and collapses: Fire phenomena of flame-retarded flexible polyurethane foams N2 - Flexible polyurethane foams (FPUF) are easy to ignite and exhibit rapid flame spread. In this paper, the fire phenomena of two standard foam formulations containing tris (1,3-dichloro-2-propyl) phosphate (FR-2) and a halogen-freepoly (ethyl ethylene phosphate) (PNX), respectively, as flame retardants are compared. A multimethodological approach is proposed which combines standard fire tests as well as new investigatory approaches. The thermophysical properties of the foams were determined by thermogravimetric analysis (TG), reaction to small flames was studied by means of the limiting oxygen index (LOI) and UL 94 HBF test, and the burning behavior was investigated with the cone calorimeter. Further, temperature development in burning cone calorimeter samples was monitored using thermocouples, and rheological measurements were performed on pyrolyzed material, delivering insight into the dripping behavior of the foams. This paper gives comprehensive insight into the fire phenomena of flame-retarded FPUFs that are driven by the two-step decomposition behavior of the foams. LOI and UL 94 HBF tests showed a reduced flammability and reduced tendency to drip for the flame-retarded foams. TG and cone calorimeter measurements revealed that the two-step decomposition behavior causes two stages during combustion, namely structural collapse and pool fire. The flame-retardant mode of action was identified to take place primarily during the foam collapse and be based mainly on flame inhibition. However, some condensed-phase action was been measured, leading to significantly increased melt viscosity and improved dripping behavior for foams containing PNX. KW - Burning behavior KW - Flame retardant KW - Flexible PU foam PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-512145 SN - 1042-7147 SN - 1099-1581 VL - 31 IS - 10 SP - 2185 EP - 2198 PB - Wiley Online Libary AN - OPUS4-51214 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flammschutz für Polymere in der Elektrotechnik N2 - Das Brandverhalten stellt wie das elektrische Isolationsverhalten, die geringen elektrischen Verluste, die Verarbeitbarkeit und Formbarkeit eine der wesentlichen Schlüsseleigenschaften im Eigenschaftsprofil von Polymerwerkstoffen in der Elektrotechnik dar. Dabei bedarf es einer Ausrüstung der Polymere mit Flammschutzmittel. Die Entwicklung von immer effizienteren, synergistischen und multifunktionalen Multikomponentensystemen ist dabei eine herausragende Quelle für Innovation. Die Verbesserung der werkstoff- und anwendungsspezifischen Flammschutzlösungen bestimmen die aktuellen und zukünftigen Polymermaterialien in der Elektrotechnik mit. Der Vortrag stellt anhand von Beispielen einige der erfolgreichen Konzepte dar. Es wird versucht, über das wissenschaftlich systematische Verständnis Grundprinzipien und Lösungsstrategien zu verdeutlichen. T2 - Vortrag des Monats Oktober 2020, Neue Materialien Bayreuth GmbH CY - Bayreuth, Germany DA - 06.10.2020 KW - Flammschutzmittel KW - Elektrotechnik KW - Brandtests KW - Synergie KW - Multikomponentensysteme PY - 2020 AN - OPUS4-51410 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Perret, Birgit A1 - Dittrich, Bettina A1 - Ciesielski, M. A1 - Krämer, J. A1 - Müller, P. A1 - Altstädt, V. A1 - Zang, L. A1 - Döring, M. T1 - Flame retardancy of polymers: the role of specific reactions in the condensed phase N2 - Condensed-phase mechanisms play a major role in fire-retardant polymers. Generations of development have followed the concept of charring to improve fire properties. Whereas the principal reactions are believed to be known, the specific description for multicomponent systems is lacking, as is the picture across different systems. A two-step approach is proposed in general, and also presented in greater detail. The second step covers the specific reactions controlling charring, whereas the actual reactants are provided in the preceding step. This model consistently incorporates the variety of structure–property relationships reported. A comprehensive case study is presented on seven phosphorus flame retardants in two epoxy resins to breathe life into the two-step approach. KW - Charring KW - Epoxy KW - Flame retardancy KW - Pyrolysis KW - Thermogravimetric analysis (TGA) PY - 2016 U6 - https://doi.org/10.1002/mame.201500250 SN - 1438-7492 SN - 1439-2054 VL - 301 IS - 1 SP - 9 EP - 35 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-35273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pappalardo, Salvatore A1 - Russo, Pietro A1 - Acierno, Domenico A1 - Rabe, Sebastian A1 - Schartel, Bernhard T1 - The synergistic effect of organically modified sepiolite in intumescent flame retardant polypropylene N2 - The pyrolysis, flammability and fire behavior of polypropylene (PP) containing an intumescent flame retardant and sepiolite nanoparticles were investigated by performing thermogravimetry, oxygen index (LOI), UL-94, and cone calorimeter tests. The combination of 0.5 wt% of premodified sepiolite (OSEP) with 12 wt% of a commercial intumescent flame retardant showed a clear synergy in LOI, UL-94 ranking and peak heat release rate. The ternary formulation achieved a V-0 classification and, consequently, allowed a reduction in the amount of flame retardant necessary to achieve this result. Whereas OSEP and pristine sepiolite nanoparticles (SEP) affect the performance in PP nanocomposites quite similarly, OSEP outperformed SEP in the combination with intumescent flame retardant. The cone calorimeter results and dynamic rheological measurements confirmed the synergistic effect between the nanofiller and the flame retardant resulting from the improved properties of the residual protective layer. KW - Polypropylene KW - Intumescent flame retardant KW - Sepiolite KW - Cone calorimetry KW - Low oxygen index PY - 2016 U6 - https://doi.org/10.1016/j.eurpolymj.2016.01.041 SN - 0014-3057 VL - 76 SP - 196 EP - 207 PB - Elsevier AN - OPUS4-35854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Patrick A1 - Schartel, Bernhard T1 - Melamine poly(metal phosphates) as flame retardant in epoxy resin: Performance, modes of action, and synergy N2 - Melamine poly(metal phosphates) (MPMeP) are halogen-free flame retardants commercialized under the brand Name Safire. Melamine poly(aluminum phosphate) (MPAlP), melamine poly(zinc phosphate) (MPZnP), and melamine poly(Magnesium phosphate) (MPMgP) were compared in an epoxy resin (EP). The thermal decomposition, flammability, burning behavior, and glass transition temperature were investigated using thermogravimetric analysis, pyrolysis combustion flow calorimeter, UL 94 testing, cone calorimeter, and differential scanning calorimetry. While the materials exhibited similarities in their pyrolysis, EP+MPZnP and EP+MPMgP showed better fire behavior than EP+MPAlP due to superior protective properties of the fire residues. Maintaining the 20 wt % loading, MPZnP was combined with various other flame retardants. A synergistic effect was evident for melamine polyphosphate (MPP), boehmite, and a derivative of 6H-Dibenzo[c,e][1,2]oxaphosphinine-6-oxide. The best overall performance was observed for EP+(MPZnP+MPP) because of the best protection effectiveness of the fire residue. EP +(MPZnP+MPP) achieved V1/V0 in UL 94, and an 80% reduction in the peak heat release rate. This study evaluates the efficiency of MPMeP in EP, alone and in combination with other flame retardants. MPMeP is a suitable flame retardant for epoxy resin, depending on its kind and synergists. KW - flame retardance KW - thermogravimetric analysis KW - thermosets PY - 2016 U6 - https://doi.org/10.1002/APP.43549 SN - 0021-8995 SN - 1097-4628 VL - 133 IS - 24 SP - 43549 PB - Wiley AN - OPUS4-35855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Wachtendorf, Volker A1 - Krafft, Bernd A1 - Rybak, Thomas A1 - Schartel, Bernhard T1 - Multilayer Graphene/Carbon Black/Chlorine Isobutyl Isoprene Rubber Nanocomposites N2 - High loadings of carbon black (CB) are usually used to achieve the properties demanded of rubber compounds. In recent years, distinct nanoparticles have been investigated to replace CB in whole or in part, in order to reduce the necessary filler content or to improve performance. Multilayer graphene (MLG) is a nanoparticle made of just 10 graphene sheets and has recently become commercially available for mass-product nanocomposites. Three phr (part for hundred rubbers) of MLG are added to chlorine isobutyl isoprene rubber (CIIR)/CB composites in order to replace part of the CB. The incorporation of just 3 phr MLG triples the Young’s modulus of CIIR; the same effect is obtained with 20 phr CB. The simultaneous presence of three MLG and CB also delivers remarkable properties, e.g. adding three MLG and 20 phr CB increased the hardness as much as adding 40 phr CB. A comprehensive study is presented, showing the influence on a variety of mechanical properties. The potential of the MLG/CB combination is illustrated to reduce the filler content or to boost performance, respectively. Apart from the remarkable mechanical properties, the CIIR/CB/MLG nanocomposites showed an increase in weathering resistance. KW - nanocomposites KW - rubber KW - multilayer graphene KW - carbon black PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-358569 SN - 2073-4360 VL - 8 SP - 95 PB - MDPI CY - Basel, Switzerland AN - OPUS4-35856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Towards Fire and Flame Retardant Composites T2 - 7th Asia-Europe Symposium on Processing and Properties of Reinforced Polymers, AESP7 CY - Madrid, Spain DA - 2015-02-04 PY - 2015 AN - OPUS4-32632 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hörold, Andreas A1 - Schartel, Bernhard A1 - Trappe, Volker A1 - Gettwert, V. A1 - Korzen, Manfred T1 - Protecting the structural integrity of composites in fire: Intumescent coatings in the intermediate scale N2 - The fire behaviour of light-weight material used in structural applications is regarded as the main challenge to be solved for mass transportation. The task is to perform realistic experiments, including a mechanical test scenario under fully developed fires, to improve the material's reliability in structural applications. Our approach utilises an intermediate-scale test set-up (specimen size 500 × 500 mm) to apply realistic compressive loads and fully developed fires directly to one side of a carbon-fibre-reinforced sandwich composite. Three different intumescent coatings were applied to sandwich structures and compared to a bench-scale study. The results emphasise intumescent coatings as a promising method to sustain fire resistance, multiplying the time to failure. Nevertheless, the realistic intermediate-scale test using severe direct flame application underlines the extremely short failure times when the actual composite components are tested without any additional insulation. KW - Carbon-fibre-reinforced KW - Fire stability KW - High-temperature properties KW - Mechanical testing KW - Fully developed fire KW - Post-crash scenario PY - 2015 U6 - https://doi.org/10.1177/0731684415609791 SN - 0731-6844 SN - 1530-7964 VL - 34 IS - 24 SP - 2029 EP - 2044 PB - Technomic Publ. Co. CY - Westport, Conn. AN - OPUS4-35120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Wachtendorf, Volker A1 - Huth, Christian A1 - Schartel, Bernhard T1 - Multifunctional multilayer graphene/elastomer nanocomposites N2 - Elastomers are usually reinforced and employed in different applications. Various different nanoparticles, including layered silicates, carbon nanotubes, and expanded graphite, are currently being used as nanofiller. Multilayer Graphene (MLG) is proposed as promising nanofiller to improve the functional properties of Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR) and Styrene–Butadiene Rubber (SBR) at low concentrations. MLG is constituted by only approximately 10 graphene sheets. Nanocomposites with extremely low MLG content (3 phr) showed evident improvement in rheological, mechanical and curing properties. The Young's modulus of the nanocomposites increased more than twice in comparison with the unfilled rubbers. MLG also improved the weathering resistance of the different rubbers. The nanocomposites conserved their initial mechanical properties against weathering exposure. KW - Elastomer KW - Nanocomposite KW - Multilayer graphene PY - 2015 U6 - https://doi.org/10.1016/j.eurpolymj.2015.07.050 SN - 0014-3057 SN - 1873-1945 VL - 71 SP - 99 EP - 113 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-33843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flame Retardancy A Bunch of Thoughts N2 - The presentation gives an overview of actual research adtivities in the field of flame retardant polymers. Details are selected illuminating the scientific topic beyond the state of the art. Different concepts are illustrated with own results obtained in different Research projects over the last 15 years. T2 - public lecture at CIATEC CY - León, Guanajuato, México DA - 06.02.2019 KW - Flame retardant KW - Modes of action KW - Mechanisms KW - Fire testing KW - Pyrolysis KW - Calorimetry PY - 2019 AN - OPUS4-50078 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, I. A1 - Kebelmann, Katharina A1 - Risse, S. A1 - Dieguez-Alonso, A. A1 - Schartel, Bernhard A1 - Strecker, C. A1 - Behrendt, F. T1 - Hydroliquefaction of Two Kraft Lignins in a Semibatch Setup under Process Conditions Applicable for Large-Scale Biofuel Production N2 - Hydroliquefaction is a possible pathway to produce liquid transportation fuels from solid feedstocks like coal or biomass. Though much effort has been put into the investigation of maximizing the oil yield using expensive catalysts and pasting oils in batch setups, little is known about how to commercialize the process. This work aims at the demonstration of lignin hydroliquefaction under conditions interesting for commercial operation. The results from hydroliquefaction experiments of two different lignin types using a cheap iron-based catalyst and anthracene oil as the pasting oil in a semibatch system are presented here. Oil yields of above 50% are reached without observing coke formation. Extensive analyses of the feedstocks and product oils were performed. The process supplies high-quality oil, while differences in the decomposition path of both lignin types are observed. An high heating value of 39 400 J/g and H/C and O/C ratios of up to 1.6 and 0.1, respectively, are detected for the produced bio-oils. KW - Lignin KW - Hydroliquefaction KW - Biofuel PY - 2019 U6 - https://doi.org/10.1021/acs.energyfuels.9b02572 SN - 0887-0624 SN - 1520-5029 VL - 33 IS - 11 SP - 11057 EP - 11066 PB - ACS AN - OPUS4-50102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flammschutz für technische Kunststoffte für elektronische Anwendungen N2 - Das Brandverhalten stellt wie das ausgezeichnete elektrische Isolationsverhalten, die geringen elektrischen Verluste, die Verarbeitbarkeit und Formbarkeit eine der wesentlichen Schlüsseleigenschaften im Eigenschaftsprofil von Polymerwerkstoffen in der Elektronik und der Elektrotechnik dar. Dabei bedarf es einer Ausrüstung der Polymerwerkstoffe mit Flammschutzmittel. Die Entwicklung von immer effizienteren, synergistischen und multifunktionalen Multikomponentensystemen ist dabei eine herausragende Quelle für Innovation. Die Entwicklung und Verbesserung der werkstoff- und anwendungsspezifischen Flammschutzlösungen bestimmen die aktuellen und zukünftigen Polymermaterialien in der Elektronik und Elektrotechnik mit. Der Vortrag stellt anhand von Beispielen einige der erfolgreichen Konzepte dar. Es wird versucht, über das wissenschaftlich-systematische Verständnis Grundprinzipien und vielversprechende Lösungsstrategien zu verdeutlichen. T2 - Kunststoff trifft Elektronik, KUZ Kunststoffzentrum in Leipzig CY - Leipzig, Germany DA - 29.01.2020 KW - Flame retardant KW - Ssynergy KW - Flame retardant mode of action KW - UL 94 KW - Cone calorimeter PY - 2020 AN - OPUS4-50495 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zirnstein, Benjamin A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Combination of phosphorous flame retardants and aluminum trihydrate in multicomponent EPDM composites N2 - Ethylene propylene diene monomer (EPDM) Rubbers with the flame retardants tris(2-ethylhexyl)phosphate, ammonium polyphosphate, polyaniline, and aluminum trihydroxide were prepared and analyzed in this study. The homogenous dispersion of the fillers in the rubber matrix was confirmed by scanning electron microscope. To investigate the interplay of the different flame retardants, the flame retardants were varied systematically. The comprehensive study sought combinations of flame retardants that allow high loadings of flame retardants without deterioration of the physical and mechanical properties of the EPDM rubber. The eight EPDM rubbers were investigated via thermogravimetric analysis and pyrolysis gas chromatography coupled with a mass spectrometer (Py GC/MS) to investigate the potential synergistic effects. In the Py-GC/MS experiments, 27 pyrolysis products were identified. Furthermore, UL 94, limiting oxygen index, FMVSS 302, glow wire tests, and cone calorimeter tests were carried out. In the cone calorimeter test the EPDM rubbers R-1AP and R-1/2P achieved an increase in residue at flameout of 76% and a reduction in total heat evolved of about 35%. Furthermore, the compounds R-1AP and R-1/2P achieved a reduction in MARHE to about 150 kW m−1, a reduction of over 50% compared to the unprotected rubber R. KW - EPDM KW - Rubber KW - Aluminum hydroxide (ATH) KW - Phosphorous flame retardant PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-502859 SN - 1548-2634 VL - 60 IS - 2 SP - 267 EP - 280 PB - Wiley AN - OPUS4-50285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Günther, Martin T1 - Flame retardancy of polyurethanes N2 - Polyurethanes (PU) represent one of the most versatile classes of plastics. They are processed and used as thermoplastic, elastomer, and thermoset. The requirements regarding flammability are correspondingly versatile. Depending on the material and the field of application, specific fire tests have to be fulfilled. This paper describes the different concepts used to fulfil these requirements by choosing the right raw materials and flame retardants. KW - Polyurethane KW - Flame retardant KW - Foam KW - Flammability KW - Pyrolysis KW - Cone calorimeter PY - 2020 VL - 17 IS - 1 SP - 44 EP - 48 PB - Dr. Gupta AN - OPUS4-50737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rabe, Sebastian A1 - Sanchez-Olivares, G. A1 - Pérez-Chávez, R. A1 - Schartel, Bernhard ED - Laoutid, F. T1 - Natural Keratin and Coconut Fibres from Industrial Wastes in Flame Retarded Thermoplastic Starch Biocomposites N2 - Natural keratin fibres derived from Mexican tannery waste and coconut fibres from coconut processing waste were used as fillers in commercially available, biodegradable thermoplastic starch-polyester blend to obtain sustainable biocomposites. The morphology, rheological and mechanical properties as well as pyrolysis, flammability and forced flaming combustion behaviour of those biocomposites were investigated. In order to open up new application areas for these Kinds of biocomposites, ammonium polyphosphate (APP) was added as a flame retardant. Extensive flammability and cone calorimeter studies revealed a good flame retardance effect with natural fibres alone and improved effectiveness with the addition of APP. In fact, it was shown that replacing 20 of 30 wt. % of APP with keratin fibres achieved the same effectiveness. In the case of coconut fibres, a synergistic effect led to an even lower heat release rate and total heat evolved due to reinforced char residue. This was confirmed via scanning electron microscopy of the char structure. All in all, these results constitute a good approach towards sustainable and biodegradable fibre reinforced biocomposites with improved flame retardant properties. KW - Biomaterials KW - Biodegradation KW - Calorimetry KW - Composites KW - Flame retardance PY - 2020 SN - 978-3-03928-350-7 SN - 978-3-03928-351-4 SP - 45 EP - 66 PB - MDPI AN - OPUS4-50738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, Sebastian A1 - Klack, Patrick A1 - Bahr, Horst A1 - Schartel, Bernhard T1 - Assessing the fire behavior of woods modified by N-methylol crosslinking, thermal treatment, and acetylation N2 - Wood products are often treated by different techniques to improve their longevity when used as building materials. Most of the time, the goal is to increase their resistance to weathering effects, deformations in material dimensions or biotic decomposition. These wood treatment techniques have a significant impact on pyrolysis and burning behavior. The general effects of three different common wood treatments on flame retardancy were investigated by comparing treated woods with their untreated counterparts and with other kinds of wood. While the acetylation of beech leads to a slightly increased fire hazard, the thermal treatment of wood and crosslinking of cellulose microfibrils dimethyloldihydroxy-ethyleneurea show a limited flame retarding effect. Switching to woods with a higher lignin content, and thus higher char yield, however, results in a more pronounced improvement in flame retardancy performance. This article delivers a comprehensive and balanced assessment of the general impact of different wood modifications on the fire behavior. Further, it is a valuable benchmark for assessing the flame retardancy effect of other wood modifications. KW - Acetylation KW - Cone claorimeter KW - DMDHEU KW - Heat of combustion KW - Thermal treatment KW - Wood modification PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-507397 SN - 1099-1018 SN - 0308-0501 VL - 44 IS - 4 SP - 530 EP - 539 PB - Wiley Online Libary AN - OPUS4-50739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ma, S. A1 - Xiao, Y. A1 - Zhou, F. A1 - Schartel, Bernhard A1 - Chan, Yin Yam A1 - Korobeinichev, O. P. A1 - Trubachev, S. A. A1 - Hu, W. A1 - Ma, C. A1 - Hu, Y. T1 - Effects of novel phosphorus-nitrogen-containing DOPO derivative salts on mechanical properties, thermal stability and flame retardancy of flexible polyurethane foam N2 - In this work, a series of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivative salts containing phosphorus and nitrogen were synthesized, and their effects on mechanical properties, thermal stability and flame retardancy of flexible polyurethane foam (FPUF) were investigated. Studies have shown that the addition of DOPO derivatives will increase the tensile strength, compression set, and compression hardness of FPUF, but it will lead to a decrease in elongation at break. Thermogravimetric analysis showed that the initial decomposition temperature of FPUF containing DOPO derivatives was reduecd, but the char reside was significantly improved. A series of combustion tests indicated that the addition of DOPO derivative salts can improve the flame retardancy of FPUF, of which 10-hydroxy-9,10-dihydro-9-oxa-10 phosphaphenanthrene-10-oxide dicyandiamide salt (D-DICY) exhibited the best flame retardancy. When the load of D-DICY was 20 phr, the limiting oxygen index (LOI) of foam reached 24.5%, and the peak heat release rate and total heat release were decreased by 55.7% and 52.9%, respectively. Furthermore, based on the analysis of the gas phase combustion products and the char residue of the condensed phase, the possible flame retardant mechanism was proposed. KW - Flexible polyurethane foam KW - DOPO derivative salts KW - Mechanical properties KW - Thermal stability KW - Flame retardancy PY - 2020 U6 - https://doi.org/10.1016/j.polymdegradstab.2020.109160 SN - 0141-3910 VL - 177 SP - 109160 PB - Elsevier Ltd. AN - OPUS4-50740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Günther, Martin T1 - Flammschutz von Polyurethanen N2 - Polyurethane (PU) bilden eine der vielseitigsten Klassen der Polymerwerkstoffe. Kein anderer Kunststoff wird sowohl als Thermoplast, als Elastomer wie auch als Duroplast verarbeitet und eingesetzt. Entsprechend vielfältig sind auch die Anforderungen an den Flammschutz. Je nach Material und Anwendung müssen spezifische Brandnormen erfüllt werden. Der vorliegende Aufsatz gibt einen Überblick über die verfügbaren Ansätze, um durch geeignete Auswahl der Rohstoffe und der Flammschutzmittel diese verschiedensten Anforderungen an das Brandverhalten zu erfüllen. KW - Polyurethan KW - Flammschutz KW - Pyrolyse KW - Schaum KW - Cone calorimeter PY - 2020 VL - 20 IS - 1 SP - 48 EP - 53 PB - Dr. Gupta AN - OPUS4-50736 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sanchez-Olivares, G. A1 - Rabe, Sebastian A1 - Pérez-Chávez, R. A1 - Calderas, F. A1 - Schartel, Bernhard T1 - Industrial-waste agave fibres in flame-retarded thermoplastic starch biocomposites N2 - Flame-retarded biocomposites of thermoplastic starch and natural fibres are successfully processed according to state-of-the-art extrusion and injection moulding. Using agave fibres and henequen fibres recovered from local industrial waste is a convincing contribution to sustainability. A systematically varied set of biocomposites is investigated comprehensively, e.g. electron microscopy is used for characterizing the morphology, rheology for the melt viscosity, tensile and impact resistance for the mechanical properties, thermal analysis for the pyrolysis, UL 94 burning chamber and oxygen index for the flammability, and cone calorimeter for the fire behaviour. Achieving sufficient mechanical properties was not the goal in our pre-competitive study but may be tackled by adding compatibilizer in future. The combination of well-dispersed natural fibres, aluminium diethylphosphinate (AlPi) and a special silicone synergist (Si) is proposed as promising innovative route for V-classified biocomposites. The flame-retardancy modes of action in the gas phase (fuel dilution and flame inhibition) and in the condensed phase (charring, protective layer formation) are discussed in detail, as is the role of combining the ingredients. This work is a convincing proof of principle of how to prepare industrial-waste fibres biocomposites, to apply the synergistic combination of AlPi and Si for future flame-retarded technical polymer materials that are based on renewable resources and compostable. KW - Flame-retardant biocomposites KW - Natural fibre KW - Biopolymer KW - Sustainability KW - Industrial-waste fibres KW - Flammability PY - 2019 U6 - https://doi.org/10.1016/j.compositesb.2019.107370 SN - 1359-8368 VL - 177 SP - 107370 PB - Elsevier Ltd. AN - OPUS4-48777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Lin, Xuebao A1 - Tan, Yi A1 - Wachtendorf, Volker A1 - Klack, Patrick A1 - Schoch, R. A1 - Lang, M. A1 - Bastian, M. T1 - Weathering resistance of halogen-free flame retardancy N2 - Whereas the degradation of flame retardant polymers has been discussed since decades, only more recently, the lifetime of the flame retardancy itself becomes an important factor, e.g. for cables used as building products. In this work, several kinds of accelerated artificial ageing tests are performed simulating different environmental exposures and thus highlighting different degradation mechanisms: artificial accelerated weathering, climatic chamber, water immersion, salt spray chamber, and autoclave test. The durability is expected to be different for different flame-retardant materials. Thus, various sets of halogen-free fire-retarded polymers were investigated: ethylene vinyl acetate (EVA) with aluminum hydroxide (ATH), boehmite and synergists, ester-based and ether-based thermoplastic polyurethane (TPU) with melamine cyanurate (MC), aluminum diethylphosphinate (AlPi), and boehmite, and glass fiber reinforced polyamide 66 (PA66) with AlPi-based mixtures. Intensive degradation of the surface was observed, e.g. yielding discoloration and yellowing, EVA showed cracking when weathered. Changes in chemical structure was investigated by ATR-FTIR. The flammability was investigated with the cone calorimeter, UL-94 classification, and oxygen index (LOI). The flame retardancy of most of the materials studied degraded only slightly for the investigated exposure times. EVA/ATH achieved an improved LOI due to flame retardants agglomeration at the surface. Sets of materials, based on EVA and TPU, were also investigated as cable jackets. While flame retarded EVA exhibited no dripping during burning, TPU flame-retarded with MC cables showed pronounced melt-dripping. Cone calorimeter tests were carried out using cable rafts as well as our self-made cable module test, simulating a vertical bundle of cables at the bench scale. The comparison of different fire tests, different exposure conditions, and different materials carved out the specific degradation phenomena with respect to each of these parameters. Most of this work was supported by the IGF Project (18926 N) of the Fördergemeinschaft für das Süddeutsche Kunststoff-Zentrum e.V., supported by the AiF within the framework of the program “Förderung der Industriellen Gemeinschaftsforschung (IGF)” of the German Federal Ministry for Economic Affairs and Energy based on a decision of the Deutschen Bundestag. T2 - 33rd Polymer Degradation Discussion Group Conference (PDDG-2019) CY - St. Julian, Malta DA - 01.09.2019 KW - Weathering resistance KW - Durability KW - Flame retardancy PY - 2019 AN - OPUS4-49020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Markwart, J. C. A1 - Wurm, F. R. A1 - Schartel, Bernhard T1 - Hyperbranched phosphorus flame retardants: multifunctional additives for epoxy resins N2 - We successfully synthesized multifunctional P-based hyperbranched polymeric flame retardants (hb-FRs) with varying oxygen-to-nitrogen (O : N) content and characterized them via 1H and 31P NMR and GPC. Their miscibility in epoxy resins (EP) and impact on glass-transition temperatures (Tg) were determined via differential scanning calorimetry (DSC). Using thermogravimetric and evolved gas Analysis (TGA, TG-FTIR), pyrolysis gas chromatography/mass spectrometry (Py-GC-MS), hot stage FTIR, flammability tests UL-94 and LOI, fire testing via cone calorimetry, residue analysis via scanning electron microscopy (SEM) and elemental analysis, detailed decomposition mechanisms and modes of action are proposed. hb-polymeric FRs have improved miscibility and thermal stability, leading to high FR performance even at low loadings. Polymeric, complex FRs increase flame retardancy, mitigate negative effects of low molecular weight variants, and can compete with commercial aromatic FRs. The results illustrate the role played by the chemical structure in flame retardancy and highlight the potential of hb-FRs as multifunctional additives. KW - Flame retardant KW - Hyperbranched PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-486589 SN - 1759-9962 SN - 1759-9954 VL - 10 IS - 31 SP - 4346 EP - 4358 PB - RSC AN - OPUS4-48658 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flame Retardant Polyurethane: An Old, an Actual, and a Future Challenge N2 - This paper is based mainly on the results of two different projects performed in the group of the author recently (2016-2019). The three external partners involved in these two projects are competent in the preparation of FPUF (ICL IP America), RPUF (Department of Industrial Engineering, Padova University), and TPU (Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF, Darmstadt) as well as for the specimen preparation. Systematically varied sets of materials were prepared as the key basic for scientific discussion, varying the kind and combination of flame retardant, PUR structure, density, and blowing agent. A multimethodical approach based on thermogravimetry (TGA), TGA coupled with evolved gas analysis (TGA-FTIR) and pyrolysis GC-MS was used for investigating the pyrolysis. The flammability was addressed using oxygen index (OI) and testing in UL 94 burning chamber in vertical and horizontal set-up. The fire behaviour was addressed by using a cone calorimeter. Beyond these methods according to the state of the art, key experiments were performed. We addressed the dripping and the two-stage burning of TPU using a self-designed apparatus and specific data evaluation, the foam burning through quenching burning samples, using different special sample holders, and measuring temperature profiles within the burning foams. The investigation is made round by intensive analysis of the fire residues, such as comprehensive investigation of the morphology. Result on the pyrolysis (TGA-FTIR, Pyrolysis-GC/MS), flammability (UL 94, LOI), and fire behaviour (cone calorimeter) of TPU and flame retardant TPUs are shown. We discuss in detail the characteristic of PUR decomposition: the low tendency to char, and the specific two step decomposition and how these characteristics control the regimes in fire behaviour. We demonstrate that the different burning regimes are controlled by different pyrolysis products and effective heat of combustions. The resulting formation of pool fires as well as the formation of dripping is discussed in detail. The latter quite important to understand the flame retardancy applied with respect to achieve the UL 94 classification V0 nondripping or V0 non-flaming dripping. Rigid and flexible PUR foams and their flame retarded versions are investigated for different densities. Water and pentane-blown foams are compared as well as PUR and polyisocyanurate-polyurethane (PIR) foams. Horizontal testing in the cone calorimeter is used and the vertical foam specimen holder as well. Self-designed set-ups within the cone calorimeter enable a better inside in the pyrolysis front running through the foam samples as well as the development of the temperature gradient inside the foam during the fire test. The morphology change during burning was characterised by the means of quenching burning foams with liquid nitrogen and investigating the cross sections with scanning electron microscope. In sum, a rather comprehensive study was performed to work out the principle fire phenomena controlling the fire behaviour of PUR foams in a very systematic and significant way. Promising flame retardancy approaches are discussed. The importance of either combining the drain of fuel and flame inhibition or charring into an effective protection layer/multicellular structure is underlined. This contribution focusses the general conclusions and trends. It tries to increase the understanding of the specific and demanding challenge to develop flame retardant PUR materials. T2 - Interflam 2019, 15th International Interflam Conference CY - Egham, UK DA - 01.07.2019 KW - Polyurethane KW - Flame retardant KW - Dripping KW - Flammability KW - Pool fire KW - Pyrolysis KW - Decomposition KW - Foams PY - 2019 AN - OPUS4-48557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lenz, J. A1 - Pospiech, D. A1 - Paven, M. A1 - Albach, R. W. A1 - Günther, Martin A1 - Schartel, Bernhard A1 - Voit, B. T1 - Improving the Flame Retardance of Polyisocyanurate Foams by Dibenzo[d,f][1,3,2]dioxaphosphepine 6-Oxide-Containing Additives N2 - A series of new flame retardants (FR) based on dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide (BPPO) incorporating acrylates and benzoquinone were developed previously. In this study, we examine the fire behavior of the new flame retardants in polyisocyanurate (PIR) foams. The foam characteristics, thermal decomposition, and fire behavior are investigated. The fire properties of the foams containing BPPO-based derivatives were found to depend on the chemical structure of the substituents. We also compare our results to state-of-the-art non-halogenated FR such as triphenylphosphate and chemically similar phosphinate, i.e. 9,10-dihydro-9-oxa-10- phosphaphenanthrene-10-oxide (DOPO), based derivatives to discuss the role of the phosphorus oxidation state. KW - Polyisocyanurate KW - Dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide KW - Phospha-Michael addition KW - Flame retardant KW - Foams PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-485590 SN - 2073-4360 VL - 11 IS - 8 SP - Article 1242 PB - MDPI AN - OPUS4-48559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Understanding flame retardant modes of action: a wellspring for evidence-based development N2 - Although the main flame retardant modes of action are known, in practise the detailed scientific understanding usually falls short, when it comes to modern multicomponent systems, the important tiny optimizations, or quantifying in terms of specific fire properties. The description of the flame retardant modes of action remains usually vague and fragmentary. This talk tries to deliver thought-provoking impulses how the understanding of the fire behaviour and flame retardancy can be utilized to direct the development of future flame retardant polymer products. Some overseen details are picked up as well as rethinking of concepts memorised long ago is encouraged to discover something new. Furthermore, the talk tries to fill the gap between flame retardant modes of action and fire performance constituting a product. This talk promotes the evidence-based development of flame retardant polymers T2 - FRPM 2019, 17th European Meeting on Fire Retardant Polymeric Materials CY - Turku, Finland DA - 26.06.2019 KW - Flame retardant KW - Modes of action KW - Fire behaviour PY - 2019 AN - OPUS4-48551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markwart, J. C. A1 - Battig, Alexander A1 - Velencoso, M. M. A1 - Pollok, D. A1 - Schartel, Bernhard A1 - Wurm, F. R. T1 - Aromatic vs. Aliphatic Hyperbranched Polyphosphoesters as Flame Retardants in Epoxy Resins N2 - The current trend for future flame retardants (FRs) goes to novel efficient halogen-free materials, due to the ban of several halogenated FRs. Among the most promising alternatives are phosphorus-based FRs, and of those, polymeric materials with complex shape have been recently reported. Herein, we present novel halogen-free aromatic and aliphatic hyperbranched polyphosphoesters (hbPPEs), which were synthesized by olefin Metathesis polymerization and investigated them as a FR in epoxy resins. We compare their efficiency (aliphatic vs. aromatic) and further assess the differences between the monomeric compounds and the hbPPEs. The decomposition and vaporizing behavior of a compound is an important factor in its flame-retardant behavior, but also the interaction with the pyrolyzing matrix has a significant influence on the performance. Therefore, the challenge in designing a FR is to optimize the chemical structure and its decomposition pathway to the matrix, with regards to time and temperature. This behavior becomes obvious in this study, and explains the superior gas phase activity of the aliphatic FRs. KW - Phosphorus KW - Metathesis KW - Dendritic KW - Cone calorimeter KW - Fire test PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-494535 SN - 1420-3049 VL - 24 IS - 21 SP - 3901 PB - MDPI AN - OPUS4-49453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Markwart, J. C. A1 - Wurm, F. R. A1 - Schartel, Bernhard T1 - Matrix matters: Hyperbranched flame retardants in aliphatic and aromatic epoxy resins N2 - We synthesized a library of phosphorus-based flame retardants (phosphates and phosphoramides of low and high molar mass) and investigated their behavior in two epoxy resins (one aliphatic and one aromatic). The pyrolytic and burning behavior of the two resins (via TGA, TG-FTIR, Hot stage FTIR, Py-GC/MS, PCFC, DSC, LOI, UL-94, Cone calorimeter) are analyzed and compared to the results of flame retardant (FR)-containing composites. A decomposition pathway incorporating the identified modes of action and known chemical mechanisms is proposed. The overlap of decomposition temperature (Tdec) ranges of matrix and FR determines the efficacy of the system. Low molar mass FRs strongly impact material properties like Tg but are very reactive, and high molar mass variants are more thermally stable. Varying PeO and PeN content of the FR affects decomposition, but the chemical structure of the matrix also guides FR behavior. Thus, phosphates afford lower fire load and heat release in aliphatic epoxy resins, and phosphoramides can act as additives in an aromatic matrix or a reactive FRs in aliphatic ones. The chemical structure and the structure-property relationship of both FR and matrix are central to FR performance and must be viewed not as two separate but as one codependent system. KW - Flame retardant KW - Phosphate KW - Phosphoramide KW - Epoxy resin KW - Hyperbranched polymer PY - 2019 U6 - https://doi.org/10.1016/j.polymdegradstab.2019.108986 SN - 0141-3910 VL - 170 SP - 108986 PB - Elsevier Ltd. AN - OPUS4-49456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Günther, Martin A1 - Lorenzetti, A. A1 - Schartel, Bernhard T1 - From Cells to Residues: Flame-Retarded Rigid Polyurethane Foams N2 - Rigid polyurethane foams (RPUFs) exhibit short times to ignition as well as rapid flame spread and are therefore considered to be hazardous materials. This paper focuses on the fire phenomena of RPUFs, which were investigated through a multimethodological approach. Water-blown polyurethane (PUR) foams without flame retardants (FRs) as well as waterblown PUR foams containing triethyl phosphate as a gas phase-active FR were examined. The aim of this study is to clarify the influence of the FR on the fire phenomena during combustion of the foams. Additionally, materials’ densitieswere varied to range from 30 to 100 kg/m3. Thermophysical properties were studied bymeans of thermogravimetry; fire behavior and flammability were investigated via cone calorimeter and limiting Oxygen index, respectively. During the cone calorimeter test, the temperature development inside the burning specimens was monitored with thermocouples, and cross sections of quenched specimens were examined visually, giving insight into the morphological changes during combustion. The present paper delivers a comprehensive study, illuminating phenomena occurring during foam combustion and the influence of a FR active in the gas phase. The superior fire performance of flameretarded PUR foams was found to be based on flame inhibition, and on increased char yield leading to a more effective protective layer. It was proven that in-depth absorption of radiation is a significant factor for estimation of time to ignition. Cross sections investigated with the electron scanning microscope exhibited a pyrolysis front with an intact foam structure underneath. The measurement of temperature development inside burning specimens implied a shift of burning behavior towards that of non-cellular materials with rising foam density. KW - Polyurethane KW - Rigid foams KW - Fire behavior PY - 2020 U6 - https://doi.org/10.1080/00102202.2019.1634060 SN - 0010-2202 SN - 1563-521X VL - 192 IS - 12 SP - 2209 EP - 2237 PB - Taylor & Francis AN - OPUS4-51483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goedecke, Caroline A1 - Dittmann, Daniel A1 - Eisentraut, Paul A1 - Wiesner, Yosri A1 - Schartel, Bernhard A1 - Klack, Patrick A1 - Braun, Ulrike T1 - Evaluation of thermoanalytical methods equipped with evolved gas analysis for the detection of microplastic in environmental samples N2 - Microplastic particles are currently detected in almost all environmental compartments. The results of detection vary widely, as a multitude of very different methods are used with very different requirements for analytical validity. In this work four thermoanalytical methods are compared and their advantages and limitations are discussed. One of them is thermal extraction-desorption gas chromatography mass spectrometry (TED-GC/MS), an analysis method for microplastic detection that has become established in recent years. In addition, thermogravimetric analysis coupled with Fourier-transform infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS) were applied, two methods that are less common in this field but are still used in other research areas. Finally, microscale combustion calorimeter (MCC) was applied, a method not yet used for microplastic detection. The presented results are taken from a recently published interlaboratory comparison test by Becker et al. (2020). Here a reference material consisting of suspended matter and specified added polymer masses was examined, and only the results of the recoveries were presented. In the present paper, however, the results for the individual polymers are discussed in detail and individual perspectives for all instruments are shown. It was found that TED-GC/MS is the most suitable method for samples with unknown matrix and unknown, variable kinds and contents of microplastic. TGA-FTIR is a robust method for samples with known matrix and with defined kinds of microplastic. TGA-MS may offer a solution for the detection of PVC particles in the future. MCC can be used as a very fast and simple screening method for the identification of a potential microplastic load of standard polymers in unknown samples. KW - Microplastic KW - TED-GC/MS KW - TGA-MS KW - TGA-FTIR KW - MCC KW - Thermal analysis PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-516687 VL - 152 SP - 104961 PB - Elsevier B.V. AN - OPUS4-51668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markwart, J. C. A1 - Battig, Alexander A1 - Kuckhoff, T. A1 - Schartel, Bernhard A1 - Wurm, F. R. T1 - First phosphorus AB2 monomer for flame-retardant hyperbranched polyphosphoesters: AB2vs. A2 + B3 N2 - Branched polymers are an important class of polymers with a high number of terminal groups, lower viscosity compared to their linear analogs and higher miscibility, which makes them especially interesting for flame retardant applications, where the flame retardants (FR) are blended with another polymer matrix. Hyperbranched polyphosphoesters (hbPPEs) are gaining more and more interest in the field of flame retardancy, as low molar mass FRs often have the disadvantage of blooming out or leaching, which is not desired in consumer products. Here, we present the first phosphorus-based AB2 monomer for the synthesis of hbPPEs and assess its flame-retardant performance in an epoxy resin compared to a hbPPE synthesized by an A2 + B3 approach. The hbPPE synthesized from an AB2 monomer exhibited a slightly higher performance compared to a similar hbPPE, which was prepared by A2 + B3 polyaddition, probably due to its higher phosphorus content. KW - Polyphosphoester KW - Hyperbranched KW - Flame retardant KW - Synthesis PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-497570 SN - 1759-9962 VL - 10 IS - 43 SP - 5920 EP - 5930 PB - RSC AN - OPUS4-49757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flammschutzmechanismen in der Kunststofftechnik N2 - The main flame retardant modes of action are known, nevertheless in practise the detailed scientific understanding usually falls short, when it comes to modern multicomponent systems, the important tiny optimizations, or quantifying in terms of specific fire properties. The description of the flame retardant modes of action remains usually vague and fragmentary. This talk tries to deliver thought-provoking impulses how the understanding of the fire behaviour and flame retardancy can be utilized to direct the development of future flame retardant polymer products. Some overseen details are picked up as well as rethinking of concepts memorised long ago is encouraged to discover something new. Furthermore, the talk tries to fill the gap between flame retardant modes of action and fire performance constituting a product. This talk promotes the evidence-based development of flame retardant polymers. T2 - VDI-Vortrag, AK “Kunststofftechnik” des VDI-Bezirksverein Nürnberg e.V. CY - Erlangen, Germany DA - 20.11.2019 KW - Modes of action KW - Flame retardancy KW - Charring KW - Flame inhibition KW - Fuel dilution KW - Protective layer PY - 2019 AN - OPUS4-49759 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard A1 - Kebelmann, Katharina ED - Hu, Y. ED - Wang, X. T1 - Fire testing for the development of flame retardant polymeric materials N2 - Flame retarded polymeric materials are used in various applications in which a certain fire behavior is demanded. Protection goals are defined, such as limited flammability in terms of hindered sustained ignition or limited contribution to a fire, and these protection levels are tested with defined specimens or components in defined fire scenarios, that is to say, different fire tests. Passing a specific fire test by meeting whatever its demands is often the most important development goal, so the parameters of the different fire tests vary widely to emphasize different fire properties. Some fire tests are used to screen or provide a general assessment of flame retardant polymers during development, while other fire tests and tailored experiments are performed to address special phenomena or understand the flame retardancy modes of action. For all fire testing, the devil is in the details – demanding know-how and crucial efforts to manage the quality of investigations and advanced interpretation. This chapter aims to offer a structured overview of all these aspects. KW - Fire testing KW - Flame retardant KW - Fire retardant KW - Flammability KW - Ignition KW - Oxygen index KW - Cone calorimeter KW - UL 94 KW - Developing fire KW - Uncertainty KW - Fire resistance PY - 2020 SN - 978-1-138-29578-7 SP - 35 EP - 55 PB - CRC Press AN - OPUS4-50236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tan, Yi A1 - Wachtendorf, Volker A1 - Klack, Patrick A1 - Kukofka, Tobias A1 - Ruder, J. A1 - Schartel, Bernhard T1 - Durability of the flame retardance of ethylene-vinyl acetate copolymer cables: Comparing different flame retardants exposed to different weathering conditions N2 - Scientific publications addressing the durability of the flame retardance of cables during their long-term application are rare and our understanding lacks. Three commercial flame retardants, aluminum hydroxide, aluminum diethyl phosphinate (AlPi-Et), and intumescent flame retardant based on ammonium polyphosphate, applied in ethylene-vinyl acetate copolymer (EVA) model cables, are investigated. Different artificial aging scenarios were applied: accelerated weathering (UV-irradiation/temperature/rain phases), humidity exposure (elevated temperature/humidity), and salt spray exposure. The deterioration of cables’ surface and flame retardancy were monitored through imaging, color measurements, attenuated total reflectance Fourier transform infrared spectroscopy, and cone calorimeter investigations. Significant degradation of the materials’ surface occurred. The flame retardant EVA cables are most sensitive to humidity exposure; the cable with AlPi-Et is the most sensitive to the artificial aging scenarios. Nevertheless, substantial flame retardance persisted after being subjected for 2000 h, which indicates that the equivalent influence of natural exposure is limited for several years, but less so for long-term use. KW - Durability KW - Flame retardant KW - Cable KW - Weathering KW - Cone calorimeter PY - 2020 U6 - https://doi.org/10.1002/APP.47548 SN - 0021-8995 VL - 137 IS - 1 SP - 47548 PB - Wiley AN - OPUS4-50237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Markwart, J. C. A1 - Wurm, F. R. A1 - Schartel, Bernhard T1 - Sulfur's role in the flame retardancy of thio-ether–linked hyperbranched polyphosphoesters in epoxy resins N2 - Hyperbranched polyphosphoesters are promising multifunctional flame retardants for epoxy resins. These polymers were prepared via thiol-ene polyaddition reactions. While key chemical transformations and modes of actions were elucidated, the role of sulfur in the chemical composition remains an open question. In this study, the FR-performance of a series of phosphorus-based flame retardant additives with and without sulfur (thioethers or sulfones) in their structure are compared. The successful synthesis of thio-ether or sulfone-containing variants is described and verified by 1H and 31P NMR, also FTIR and MALDI-TOF. A decomposition process is proposed from pyrolytic evolved gas analysis (TG-FTIR, Py-GC/MS), and flame retardancy effect on epoxy resins is investigated under pyrolytic conditions and via fire testing in the cone calorimeter. The presence of sulfur increased thermal stability of the flame retardants and introduced added condensed phase action. Likely, Sulfur radical generation plays a key role in the flame-retardant mode of action, and sulfones released incombustible SO2. The results highlight the multifunctionality of the hyperbranched polymer, which displays better fire performance than its low molar mass thio-ether analogue due to the presence of vinyl groups and higher stability than its monomer due to the presence of thio-ether groups. KW - Phosphoester KW - Hyperbranched KW - Sulfur KW - Thio-ether KW - Flame retardant KW - Epoxy resin PY - 2020 U6 - https://doi.org/10.1016/j.eurpolymj.2019.109390 SN - 0014-3057 VL - 122 SP - 109390 PB - Elsevier Ltd. AN - OPUS4-50238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Turski Silva Diniz, Analice A1 - Huth, Christian A1 - Schartel, Bernhard T1 - Dripping and decomposition under fire: Melamine cyanurate vs. glass fibres in polyamide 6 N2 - Manipulating the melt dripping of thermoplastics makes a fire scenario more or less dangerous. Yet, a detailed understanding of this phenomenon has remained a question mark in studies of the flammability of plastics. In this work, the individual and collective impacts of additives on the dripping behaviour of polyamide 6 (PA6) were studied. A set of materials compounded with melamine cyanurate (MCA) and glass fibre (GF) was investigated. Under UL 94 vertical test conditions, the dripping during first and second ignition was quantified and investigated in detail. The number, size and temperature of the drops were addressed, and the materials and their drops evaluated with respect to such aspects as their averaged molecular weight, thermal decomposition and rheological properties. PA6 with V-2 classification improved to V-0 with the addition of MCA, and achieved HB in the presence of GF. PA6/GF/MCA achieved V-2. Non-flaming drops of PA6/MCA consisted of oligomeric fragments. Flaming drops of PA6/GF showed a more pronounced decomposition of PA6 and an increased GF content. The dripping behaviour of PA6/GF/MCA can be understood as a combination of the influence of both additives. The results showed nicely that dripping under fire is neither a straightforward material property nor a simple additive influence, but the complex response of the material influenced by the interaction and competition of different phenomena. KW - Dripping KW - UL 94 KW - Polyamide 6 KW - Melamine cyanurate KW - Glass fibre KW - Flame retardant PY - 2020 U6 - https://doi.org/10.1016/j.polymdegradstab.2019.109048 SN - 0141-3910 VL - 171 SP - 109048 PB - Elsevier Ltd. AN - OPUS4-50239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Morys, Michael A1 - Häßler, Dustin A1 - Krüger, Simone A1 - Schartel, Bernhard A1 - Hothan, Sascha T1 - Beyond the standard time-temperature curve: Assessment of intumescent coatings under standard and deviant temperature curves N2 - Nowadays there are intumescent coatings available for diverse applications. There is no established assessment of their protection performance besides the standard time-temperature curve, but natural fire scenarios often play an important role. A reliable straightforward performance-based assessment is presented. The effective thermal conductivity per thickness is calculated based on intermediate-scale fire tests. The optimum thermal insulation, the time to reach it, and the time until contingent failure of the coating are used for an assessment independent of the heating curve. The procedure was conducted on four different commercially intumescent coatings for steel construction, one solvent-based, one waterborne, one epoxy-based, and a bandage impregnated with a waterborne coating. The performance was studied under four different but similar shaped heating curves with different maximum temperatures (standard time-temperature curve, hydrocarbon curve and two self-designed curves with reduced temperature). The thermal protection performance is crucially affected by the residue morphology. Therefore, a comprehensive morphology analysis, including micro-computed tomography and scanning electron microscopy, was conducted on small-scale residues (7.5 x 7.5 cm2). Two different types of inner structures and the residue surface after different heat exposures were discussed in terms of their influence on thermal protection performance. KW - Intumescence KW - Coating KW - Computed tomography KW - Small scale KW - Heating curves KW - Residue morphology PY - 2020 U6 - https://doi.org/10.1016/j.firesaf.2020.102951 SN - 0379-7112 VL - 112 SP - 102951 PB - Elsevier Ltd. AN - OPUS4-50334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tan, Yi A1 - Wachtendorf, Volker A1 - Kukofka, Tobias A1 - Klack, Patrick A1 - Ruder, J. A1 - Lin, Xuebao A1 - Schartel, Bernhard T1 - Degradation of flame retardance: A comparison of ethylene‐vinyl acetate and low‐density polyethylene cables with two different metal hydroxides N2 - The durability of flame retardancy is a challenge for cables over long lifetimes. The degradation of flame retardance is investigated in two kinds of exposures, artificial weathering and humidity. In this basic study, typical mineral flame retardants in two polymers frequently used in cable jackets are investigated to get the fundamental picture. Aluminum hydroxide (ATH) and magnesium hydroxide (MDH) are compared in ethylene‐vinyl acetate (EVA), and further in EVA and linear low‐density polyethylene (LLDPE) cables containing the same ATH. The changes in chemical structure at the surface are studied through attenuated total reflectance Fourier transform infrared spectroscopy (ATR‐FTIR), the formation of cracks, and changes in color are investigated. The cone calorimeter and a bench scale fire testing cable module are utilized to evaluate the fire behavior of the cables. Although the flame retardancy deteriorated slightly, it survived harsh exposure conditions for 2000 h. Compared to EVA/MDH and LLDPE/ATH, the fire behavior of EVA/ATH is the least sensitive. Taken together, all of the results converge to estimate that there will be no problem with flame retardancy performance, for materials subjected to natural exposure for several years; the durability of fire retardancy is questionable for longer periods, and thus requires further investigation. KW - Durability KW - Flame retardant KW - Aluminum hydroxide (ATH) KW - Magnesium hydroxide KW - Ethylene-vinyl acetate KW - Cables KW - Weathering PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-519573 VL - 138 IS - 14 SP - 50149 PB - Wiley AN - OPUS4-51957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Daus, Lars-Hendrik A1 - Schartel, Bernhard A1 - Wachtendorf, Volker A1 - Mangelsdorf, R. A1 - Korzen, Manfred T1 - A chain is no stronger than its weakest link: Weathering resistance of water-based intumescent coatings for steel applications N2 - A systematic approach was used to investigate the weathering-induced degradation of a common water–based intumescent coating. In this study, the coatings are intended for humid indoor applications on steel substrates. The coating contains ammonium polyphosphate, pentaerythritol, melamine, and polyvinyl acetate. By replacing each ingredient with a less water-soluble substance, the most vulnerable substances, polyvinyl acetate and pentaerythritol, were identified. Furthermore, the weathering resistance of the system was improved by exchanging the ingredients. The coatings were stressed by artificial weathering tests and evaluated by fire tests. Thermogravimetry and Fourier-transform infrared spectroscopy were used to study the thermal decomposition. This study lays the foundation for the development of a new generation of water-based intumescent coatings. KW - Intumescence KW - Fire resistance KW - Fire protective coatings KW - Weathering KW - Thermogravimetric analyses PY - 2021 U6 - https://doi.org/10.1177/0734904120961064 SN - 0734-9041 SN - 1530-8049 VL - 39 IS - 1 SP - 72 EP - 102 PB - SAGE AN - OPUS4-52015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Abdou-Rahaman Fadul, Naïssa A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Multifunctional graphene nanofiller in flame retarded polybutadiene/chloroprene/carbon black composites N2 - To curtail flammability risks and improve material properties, flame retardants (FRs) and fillers are mixed into rubbers. High loadings of aluminum trihydroxide (ATH) and carbon black (CB) are the most used FRs and reinforcing additive, respectively, in rubbers. To reduce loading without losing mechanical properties, partial substitution of ATH as well as CB by low amounts of multilayer graphene (MLG) nanoparticles is investigated. The high aspect ratio MLG is made of ten graphene sheets. In polybutadiene/chloroprene (BR/CR) nanocomposites 3 phr MLG replaced 15 phr CB and/or 3 phr ATH. Material and mechanical properties as well as fire behavior of the nanocomposites are compared to BR/CR with 20 phr CB both with and without 50 phr ATH. MLG appears as a promising nanofiller to improve the functional properties: replacement of CB improved rheological, curing, and mechanical properties; substitution of ATH improved nanocomposite properties without affecting flame retardancy. KW - Nanocomposites KW - Rubber KW - Multilayer graphene KW - Carbon black KW - Polybutadiene/chloroprene KW - Graphene PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-523468 SN - 1618-7229 VL - 21 IS - 1 SP - 244 EP - 262 PB - De Gruyter AN - OPUS4-52346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, Sebastian A1 - Chuenban, Yuttapong A1 - Schartel, Bernhard T1 - Exploring the Modes of Action of Phosphorus-Based Flame Retardants in Polymeric Systems N2 - Phosphorus-based flame retardants were incorporated into different, easily preparable matrices, such as polymeric thermoset resins and paraffin as a proposed model for polyolefins and investigated for their flame retardancy performance. The favored mode of action of each flame retardant was identified in each respective system and at each respective concentration. Thermogravimetric analysis was used in combination with infrared spectroscopy of the evolved gas to determine the pyrolysis behavior, residue formation and the release of phosphorus species. Forced flaming tests in the cone calorimeter provided insight into burning behavior and macroscopic residue effects. The results were put into relation to the phosphorus content to reveal correlations between phosphorus concentration in the gas phase and flame inhibition performance, as well as phosphorus concentration in the residue and condensed phase activity. Total heat evolved (fire load) and peak heat release rate were calculated based on changes in the effective heat of combustion and residue, and then compared with the measured values to address the modes of action of the flame retardants quantitatively. The quantification of flame inhibition, charring, and the protective layer effect measure the non-linear flame retardancy effects as functions of the phosphorus concentration. Overall, this screening approach using easily preparable polymer systems provides great insight into the effect of phosphorus in different flame retarded polymers, with regard to polymer structure, phosphorus concentration, and phosphorus species. KW - Flame retardants KW - Flame inhibition KW - Cone calorimeter KW - Aluminum diethyl phosphinate KW - Polyester KW - PMMA KW - Epoxy resin KW - Red phosphorus KW - BDP PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-402731 SN - 1996-1944 VL - 10 IS - 5 SP - 455, 1 EP - 455, 23 PB - MDPI AN - OPUS4-40273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flame and Fire Retarded Fibre Reinforced Polymer Composites N2 - Carbon fibre (CF) and glass fibre (GF) reinforced polymers are used for diverse applications demaning flame and fire retardancy in the fire scenarios ignition, developing fire and fully developed fire. The fire behaviour of composites differs from polymers, since fibres behave often inert with respect to pyrolysis, change the melt flow / dripping behaviour, the heat absorption and transfer, the amount and properties of the fire residue. Concepts are needed suitable for the different fire protection goals, but also tailored for composites. The field is illuminated by examples carried out in the group of the author in the recent years. Approaches to halogen-free flame retardancy in GF reinforced thermoplastics and CF reinforced thermosets are presented as well as building up a bench and intermediate scale testing of composites in fire applying mechanical load and direct flame exposure simultaneously. The understanding of fire behaviour and flame retardancy modes of action in composites is a promising basis for target-oriented development. T2 - GDCh-Kolloquium Bremen CY - Bremen, Germany DA - 11.12.2017 KW - Composites KW - Fire stability KW - Flame retardancy KW - Halogen-free flame retardant KW - Composite in fire KW - Modes of action PY - 2017 AN - OPUS4-43487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flame Retardancy of Polymers: Modes of Action N2 - The main flame retardant modes of action are well known, but in practise the detailed scientific understanding usually falls short, when it comes to modern multicomponent systems, the important tiny optimizations, or quantifying in terms of specific fire properties. This talk delivers thought-provoking impulses, picking up some overseen details as well as raising basic questions. A detailed scientific insight in flame retardant modes of action much more than an overview is presented. T2 - Kolloquium-Thermodynamik CY - Duisburg, Germany DA - 15.12.2017 KW - Flame retardant KW - Fire retardant KW - Mechanisms KW - Modes of action KW - Charring KW - Flame inhibition PY - 2017 AN - OPUS4-43488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matzen, Melissa A1 - Marti, J. M. A1 - Onate, E. A1 - Idelsohn, S. A1 - Schartel, Bernhard T1 - Particle finite element modelling and advanced experiments on dripping V-0 polypropylene N2 - Melt flow and dripping of polymeric materials can be both beneficial and detrimental during fire. It reduces flame spread and result in extinction, as mass and heat are removed from the actual pyrolysis zone. In contrast, melt flow and dripping can provide an additional ignition source, additional process of flame spread and has the potential to start a pool fire. In the vertical UL 94 test, a well adjusted dripping behaviour of flame retarded polypropylene (PP-FR) resulted in a non-flaming dripping V-0 classification. For the polymer samples and their drops collected in UL 94, the decomposition and viscosity was investigated. Particle finite element method (PFEM) was successfully used to simulate the material behaviour in the UL 94 test and increased the understanding of the complex behaviour of polymeric materials during fire. T2 - Fire and Materials, 15th International Conference CY - San Francisco, CA, USA DA - 06.02.2017 KW - V0 dripping KW - Melt flow KW - Flammability KW - Flame retardant KW - Radical generator KW - Dripping agent KW - Polypropylene KW - Particle Finite Element Modelling PY - 2017 SP - 57 EP - 62 PB - Interscience Communication CY - Bromley, UK AN - OPUS4-39443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Bench-scale fire testing tailored for research and development N2 - - STT MuFu+ oven for intumescent coatings - Rapid Mass Calorimeter for high throughput screening - Bench-scale Cable Testing Module - Fire stability of composites T2 - 15th SKZ Conference on Trends in Fire Safety and Innovative Flame Retardants for Plastics CY - Würzburg, Germany DA - 14.03.2017 KW - STT MuFu+ KW - Rapid mass calorimeter KW - Fire stability KW - Bench-scale fire resistance tests KW - Cable KW - Intumescent coatings PY - 2017 AN - OPUS4-39447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flammgeschütztes PUR: Eine (alte,) aktuelle und zukünftige Herausforderung N2 - Der Vortrag gibt einen Überblick über die Thematik der flammgeschützten Polyurethanwerkstoffe, d.h. thermoplastisches und elastomeres Polyurethan (TPU, PUR), PUR Hard- und Weichschäume, PUR Coatings. Die Werkstoffcharakteristika wie Pyrolyse, effektive Verbrennungswärme, Rückstandsausbeute, Verarbeitungsparameter und kg-Preis definieren die Anforderungen an Flammschutzlösungen. Der Flammschutz ist spezifisch für das Material ausgelegt, aber auch für die verschiedenen Anwendungen (Automobilbau, Schienenfahrzeuge, Bauwesen, Elektrotechnik, usw.), d.h. um verschiedene Brandtests zu bestehen. Die Pyrolyse und das Brandverhalten von PUR und PUR-Schäumen sowie der flammgeschützten Varianten wird diskutiert. Die gängigen Flammschutzmittel(-kombinationen) für PUR Hard- und Weichschaum sowie thermoplastisches und elastomeres PUR werden zusammengefasst. T2 - PUR Forum CY - Leipzig, Germany DA - 17.05.2017 KW - Polyurethan KW - Brandverhalten KW - Flammschutz KW - PUR Hardschaum KW - PUR Weichschaum KW - TPU PY - 2017 AN - OPUS4-40423 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sut, Aleksandra A1 - Greiser, Sebastian A1 - Jäger, Christian A1 - Schartel, Bernhard T1 - Synergy in flame-retarded epoxy resin - Identification of chemical interactions by solid-state NMR N2 - The potential synergists aluminium diethylphosphinate (AlPi), boehmite (AlO(OH)) and melamine polyphosphate (MPP) were compared in flame-retardant epoxy resin (EP)/melamine poly(magnesium phosphate) (S600). The pyrolysis, the fire behaviour as well as the chemical interactions in the gas and condensed phases were investigated by various methods. Flammability was investigated by cone calorimeter and oxygen index (OI). The thermal and thermo-oxidative decomposition were studied by thermogravimetric analysis coupled with FTIR spectrometer. The special focus was on the Investigation of structural changes in the condensed phase via solid-state NMR of 27Al and 31P nuclei. By the comparison of epoxy resin with only one additive or with S600 in combination with AlPi, AlO(OH) or MPP, it was possible to calculate the synergy index. The best performance in terms of fire behaviour was observed for EP/S600/MPP with a PHRR (Peak heat release rate) of 208 kW m-2 due to slight synergy. In the case of THE (total heat evolved), clear synergy occurred for EP/S600/AlPi and EP/S600/AlO(OH). By solid-state NMR, different phosphates and aluminates were identified, indicating the chemical interactions between S600 and AlPi, AlO(OH) or MPP. The systematic multi-methodical approach yielded insight into the synergistic effects in the flame-retarded epoxy resin. KW - Synergy KW - Epoxy resin KW - Flame retardancy KW - Melamine poly(magnesium phosphate) KW - Solid-state NMR PY - 2017 U6 - https://doi.org/10.1007/s10973-016-5934-4 SN - 1388-6150 SN - 1588-2926 VL - 128 IS - 1 SP - 141 EP - 153 PB - Springer AN - OPUS4-39298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Böhning, Martin A1 - Krafft, Bernd A1 - Schartel, Bernhard T1 - Chlorbutylkautschuk/Multilayergraphen-Nanocomposites N2 - In den letzten Jahren werden zunehmend Nanopartikel als Füllstoff für Polymere vorgeschlagen und auch erfolgreich in Elastomer-Nanocomposites eingesetzt. In dieser Arbeit wird Multilayergraphen (MLG) als Nanofüllstoff näher untersucht, der sich bereits bei geringen Konzentrationen als effizient erweist. MLG besteht aus nur etwa zehn Graphenlagen. Chlorbutylkautschuk (CIIR)/MLG-Nanocomposites mit verschiedenen MLG-Gehalten wurden mit Hilfe eines ultraschallunterstützen Mischverfahrens in Lösung hergestellt und auf einem Walzwerk weiterverarbeitet. Das Einmischen von MLG führt zu einer deutlichen Verbesserung der rheologischen und mechanischen Eigenschaften, des Vernetzungsverhaltens sowie der Barrierewirkung gegenüber Gasen. Bereits der Zusatz von 3 phr MLG zu CIIR führt zu einem mehr als zweifach höheren E-Modul und zu einer Reduktion der Permeabilität von O2 und CO2 um 30 %. Höhere Konzentrationen an Nanofüllstoff resultieren in einer weiteren Verbesserung der Eigenschaften der Nanocomposites. Weiterhin zeigten die CIIR/MLG-Nanocomposites auch eine geringere Entflammbarkeit. KW - Elastomere KW - Nanokomposite KW - Graphen KW - Chlorbutylkautschuk PY - 2017 SN - 0176-1625 VL - 70 IS - 5 SP - 311 EP - 322 PB - Dr. Gupta Verlag CY - Ratingen AN - OPUS4-40327 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deng, C. A1 - Yin, Huajie A1 - Li, R.-M. A1 - Huang, S.-C. A1 - Schartel, Bernhard A1 - Wang, Y.-Z. T1 - Modes of action of a mono-component intumescent flame retardant MAPP in polyethylene-octene elastomer N2 - A mono-component intumescent flame retardant named ethylenediamine-modified ammonium polyphosphate (MAPP) is used in polyethylene-octene elastomer (POE). Insight into the flame-retardant mechanisms of the MAPP is provided from a new perspective. The fire performance of POE/MAPP composites is investigated by oxygen index (OI) and vertical burning (UL-94) tests. POE Composite containing 35 wt% MAPP achieves a V-0 rating, and its OI is 29.3 vol%. The thermogravimetric Analysis (TGA) and Fourier transform infrared spectra (FTIR) confirm that the incorporation of ethylenediamine changes the thermal decomposition of APP, mainly resulting in the formation of char layer with a thermally stable structure. Cone calorimeter analysis revealed the flame-retardant modes of action of MAPP in POE under forced-flaming conditions. Quantitative analysis illustrates that both the residue due to charring and the fuel dilution/flame Inhibition resulting from the release of incombustible products/ phosphorus species decrease the total heat release (fire load) by 20e28%. The residue increases linearly with increasing MAPP content, whereas the reduction in effective heat of combustion levels off. Moreover, the flame-retardant effect resulting from the protective properties of the char is discovered to be the dominant mode of action (up to 85% reduction) with respect to the peak heat release rate, leading to the excellent flame retardancy of POE/MAPP. KW - Ammonium polyphosphate KW - Flame retardant KW - Carbonization KW - Elastomer PY - 2017 U6 - https://doi.org/10.1016/j.polymdegradstab.2017.03.006 SN - 0141-3910 SN - 1873-2321 VL - 138 SP - 142 EP - 150 PB - Elsevier AN - OPUS4-39901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lorenzetti, Alessandra A1 - Dittrich, Bettina A1 - Schartel, Bernhard A1 - Roso, M A1 - Modesti, M T1 - Expandable graphite in polyurethane foams: The effect of expansion volume and intercalants on flame retardancy N2 - Several expandable graphites (EGs), differing in Expansion volume but with the same mean size, are compared as flame retardants in polyurethane (PUR) foams. Not only common sulfur-intercalated graphites are investigated but also a new one intercalated with phosphorus. The main aim of this article is to understand which properties of EG are important for its flame retardancy effectiveness in PUR foams. Thermal stability, flammability, and fire behavior are analyzed through limiting oxygen index and cone calorimeter tests. Detailed characterization of the phosphorus-intercalated graphite is also provided as well as physical–mechanical characterization. The results show that the well-known sulfur-intercalated graphites and the one with phosphorus both enhance the residue yield, induce a protective layer, and thus efficiently flame-retard PUR foams. While the expansion volume of the EGs had a surprisingly limited influence on the performance of the foams, at least in the range tested, the most important feature Controlling the effectiveness of EG in terms of flame retardant PUR foams was the type of intercalant. The presence of EG affected the physical–mechanical properties of the foams; however, no significant effect of the expansion volume or intercalant type has been revealed on the physical–mechanical properties of the foams. KW - Degradation KW - Flame retardance KW - Foams KW - Polyurethane KW - Thermogravimetric analysis PY - 2017 U6 - https://doi.org/10.1002/app.45173 SN - 1097-4628 SN - 0021-8995 VL - 134 IS - 31 SP - Article 45173, 1 EP - 8 PB - Wiley AN - OPUS4-40606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sut, Aleksandra A1 - Metzsch-Zilligen, E. A1 - Großhauser, M. A1 - Pfaendner, R. A1 - Schartel, Bernhard T1 - Rapid mass calorimeter as a high-throughput screening method for the development of flame-retarded TPU N2 - The rapid mass calorimeter (RMC) was used as a screening tool based on accelerated fire testing to assess flame-retarded thermoplastic polyurethane (TPU). The reliability of RMC results was proven with the cone calorimeter as reference fire test. The influence of melamine cyanurate (MC) concentration on the fire performance of TPU was investigated, along with some flame-retardant combinations such as MC with aluminium diethylphosphinate (AlPi), aluminium trihydrate (ATH), and melamine polyphosphate (MPP). The two-stage burning behaviour of TPU was investigated in detail; the first stage corresponds mainly to the hard segments' decomposition and has a much lower effective heat of combustion (EHC) than the second stage, in which mainly the soft segments decompose and an intensive liquid pool fire is observed in the cone calorimeter set-up. In addition to fire testing with the cone calorimeter, RMC, and UL 94 flammability tests, the decomposition of the materials was investigated using thermogravimetric analysis coupled with infrared spectrometry (TGeFTIR). TPU/MC/AlPi shows the most promising results, achieving V-0 classification in UL 94 and reducing the extreme peak heat release rate (PHRR) of the liquid pool fire from 3154 kW/m2 to 635 kW/m2. Using MC/AlPi/MPP enhances the latter PHRR reduction further. The decomposition products identified in the gas phase via TGeFTIR reveal specific MCeAlPi eMPP interactions, as they differ from products seen in systems with MC/AlPi or MC/MPP. Correlations between RMC and cone calorimeter results were examined and presented in the final part of the paper. Several characteristics correlate strongly, pointing out that RMC is a reliable high-throughput fire testing method to screen multicomponent flame-retardant solutions in TPU. KW - Thermoplastic polyurethane KW - Flame retardancy KW - Rapid mass calorimeter KW - High throughput screening PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-456982 SN - 0141-3910 SN - 1873-2321 VL - 156 SP - 43 EP - 58 PB - Elsevier Ltd. AN - OPUS4-45698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Velencoso, M. M. A1 - Battig, Alexander A1 - Markwart, J. C. A1 - Schartel, Bernhard A1 - Wurm, F. R. T1 - Molecular firefighting – How modern phosphorus chemistry can help solve the challenge of flame retardancy N2 - The ubiquity of polymeric materials in daily life Comes with an increased fire risk, and sustained research into efficient flame retardants is key to ensuring the safety of the populace and material goods from accidental fires. Phosphorus, a versatile and effective element for use in flame retardants, has the potential to supersede the halogenated variants that are still widely used today: current formulations employ a variety of modes of action and methods of implementation, as additives or as reactants, to solve the task of developing flameretarding polymeric materials. Phosphorus-based flame retardants can act in both the gas and condensed phase during a fire. This Review investigates how current phosphorus chemistry helps in reducing the flammability of polymers, and addresses the future of sustainable, efficient, and safe phosphorus-based flame-retardants from renewable sources. KW - Flame retardant KW - Phosphorus KW - Halogen-free PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-457009 SN - 1433-7851 SN - 1521-3773 VL - 57 IS - 33 SP - 10450 EP - 10467 PB - Wiley VHC AN - OPUS4-45700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, Sebastian A1 - Sánchez-Olivares, G. A1 - Pérez-Chávez, R. A1 - Schartel, Bernhard T1 - Natural keratin and coconut fibres from industrial wastes in flame retarded thermoplastic starch biocomposites N2 - Natural keratin fibres derived from Mexican tannery waste and coconut fibres from coconut processing waste were used as fillers in commercially available, biodegradable thermoplastic starch-polyester blend to obtain sustainable biocomposites. The morphology, rheological and mechanical properties as well as pyrolysis, flammability and forced flaming combustion behaviour of those biocomposites were investigated. In order to open up new application areas for these kinds of biocomposites, ammonium polyphosphate (APP) was added as a flame retardant. Extensive flammability and cone calorimeter studies revealed a good flame retardance effect with natural fibres alone and improved effectiveness with the addition of APP. In fact, it was shown that replacing 20 of 30 wt. % of APP with keratin fibres achieved the same effectiveness. In the case of coconut fibres, a synergistic effect led to an even lower heat release rate and total heat evolved due to reinforced char residue. This was confirmed via scanning electron microscopy of the char structure. All in all, these results constitute a good approach towards sustainable and biodegradable fibre reinforced biocomposites with improved flame retardant properties. KW - Biomaterials KW - Biodegradable KW - Calorimetry KW - Composites KW - Flame retardance PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-472518 SN - 1996-1944 VL - 12 IS - 3 SP - 344, 1 EP - 24 PB - MDPI AN - OPUS4-47251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sut, Aleksandra A1 - Metzsch-Zilligen, E. A1 - Großhauser, M. A1 - Pfaendner, R. A1 - Schartel, Bernhard T1 - Synergy between melamine cyanurate, melamine polyphosphate and aluminum diethylphosphinate in flame retarded thermoplastic polyurethane N2 - The multicomponent flame retardant system of melamine polyphosphate (MPP), melamine cyanurate (MC) and aluminum diethylphosphinate (AlPi) is proposed and investigated for thermoplastic polyurethane (TPU). The synergy between those additives and the resulting superior fire performance are discussed. Systematically varied sets of flame retarded TPU with various MPP/MC/AlPi ratios were investigated in terms of fire behavior, pyrolysis products and mechanical properties. The total amount of the additives was always 30 wt.-%. Further, the influence of various AlPi concentrations was investigated. The optimal MPP:MC ratio was determined while keeping the amount of AlPi constant. The combination of 8 wt.-% MPP, 12 wt.-% MC and 10 wt.-% is proposed as the most promising halogen free flame retardant formulation for TPU, because it yielded a reduction in PHRR from 2660 kW/m2 (TPU) to 452 kW/m2 and enabled V-0 classification in the UL 94 test. Combinations of MPP and MC as well a high concentration of AlPi are beneficial for the mechanical properties e.g. tensile strength and elongation at break of the formulations and could be a strong competitor to commercial flame retarded TPUs. KW - Thermoplastic polyurethane KW - Synergy KW - Melamine cyanurate KW - Melamine polyphosphate KW - Aluminum diethylphosphinate KW - Rapid mass calorimeter PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-472523 SN - 0142-9418 VL - 74 SP - 196 EP - 204 PB - Elsevier Ltd. AN - OPUS4-47252 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Daus, Lars-Hendrik A1 - Korzen, Manfred A1 - Schartel, Bernhard T1 - High-throughput fire tests and weathering-induced degradation behaviour of intumescent coatings N2 - In this work, the weathering-induced degradation of intumescent coatings was investigated by a systematic and comprehensive approach. A mechanism is revealed that is proposed to be responsible for the loss of function of intumescent coatings induced by weathering. First, the thermal decomposition of artificially weathered intumescent coatings was examined. To get a better understanding of the weathering and ageing phenomena, the degradation behaviour of the single ingredients during the weathering process was investigated, as well as their chemical and physical interactions. For the systematic approach, the materials that are essential for intumescence (ammonium polyphosphate, pentaerythritol, titanium dioxide, melamine and the binder) are treated with moisture, elevated temperature and UV radiation. Thermogravimetry (TG) and IR spectroscopy were used to compare the initial samples with their different grades of weathering. We demonstrate that ammonium polyphosphate, melamine and the binder are mainly responsible for the ageing process. Further, it was demonstrated that TG and IR spectroscopy are suitable measuring methods to detect the effects of weathering on intumescent coatings. Finally, a small-scale fire test procedure is introduced. Based on the reduction of the sample size, up to 50 samples can be tested in a single fire test. The results of this fire test have the same quality as the results from standard intermediate fire tests corresponding to DIN 4102-8. T2 - 3rd European Symposium on Fire Safety Science CY - Nancy, France DA - 12.09.1018 KW - Weathering KW - Intumescent coatings KW - High-Throughput Fire Tests PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-472023 UR - http://iopscience.iop.org/article/10.1088/1742-6596/1107/3/032014/pdf VL - 1107 SP - 032014 PB - IOP Publishing CY - Bristol AN - OPUS4-47202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Böhning, Martin A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Schartel, Bernhard ED - Yaragalla, S. ED - Kumar Mishra, R. ED - Thomas, S. ED - Kalarikkal, N. ED - Maria, H. J. T1 - Multilayer Graphene/Elastomer Nanocomposites N2 - Elastomers are usually reinforced by large amount of fillers like carbon black (CB) or silica in order to improve various mechanical properties, such as Young’s modulus, hardness, tear resistance, abrasion resistance, and gas barrier properties. In recent years, such improvements were also obtained by using nanoparticles at significantly lower filler loadings. Graphene is a twodimensional (2D) sheet of a thickness in the atomic scale, composed of a honeycomb structure of sp2 carbon atoms. Besides significant mechanical reinforcement, graphene harbors the potential to be used as a multifunctional filler, as it can also increase the conductivity and weathering stability of elastomer matrices. Ultraviolet (UV) irradiation and oxidative agents can lead to the degradation of elastomers due to a multistep photooxidative process, including the formation of radicals. Carbon-based fillers have an influence on these reactions, as they can absorb UV radiation and act as radical scavengers. This chapter summarizes the results of our larger project on multilayer graphene (MLG)/elastomer nanocomposites, previously published, which present a comprehensive case study of MLG as a multifunctional nanofiller in elastomer/graphene nanocomposites. Different elastomeric matrices are compared in order to demonstrate the outstanding impact of MLG as a general benefit. The dependency of this effect on concentration is discussed in detail. Taking into account the key role of dispersion, different mixing procedures are compared, evaluating a facile implementation of graphene nanocomposites into conventional rubber processing. Finally, the most probable commercial uses of MLG nanofillers in combination with conventional CB are studied. The nanocomposites were prepared in the kg scale in order to obtain enough specimens to investigate various properties of the uncured and vulcanized rubbers at the highest quality level, including rheology, curing, morphology, several mechanical properties, abrasion, conductivity, gas permeation, burning behavior, and weathering stability. The structure property relationships are asserted and questioned, for example, by investigating the radical scavenging ability or aspect ratio of the MLG. This chapter illustrates the state of the art of graphene/rubber nanocomposites targeted for commercial mass applications. KW - Nanocomposite KW - Graphene KW - Rubber KW - Reinforcement KW - Durability KW - Masterbatch KW - Gas Barrier Properties KW - Conductivity PY - 2019 SN - 978-0-12-817342-8 SP - 139 EP - 200 PB - Elsevier AN - OPUS4-47408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Morys, Michael T1 - Revealing the Inner Secrets of Intumescent Coatings: An Advanced Bench-scale Approach N2 - Intumescent coatings are used for decades to increase the fire resistance of steel or wood constructions. Intermediate and full scale tests are used to assess their protection performance. For the product development and screening, cheaper and faster bench-scale tests are demanded that provide information about thermal protection, foaming dynamics and mechanical resistance. In the recent years, we have developed several bench-scale fire resistance tests and used them in different research and developing projects. The influence of distinct binders and fillers, respectively, was studied in intumescent coatings using the Standard Time Temperature modified muffle furnace (STT Mufu+). This bench-scale test evaluates the fire resistance (by means of temperature measurements) and the foaming behaviour (by means of a high-temperature endoscope) during a standard time-temperature exposure. The fire residues were suitable for advance residue analysing techniques like nondestructive μ-computed tomography (μ-CT). Also, scanning electron microscopy was used to investigate the microscopic structure of the surface and inside of the residues. The mechanical resistance of the residues was tested by an impact resistance experiment. The binder influence on the insulation of the coating was small for the investigated systems. Nevertheless, it was interestingly noted, that coatings with high expansion did not provide the best protection. The great influence of the binder material on the inner structure of the foamed residues was revealed by the μ-CT images. Clear differing morphologies were observed. These led to distinct mechanical resistance properties of the tested coatings. Also the change of a low amount of fillers, such as fibres and clay was investigated with similar effects. What is more, a transition of the residue from black, carbonaceous foam with closed cells into an inorganic, residual open cell sponge occurs at high temperatures during the test. This transition is due to the loss of carbon; the change in microstructure is analysed by scanning electron microscopy. The bench-scale tool presented outreaches screening; the investigation based on the STT Mufu+ delivers a deeper understanding of the phenomena controlling the performance of intumescent coatings. T2 - European Coatings Fire Forum, High-Performance Fire Retardant Coatings CY - Berlin, Germany DA - 17.10.2017 KW - STT KW - MuFu+ KW - Bench-scale KW - Fire resistance KW - Intumescence KW - Coating PY - 2017 AN - OPUS4-42572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Schmaucks, Gerd T1 - Flame retardancy synergism in polymers through different inert fillers’ geometry N2 - Low amounts (<7.5 wt%) of organically modified layered silicate (LS) as well as large amounts (>10 wt%) of spherical amorphous SiO2 (sSiO2) has been used successfully as adjuvants in commercial polymeric materials flame retarded with metal hydroxide. The combination of LS and SiO2 is investigated in different thermoplastics with respect to their fire behavior, particular to overcome the restrictions in maximum and minimum filler contents know for the single additives. The aim was to check the potential of combinations of the inert fillers in absence of a real fire retardant. The combination of LS and sSiO2 harbors the potential for flame retardancy effects close to superposition or even synergy, due to an improved structure of the fire residue. LS-sSiO2 combinations are proposed to work as adjuvants superior to LS and sSiO2 in flame retarded polymeric materials. KW - Flame retardance KW - Nanocomposites KW - Organoclay KW - Silicones KW - Fillers PY - 2017 U6 - https://doi.org/10.1002/pen.24485 SN - 0032-3888 SN - 1548-2634 VL - 57 IS - 10 SP - 1099 EP - 1109 PB - SPE AN - OPUS4-42573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Timme, Sebastian A1 - Trappe, Volker A1 - Korzen, Manfred A1 - Schartel, Bernhard T1 - Fire stability of carbon fiber reinforced polymer shells on the intermediate-scale N2 - The fire stability of carbon fiber reinforced polymer (CFRP) shell structures was investigated using an intermediate-scale test setup. The shell specimens are representative of typical load-bearing CFRPs in modern civil aviation. The CFRP shell specimens were exposed to a fully developed fire with direct flame impingement to one side at a heat flux of 182 kW/m2. Specimens were simultaneously loaded with constant compressive force equal to 40% of the ultimate failure load. CFRP shells and four different fire retarding configurations, using integrated protective layers, were investigated. Unprotected CFRP specimens failed after just 27 s. Specimens with integrated protective layers with low heat conductivity and high burn-through resistance showed the most promising results. An integrated titanium foil decelerated the decomposition of the epoxy matrix and increased the time to failure by 68% compared to the unprotected CFRP shell. KW - Fire stability KW - Carbon fiber reinforced polymer (CFRP) KW - Thermomechanical properties KW - Buckling KW - Fully developed fire PY - 2017 U6 - https://doi.org/10.1016/j.compstruct.2017.07.025 SN - 0263-8223 SN - 1879-1085 VL - 178 SP - 320 EP - 329 PB - Elsevier Ltd. AN - OPUS4-41283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Antje A1 - Langfeld, Kirsten A1 - Ulmer, B. A1 - Andrievici, V. A1 - Hörold, Andreas A1 - Limbach, P. A1 - Bastian, Martin A1 - Schartel, Bernhard T1 - Halogen-free Multicomponent Flame Retardant Thermoplastic Styrene-Ethylene-Butylene-Styrene Elastomers Based on Ammonium Polyphosphate – Expandable Graphite Synergy N2 - Developing flame retarded thermoplastic elastomers (TPES) based on styrene−ethylene−butylene−styrene, polypropylene, and mineral oil is a challenging task because of their very high fire loads and flammability. A promising approach is the synergistic combination of expandable graphite (EG) and ammonium polyphosphate (APP). Cone calorimetry, oxygen index, and UL 94 classification were applied. The optimal EG:APP ratio is 3:1, due to the most effective fire residue morphology. Exchanging APP with melamine-coated APPm yielded crucial improvement in fire properties, whereas replacing EG/APP with melamine polyphosphate did not. Adjuvants, such as aluminum diethyl phosphinate (AlPi), zinc borate, melamine cyanurate, titanium dioxide, dipentaerylthritol, diphenyl-2-ethyl phosphate, boehmite, SiO2, chalk, and talcum, were tested. All flame retardants reinforced the TPE-S. The combination with AlPi is proposed, because with 30 wt % flame retardants a maximum averaged rate of heat emission below 200 kW m−2 and a V-0 rating was achieved. Multicomponent EG/APP/adjuvants systems are proposed as a suitable route to achieve efficient halogen-free flame retarded TPE-S. KW - Thermoplastic elastomers KW - Amonium polyphosphate KW - Expandable graphite KW - Synergy PY - 2017 U6 - https://doi.org/10.1021/acs.iecr.7b01177 SN - 0888-5885 VL - 56 IS - 29 SP - 8251 EP - 8263 PB - ACS Publications AN - OPUS4-41509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, Sebastian A1 - Schartel, Bernhard T1 - The rapid mass calorimeter: A route to high throughput fire testing N2 - The rapid mass calorimeter based on reduced‐size specimens is proposed for accelerated fire testing and put up for discussion, particularly for flame retarded polymeric materials. A mass loss calorimeter is combined with a semiautomatic sample changer. Experiments on specimens of reduced size were conducted on poly(methyl methacrylate), poly(propylene), polyamide 66, poly(ether ether ketone), and pine sapwood square samples with edge lengths of 100, 75, 50, 25, 20, and 10 mm. Specimens of 20 × 20 mm2 were selected to achieve a crucial reduction in specimen size and a measuring protocol developed. A total of 71 different polymeric materials were investigated in the rapid mass calorimeter and cone calorimeter for comparison and several materials with different heat release rate characteristics in the pyrolysis combustion flow calorimeter to test this additional screening method as well. The important fire properties obtained in the rapid mass calorimeter show reasonable correlation with the cone calorimeter results but also with the oxygen index. All in all, the rapid mass calorimeter produces reliable and meaningful results and, despite acceleration and size reduction, still allows for a certain degree of burning behavior interpretation. Material savings of 96% and time savings of around 60%‐70% are achieved compared to measure cone calorimeter. KW - Cone calorimeter KW - Fire testing KW - High throughput KW - Mass loss calorimeter KW - Rapid mass calorimeter PY - 2017 U6 - https://doi.org/10.1002/fam.2420 SN - 0308-0501 SN - 1099-1018 VL - 41 IS - 7 SP - 834 EP - 847 PB - Wiley AN - OPUS4-42503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flame and fire retardancy of polymer composites used in aviation N2 - The fire behaviour of carbon fibre (CF) reinforced polymers differs in comparison to polymers. Fibres behave often inert with respect to pyrolysis, they change the melt flow and dripping behaviour, the heat absorption and transfer, the amount and properties of the fire residue and so on. Flame and fire retardancy concepts are needed not only suitable for the different fire protection goals typical for each application, but also tailored for composites. This field is illuminated by examples taken from different projects carried out in the group of the author in the recent years. The examples target on different applications through achieving reduction in reaction to fire controlling the fire risks (flammability, heat release) in the beginning and development of a fire and investigating the fire stability, when a severe flame is directly applied (key property in fully developed fires). Approaches to halogen-free flame retardancy in CF reinforced thermosets are presented as well as building up a bench and an intermediate scale testing of composites in fire applying mechanical load (up to 1 MN compression) and direct flame exposure (180 kW/m2) simultaneously. Indeed, e.g. we have investigated the fire stability of stringer reinforced shell components taken out from the fuselage of an aircraft. The understanding of fire behaviour, fire resistance, and fire retardant modes of action in composites is a promising basis for target-oriented development. The role of flame inhibition, charring, and protective layer formation is discussed. Successful concepts are presented for fire retardancy tailored for different application as well as general guidelines for future development. Different phosphorus flame retardants are proposed to achieve halogen-free flame retardancy with respect to ignition and developing fires. Different protective approaches are sketched for addressing the fire stability of composites that is the most important fire risk for the fire resistance in structural applications. T2 - 7th EASN International Conference on Innovation in European Aeronautics Research CY - Warsaw, Poland DA - 26.09.2017 KW - Composite in Fire KW - Carbon fibre reinforced composite KW - Epoxy resin KW - Stringer reinforced shells KW - Fire stability KW - Flammability KW - Sandwich panels KW - Intumescence KW - Pyrolysis KW - Flame retardant PY - 2017 AN - OPUS4-42433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sypaseuth, Fanni D. A1 - Gallo, Emanuela A1 - Çiftci, Serhat A1 - Schartel, Bernhard T1 - Polylactic acid biocomposites: approaches to a completely green flame retarded polymer N2 - Basic paths towards fully green flame retarded kenaf fiber reinforced polylactic acid (K-PLA) biocomposites are compared. Multicomponent flame retardant Systems are investigated using an amount of 20 wt% such as Mg(OH)2 (MH), ammonium polyphosphate (APP) and expandable graphite (EG), and combinations with Silicon dioxide or layered silicate (LS) nanofillers. Adding Kenaf fibers and flame retardants increases the E modulus up to a factor 2, although no compatibilizer was used at all. Thus, in particular adding EG and MH decreases the strength at maximum elongation, and kenaf fibers, MH, and EG are crucial for reducing the elongation to break. The Oxygen index is improved by up to 33 vol% compared to 17 vol% for K-PLA. The HB classification of K-PLA in the UL 94 test is outperformed. All flame retarded biocomposites show somewhat lower thermal stability and increased amounts of residue. MH decreases the fire load significantly, and the greatest reduction in peak heat release rate is obtained for K-PLA/15MH/5LS. Synergistic effects are observed between EG and APP (ratio 2:1) in flammability and fire properties. Synergistic multicomponent systems containing EG and APP, or MH with adjuvants offer a promising route to green flame retarded natural fiber reinforced PLA biocomposites. KW - Biopolymers KW - Composites KW - Flame retardance KW - Natural fibres KW - Thermal decomposition PY - 2017 U6 - https://doi.org/10.1515/epoly-2017-0024 SN - 2197-4586 SN - 1618-7229 VL - 17 IS - 6 SP - 449 EP - 462 PB - De Gruyter AN - OPUS4-42872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qiu, Y. A1 - Wachtendorf, Volker A1 - Klack, Patrick A1 - Qian, L. A1 - Liu, Z. A1 - Schartel, Bernhard T1 - Improved flame retardancy by synergy between cyclotetrasiloxane and phosphaphenanthrene/triazine compounds in epoxy thermoset N2 - A siloxane compound (MVC) and a bi-group phosphaphenanthrene/triazine compound (TGD) were employed in epoxy thermosets to explore high-efficiency flame retardant systems. With only 1wt% MVC and 3wt% TGD, an epoxy thermoset passed UL 94 V-0 rating test and achieved a limiting oxygen index value of 34.0%, exhibiting an excellent flame retardant effect. The MVC/TGD system not only decreased the peak value of heat release rate and effective heat of combustion but also imparted an improved charring ability to thermosets, thereby outstandingly reducing the flammability of 1%MVC/3%TGD/EP. Compared with the fire performance of 4%TGD/EP and 4%MVC/EP, the MVC/TGD system showed an obvious flame retardant synergistic effect, mainly depending on the general improvement of flame inhibition, charring and barrier effects of the thermoset during combustion. Evolved gas analysis combinedwith condensed-phase pyrolysis product Analysis jointly revealed the details of the changed pyrolysis mode. KW - Flame retardant KW - Epoxy resin KW - Synergy KW - Siloxane KW - DOPO KW - Triazine PY - 2017 U6 - https://doi.org/10.1002/pi.5466 SN - 0959-8103 SN - 1097-0126 VL - 66 IS - 12 SP - 1883 EP - 1890 PB - Wiley AN - OPUS4-42950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - The Role of Decomposition Temperature for Flame Redartancy Mode of Action in the Condensed Phase N2 - Condensed-phase mechanisms play a major role in fire-retardant polymers. Generations of development have followed the concept of charring to improve fire properties. Whereas the principal reactions are believed to be known, the specific description for multicomponent systems is lacking, as is the picture across different systems. One important aspect in achieving, adjusting and optimising flame retardancy in the condensed phase is exploiting chemical reactions between the pyrolysing polymer and flame retardant at the right place, time and temperature. It is the aim of this contribution to address the role of the decomposition temperature of both flame retardant and polymer by the means of two examples: First, aryl phosphates in Polycarbonate/ Acrylonitrile-Butadiene-Styrene (PC/ABS) blends, where the reaction with the early stage decomposition products of PC is controlling the flame retardancy mechanism in the condensed phase. Second, a comprehensive set of phosphorus flame retardants in thermosets and their corresponding carbon fibre reinforced composites based on two different epoxy systems. Both examples show that key reactions between intermediate decomposition products only occur when the decomposition temperature ranges correspond to each other. The systems can be shifted towards condensed phase activity such as charring or inorganic glass formation as well as towards phosphorus release and thus flame inhibition in the gas phase. Changing the role of flame retardancy mechanisms also influence the efficiency in the achieved flame retardancy. T2 - 10th International Conference on Modification, Degradation and Stabilization of Polymers, MoDeSt2018 CY - Tokyo, Japan DA - 02.09.2018 KW - Acrylphosphate KW - Flame retardant mode of action KW - Mechanism KW - Phosphorus PY - 2018 AN - OPUS4-45966 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gómez-Fernández, S. A1 - Günther, Martin A1 - Schartel, Bernhard A1 - Corcuera, M. A. A1 - Eceiza, A. T1 - Impact of the combined use of layered double hydroxides, lignin and phosphorous polyol on the fire behavior of flexible polyurethane foams N2 - Flexible polyurethane foams with densities of 40 ± 2 kg m−3 were prepared by combining different ecofriendly fillers such as layered double hydroxides (LDH) and kraft lignin (a byproduct of the pulp and paper industry) with a phosphorous polyol (E560) in order to study their effect on the mechanical performance and fire behavior of the foams. Two series of foams were prepared, some containing lignin or LDH separately, and some with a combination of both: one of the series was prepared without E560 (0E foam series) and the other with 5 parts per hundred of E560 polyol (5E series). The use of fillers resulted in increased viscosity of the reactive mixture, requiring higher blowing agent content in order to hold the density of the foams constant. It was observed that urea phase segregation was favored in the series of 0E foams due to their lower viscosity than the 5E series. This had consequent effects on the resilience, compression force deflection and compression set of these foams. In terms of fire behavior it was observed that while the limiting oxygen index decreased, cone calorimeter results showed that the combination of lignin, LDH and E560 decreased the heat release of the foams. In addition, the combination of fillers and E560 contributed to increase the viscosity of the pyrolysis products, preventing the dripping of the molten polymer, which is a key factor in flame propagation towards adjacent objects in fire scenarios. KW - Ligning KW - Foam KW - Flexible polyurethane foam KW - Flame retardant PY - 2018 SN - 0926-6690 VL - 125 SP - 346 EP - 359 PB - Elsevier B.V. AN - OPUS4-45971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Günther, Martin A1 - Lorenzetti, A. A1 - Schartel, Bernhard T1 - Fire Phenomena of Rigid Polyurethane Foams N2 - Rigid polyurethane foams (RPUFs) typically exhibit low thermal inertia, resulting in short ignition times and rapid flame spread. In this study, the fire phenomena of RPUFs were investigated using a multi-methodological approach to gain detailed insight into the fire behaviour of pentaneand water-blown polyurethane (PUR) as well as pentane-blown polyisocyanurate Polyurethane (PIR) foams with densities ranging from 30 to 100 kg/m3. Thermophysical properties were studied using thermogravimetry (TG); flammability and fire behaviour were investigated by means of the limiting oxygen index (LOI) and a cone calorimeter. Temperature development in burning cone calorimeter specimens was monitored with thermocouples inside the foam samples and visual investigation of quenched specimens’ cross sections gave insight into the morphological changes during burning. A comprehensive investigation is presented, illuminating the processes taking place during foam combustion. Cone calorimeter tests revealed that in-depth absorption of radiation is a significant factor in estimating the time to ignition. Cross sections examined with an electron scanning microscope (SEM) revealed a pyrolysis front with an intact foam structure underneath, and temperature measurement inside burning specimens indicated that, as foam density increased, their burning behaviour shifted towards that of solid materials. The superior fire performance of PIR foams was found to be based on the cellular structure, which is retained in the residue to some extent. KW - Foam KW - Polyurethane KW - Fire behaviour KW - Flammability PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-465577 SN - 2073-4360 VL - 10 IS - 10 SP - 1166-1 EP - 1166-22 PB - MDPI AN - OPUS4-46557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Humphrey, J.K. A1 - Gibson, A.G. A1 - Hörold, Andreas A1 - Trappe, Volker A1 - Gettwert, V. T1 - Assessing the structural integrity of carbon-fibre sandwich panels in fire: Bench-scale approach N2 - The fire resistance of lightweight sandwich panels (SW) with carbon fibre/epoxy skins and a poly(methacryl imide) (PMI) foam core is investigated in compression under direct application of a severe flame (heat flux=200 kW m−2). A bench-scale test procedure was used, with the sample held vertically. The epoxy decomposition temperature was quickly exceeded, with rapid flash-over and progressive core softening and decomposition. There is a change in failure mode depending on whether the load is greater or less than 50% of the unexposed failure load, or in other words if one or two skins carry the load. At high loads, failure involved both skins with a single clear linear separation across each face. There is an inflection in the failure time relationship in the ∼50% load region, corresponding to the time taken for heat to be transmitted to the rear face, along with a change in the rear skin failure mode from separation to the formation of a plastic hinge. The integrity of the carbon front face, even with the resin burnt out, and the low thermal diffusivity of the core, both play key roles in prolonging rear face integrity, something to be borne in mind for future panel design. Intumescent coatings prolong the period before failure occurs. The ratio of times to failure with and without protection is proposed as a measure of their effectiveness. Apart from insulation properties, their adhesion and stability under severe fire impact play a key role. KW - Carbon fibres KW - Sandwich KW - Structural composites KW - Fracture KW - High-temperature properties KW - Surface treatments PY - 2019 U6 - https://doi.org/10.1016/j.compositesb.2018.11.077 SN - 1359-8368 VL - 164 SP - 82 EP - 89 PB - Elsevier AN - OPUS4-46908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Sypaseuth, Fanni D. A1 - Schubert, M. A1 - Schoch, R. A1 - Bastian, M. A1 - Schartel, Bernhard T1 - Routes to halogen‐free flame‐retardant polypropylene wood plastic composites N2 - Developing halogen‐free flame retardants with reasonably high efficiency, which thus function at limited loadings in polypropylene‐based wood/plastic composites (WPC), is still a challenge. Cost‐effective flame‐retarded WPC have been identified as a way to open the door to an interesting, broader spectrum of application in the building and transportation sectors. This work imparts a systematic comprehensive understanding and assessment of different basic routes to halogen‐free flame‐retarded WPC, taking into account economic and environmental considerations. Cheap, halogen‐free single‐component flame retardants and their multicomponent systems are investigated at reasonable filling grades of 20 wt%. The basic routes of promising synergistic multicomponent systems are discussed, and their potential and Limits assessed. Optimizing the consistency of fire residue; closing the surface of inorganic‐organic residual layers; the thermal stabilization and design of the residue, eg, synergistic combination of ammonium polyphosphate and expandable graphite; and the combination of different flame‐retardant mechanisms, eg, intumescence and flame inhibition, are proposed as promising routes to boost the flame‐retardant efficiency. KW - Flammability KW - Halogen‐free KW - Multicomponent systems KW - Polypropylene KW - Wood plastic composite (WPC) PY - 2019 U6 - https://doi.org/10.1002/pat.4458 SN - 1099-1581 SN - 1042-7147 VL - 30 IS - 1 SP - 187 EP - 202 PB - Wiley AN - OPUS4-46909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flammschutz in PUR: Eine alte, aktuelle und zukünftige Herausforderung N2 - Der Beitrag versucht sich an der Herausforderung, trotz beschränktem zeitlichen Rahmen einen ansprechenden Spagat zwischen umfangreichem Überblick und wissenschaftlichem Verständnis und so eine unabhängige und unparteiliche Einführung in Thematik flammgeschützte PUR-Schäume zu geben. Er kann sicherlich nicht individuelle Antworten oder konkrete Entwicklungsziele wie neue Rezepturvorschläge liefern, aber hofft zum Hintergrund und als Handwerkzeugs für das Aufstellen und Überdenken von Entwicklungsstrategien beizutragen. T2 - Internationale FSK-Fachtagung Schaumkunststoffe CY - Papenburg, Germany DA - 27.11.2018 KW - Polyurethan KW - Schaum KW - Flammschutz PY - 2018 AN - OPUS4-46911 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gallo, Emanuela A1 - Stöcklein, Waldemar A1 - Klack, Patrick A1 - Schartel, Bernhard T1 - Assessing the reaction to fire of cables by a new bench-scale method N2 - The recently approved EU Construction Products Regulation (CPR) applies to cables as construction products. The difficulty of predicting the fire performance of cables with respect to propagation of flame and contribution to fire hazards is well known. The new standard EN 50399 describes a full-scale test method for the classification of vertically mounted bunched cables according to CPR. Consideration of the material, time, and thus cost requires an alternative bench-scale fire test, which finds strong demand for Screening and development purposes. The development of such a bench-scale fire test to assess the fire Performance of multiple vertically mounted cables is described. A practical module for the cone calorimeter is proposed, simulating the fire scenario of the EN 50399 on the bench scale. The efficacy of this module in predicting full-scale CPR test results is shown for a set of 20 different optical cables. Key properties such as peak heat release rate (PHRR), fire growth rate (FIGRA), and flame spread are linked to each other by factors of around 5. In a case study, the bench-scale test designed was used to investigate the influence of the main components on the fire behaviour of a complex optical cable. KW - Optical cables KW - Construction products regulation KW - Bench-scale fire testing KW - Reaction to fire KW - Cone calorimeter PY - 2017 U6 - https://doi.org/10.1002/fam.2417 SN - 0308-0501 SN - 1099-1018 VL - 41 IS - 6 SP - 768 EP - 778 PB - Wiley AN - OPUS4-42092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flame Retardant Modes of Action N2 - Although the main flame retardant modes of action are known, in practise the detailed scientific understanding usually falls short, when it comes to modern multicomponent systems, the important tiny optimizations, or quantifying in terms of specific fire properties. Thus instead of a textbook-like overview of different flame retardant modes of action, this talk tries to deliver thought-provoking impulses. Some overseen details are picked up as well as basic questions raised. Rethinking of concepts memorised long ago is encouraged to discover something new. Furthermore, the talk tries to fill the gap between flame retardant modes of action and fire performance. T2 - FRPM 2017, 16th European Meeting on Fire Retardant Polymeric Materials CY - Manchester, UK DA - 03.07.2017 KW - Flame retardant modes of action KW - Flame retardancy mechanism KW - Flame inhibition KW - Charring KW - Heat shielding KW - Protective layer KW - Absorption in depth KW - UL 94 KW - Cone calorimeter PY - 2017 AN - OPUS4-40946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Timme, Sebastian A1 - Hörold, Andreas A1 - Trappe, Volker A1 - Korzen, Manfred T1 - Fire stability of fibre reinforced polymer composites: sandwich panels and fuselage shells N2 - The fire resistance of load-bearing composite components, e.g. sandwich panels in transportation or stringer reinforced shells used for fuselages, differs in comparison to metal systems. Fibres behave rather inert with respect to pyrolysis reducing burn-through phenomena. The fire stability becomes the main task, because it already breaks down when reaching the softening temperature of the matrix. Fire protection concepts are needed based on efficient thermal insulation and tailored for composite structures. The fire behaviour of fibre reinforced polymeric composites differs in comparison to polymers. Fibres behave often inert with respect to pyrolysis, they change dripping behaviour, the heat absorption and transfer, the amount and properties of the fire residue and so on. Their fire behaviour becomes somewhat singular. The fire resistance of load-bearing composite components, e.g. sandwich panels for transportation or stringer reinforced shells used for fuselages in aviation, differs in comparison to metal systems. Not burn-through, but the fire stability is typical critical mode of failure. The mechanical failure in fully developed fires can not be explained by the mechanical properties at room temperature, but are controlled by the decomposition and even more important by the softening of the matrix. Fire retardancy concepts are needed based on efficient thermal insulation and tailored for composites. This field is illuminated by examples taken from different projects carried out in the group of the presenting author in the recent years,[1-5] and still running unpublished activities as well. The fire stability is investigated for realistic compression loads, when a severe flame is directly applied (key property in fully developed fires). A bench scale specimen (specimen 150 mm x 150 mm, plates, sandwich, shells) and an intermediate scale (specimen 500 mm x 500 mm, plates, sandwich, shells) fire stability testing was performed. Indeed, e.g. we have investigated the fire stability of stringer reinforced shell components taken out from the fuselage of an aircraft. We applied mechanical load up to 233 kN and 1 MN in the bench-scale and intermediate-scale testing, respectively, and direct flame exposure using burners (180 kW/m2) simultaneously. The understanding of the fire resistance and fire protection modes of action in composite and composite components is a promising basis for target-oriented development. The role of the fire residue, protective layer formation, and the design of the components is discussed. Successful concepts are presented for increasing the fire resistance of load-bearing composite components as well as general guidelines for future development. T2 - FRPM 2017, 16th European Meeting on Fire Retardant Polymeric Materials CY - Manchester, UK DA - 03.07.2017 KW - Composites in fire KW - Carbon fibre reinforced composites KW - Fire stability KW - Fire resistance testing PY - 2017 AN - OPUS4-40947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Watolla, Marie-Bernadette A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Rickard, W.D.A. A1 - Krüger, Simone A1 - Schartel, Bernhard T1 - Intumescent geopolymer-bound coatings for fire protection of steel N2 - The passive fire protection of steel structures and other load-bearing components will continue to gain importance in future years. In the present contribution, novel intumescent aluminosilicate (geopolymer-bound) composites are proposed as fire-protective coatings on steel. Steel plates coated with these materials were exposed to the standard temperature-time curve as defined in ISO 834 – 1:1999. The coatings partially foamed during curing and expanded further during thermal exposure, demonstrating their intumescent characteristic.Thermogravimetryandoscillatory rheometry determined that the intumescent behavior is attributed to a transition to a viscous state (loss factor > 1) in the temperature range of major water release, differing from conventional geopolymers. XRD and SEM images showed that the coatings had characteristics of ceramic or glass-ceramic foams after fire resistance testing, suggesting superior performance under challenging conditions. The thickness of the coatings influenced their foaming and intumescent behavior and thus the time for the coated steel plates to reach 500 °C. A number of additives were also studied with the best performance obtained from samples containing sodium tetraborate.Acoating of just 6mmwas able to delay the time it takes for a steel substrate to reach 500 °C to more than 30 minutes. KW - Geopolymers KW - Fire protection KW - Intumescence KW - Coatings KW - Fire resistance PY - 2017 UR - https://www.ceramic-science.com/articles/all-articles.html?article_id=100558 U6 - https://doi.org/10.4416/JCST2017-00035 VL - 8 IS - 3 (Topical issue: Geopolymers) SP - 351 EP - 364 PB - Göller Verlag CY - Baden-Baden AN - OPUS4-42139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zirnstein, Benjamin A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - The impact of polyaniline in phosphorus flame retardant ethylene-propylene-diene-rubber (EPDM) N2 - Usually elastomers are loaded with high amounts of flame retardants to fulfill fire safety requirements. In this study the potential char precursor polyaniline (PANI) and the established fire retardant pentaerythritol (PER) were implemented in ethylene-propylene-diene monomer rubber (EPDM). PANI and PER were used in low loadings (7 phr) and combined with two phosphorous flame retardants, Ammonium polyphosphate (APP) and a piperazine-pyrophosphate/phosphoric acid compound (FP), to boost their performance. A comprehensive study is presented, explaining the impact of PANI on curing and mechanical properties, including compensation for the plasticizer-like effect of APP in EPDM, and improved flame retardancy. In the cone calorimeter test, the combination of EPDM/FP/PANI reduced the effective heat of combustion by 20%. All nine EPDM rubber compounds were investigated with the LOI and UL 94 tests, cone calorimeter, FMVSS 302 and glow wire testing to quantify fire performance. The PANI containing EPDM rubbers, EPDM/APP/PANI and EPDM/FP/PANI outperformed the corresponding PER containing, EPDM/APP/PER and EPDM/FP/PER rubbers in various tests. Moreover, the study investigated the impact of PANI and PER on the mode of action of the phosphorus species and showed that the addition of PANI increased the amount of phosphorus in the condensed phase. To receive a broader understanding of the flame retardant mode of action of PANI in combination with APP and FP, calculations were carried out to estimate the impact of PANI on the protective layer effect. KW - EPDM KW - Rubber KW - Flame retardant KW - Polyaniline KW - Pentaerythritol PY - 2019 U6 - https://doi.org/10.1016/j.tca.2019.01.019 SN - 0040-6031 VL - 673 SP - 92 EP - 104 PB - Elsevier B.V. AN - OPUS4-47503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lenz, J. U. A1 - Pospiech, D. A1 - Komber, H. A1 - Korwitz, A. A1 - Kobsch, O. A1 - Paven, M. A1 - Albach, R. W. A1 - Günther, Martin A1 - Schartel, Bernhard T1 - Effective halogen-free flame-retardant additives for crosslinked rigid polyisocyanurate foams: Comparison of chemical structures N2 - The impact of phosphorus-containing flame retardants (FR) on rigid polyisocyanurate (PIR) foams is studied by systematic variation of the chemical structure of the FR, including non-NCO-reactive and NCO-reactive dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide (BPPO)- and 9,10 dihydro-9-oxa-10 phosphaphenanthrene-10-oxide (DOPO)-containing compounds, among them a number of compounds not reported so far. These PIR foams are compared with PIR foams without FR and with standard FRs with respect to foam properties, thermal decomposition, and fire behavior. Although BPPO and DOPO differ by just one oxygen atom, the impact on the FR properties is very significant: when the FR is a filler or a dangling (dead) end in the PIR polymer network, DOPO is more effective than BPPO. When the FR is a subunit of a diol and it is fully incorporated in the PIR network, BPPO delivers superior results. KW - Flame retardant; KW - Dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide; BPPO KW - 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide; DOPO KW - Polyisocyanurate; PIR KW - Rigid foam KW - Cone calorimeter KW - Pudovik reaction PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-567712 SN - 1996-1944 VL - 16 IS - 1 SP - 1 EP - 22 PB - MDPI CY - Basel AN - OPUS4-56771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goller, Sebastian M. A1 - Krüger, Simone A1 - Schartel, Bernhard T1 - No business as usual: The effect of smoke suppressants commonly used in the flame retardant PA6.6 on smoke and fire properties N2 - As most of polymeric materials are inherently flammable, flame retardants (FR) are commonly used to reduce their fire risks. Nevertheless, these flame retardant materials are often detrimental to smoke parameters like specific optical density or smoke toxicity. The influence of several smoke suppressants (SP)-zinc stannate, zinc phosphate, titanium oxide and hydrotalcite-were investigated with respect to flame retardancy, smoke emission, particle emission and smoke toxicity in a diethyl aluminum phosphinate (AlPi) flame retardant polyamide 6.6 (PA6.6). It was shown that the interaction between SP, FR and polymer is crucial for smoke and fire properties and can change the mode of action of the FR as well the decomposition mechanism of the polymer. Small amounts of SP show less effect on forced flaming behavior and the optical density, but they can influence flammability and the particle size distribution of the soot particles. The flame retardancy was significantly enhanced by 5 wt.-% zinc stannate in PA6.6 under forced flaming conditions. The charring mechanism was improved, and the mode of action of AlPi switched from the gas to the condensed phase. This resulted of in a reduced PHRR and TSP and an increase in residue yield. The smoke toxicity and optical density were reduced in the smoke density chamber as well. The smoke particles shifted to smaller sizes as the time in the pyrolytic zone increased. The formation of a dense char is assumed to be the key factor to enhance smoke suppression and flame retardancy properties. KW - Polyamide 6.6 KW - Smoke suppression KW - Flame retardancy KW - Zinc stannate KW - Smoke density PY - 2023 U6 - https://doi.org/10.1016/j.polymdegradstab.2023.110276 SN - 0141-3910 VL - 209 PB - Elsevier Ltd. AN - OPUS4-56981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Sustainability Finding its Way into Flame Retardancy: Food for Thought between Fake Fiction and Future N2 - Main message: Sustainability, or in other words, exploiting environmental conservation for the economic welfare and prosperity for all, would revolutionise the plastics industry were it to become predominant practice as a linear, fossil-fuel–based economy is switched to a carbon circular economy. Food for though is given by dint of a critical overview of the current trends in sustainable flame-retardant polymeric materials. Introduction: Transforming the plastics industry into a carbon circular economy over the next 30 years requires an immediate revolution entailing the development of cutting-edge materials and the planning of future industrial production plants. Hence, the innovative field of flame-retardant polymeric materials should lend its strength to drive this challenge. Visionary solutions are proposed to inspire us, while the implementation of economically feasible concepts can take us forward into the future. Experimental The synthesis, processing, polymer analysis, thermal analysis, and investigation of fire behaviour from our own research are performed according to the state of the art, mostly in accordance with the pertinent ISO standards. Indeed, some of our equipment is part of the accredited lab; for the other methods we fulfil equivalent quality standards in terms of maintenance, calibration, participation in round robins, etc. Work steps such as the synthesis or preparation of new materials are usually outsourced or done with partners that have the relevant core competence. The talk also presents examples from other groups whose experimental is described in the corresponding scientific papers. Results and Discussion An overview of current trends towards producing sustainable, flame-retardant polymeric materials is presented, using examples from the literature and by sketching our own projects performed in recent years. The examples are structured along a common theme leading from the use of old and new natural materials with some intrinsic flame retardancy, via flame-retardant biopolymers and biocomposites, to using renewable sources for flame retardants with the objective of exploiting natural sources available as industrial waste streams. Natural flame retardants and adjuvants are highlighted, although the status of most may be assessed as merely motivating our vision. Nevertheless, there are natural material streams finding their way into polymer mass production as fillers, adjuvants, polymers, or renewable educt sources. Natural substances originating from industrial waste streams open the door to sustainable solutions, because they are often available at low cost and avoid competition for land with farming or virgin forests. Aside from this main topic, remarks will address the recycling of flame-retarded polymeric materials; vitrimers are mentioned as a potential material for recyclable thermosets. At the end of the day, only convincing property profiles will prevail both for exploiting renewable sources and circular design, including cost effectiveness, sufficient availability, consistent quality, processibility, mechanical properties, and flame retardancy. However, sustainability must not be merely tolerated as an additional demand, but should instead be recognized as a solution, because sustainability aspires to ensure our economic welfare now and in the future. Acknowledgement: The examples shown from own project were supported by funding grants: BMBF WTZ: 01DN16040, DFG Scha 730/19-1, VW-Stiftung: Experiment No: 97437, DFG Scha 730/20-1, BMBF KMU Innovativ 031B1289B. T2 - 19th European Meeting on Fire Retardant Polymeric Materials (FRPM23) CY - Dübendorf, Switzerland DA - 26.06.2023 KW - Renewable KW - Biocomposite KW - Sustainable KW - Circular economy KW - Natural PY - 2023 AN - OPUS4-57815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard ED - Hu, Y. ED - Wang, X. T1 - Influence of the Size and Dispersion State of Two-Dimensional Nanomaterials on the Fire Safety of Polymers N2 - Only the nano-scaled structure of the nanocomposite and the dispersion of nanoparticles within the polymer matrix harbor multifunctional potential including superior fire retardancy. Thus, this chapter focuses on the dispersion of nanoplates, based mainly on studies of layered silicates and graphene/graphene-related nanoplates. The nanostructure and properties of the nanocomposites are dependent mainly on thermodynamic and kinetic factors during preparation. Improving nano-dispersion often directly improves flame retardancy. Therefore, the modification of the nanoplates as well as the preparation of nanocomposites becomes very important to control this dispersion. The dispersion of nanoplates functions as a prerequisite for the formation of an efficient protective layer, changing the melt flow and dripping behavior, or the improvement of the char properties. KW - Nanocomposite KW - Flame retardancy KW - 2D nanoparticle KW - Exfoliation KW - Dispersion KW - Flammability PY - 2023 SN - 978-1-032-35268-8 SN - 978-1-032-35502-3 SN - 978-1-003-32715-8 U6 - https://doi.org/10.1201/9781003327158-2 SP - 23 EP - 58 PB - CRC Press CY - Boca Raton AN - OPUS4-58290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Turski Silva Diniz, Analice A1 - Marti, J. M. A1 - Schartel, Bernhard T1 - High Heat Resistance Can Be Deceiving: Dripping Behavior of Polyamide 4.6 in Fire N2 - Polyamide 4.6 (PA46) is a high-heat-resistant polymer, but it has no dripping resistance under fire. Three commercial grades of PA46 are investigated under UL 94 vertical fire test conditions. Their performances are discussed based on the materials’ structural, thermal, and rheological properties. PA46 presents flaming drops, whereas dripping is prevented in the flame-retarded PA46. Friction-modified PA46 has increased flaming dripping. Temperature profiles of the specimens under fire and the temperature of the drops are measured by thermocouples. A UL 94 vertical test configuration consisting of two flame applications is designed to assess the quantitative dripping behavior of the set of materials by the particle finite element method (PFEM). Polymer properties (activation energy and Arrhenius coefficient of decomposition, char yield, density, effective heat of combustion, heat of decomposition, specific heat capacity, and thermal conductivity) in addition to rheological responses in high temperatures are estimated and measured as input parameters for the simulations. The dripping behavior obtained by simulated materials corresponds with the experimental results in terms of time and drop size. A consistent picture of the interplay of the different phenomena controlling dripping under fire appears to deliver a better understanding of the role of different materials’ properties KW - Dripping KW - UL 94 KW - PFEM KW - High heat resistance KW - Polyamide 4.6 KW - Flammability PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-586015 SN - 1439-2054 SN - 1438-7492 VL - 308 IS - 10 SP - 1 EP - 11 PB - Wiley-VCH AN - OPUS4-58601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Schaumann, P. A1 - Hothan, Sascha A1 - Mund, M. A1 - Häßler, Dustin A1 - Schartel, Bernhard A1 - Daus, Lars-Hendrik T1 - Bewertung des Feuerwiderstandes von Stahlkonstruktionen mit reaktiven Brandschutzsystemen unter Berücksichtigung des Alterungsverhaltens N2 - Im Rahmen des Forschungsprojektes IGF 20470N wurden Untersuchungen zum Alterungsverhalten von reaktiven Brandschutzsystemen (RBS) auf Stahlbauteilen durchgeführt. Mithilfe der Ergebnisse einer umfangreichen Literaturrecherche sowie experimentellen und numerischen Untersuchungen sollte ein Vorschlag für ein Prüfkonzept zum Nachweis einer Nutzungsdauer von RBS von mehr als 10 Jahren auf Basis von Kurzzeitversuchen abgeleitet werden. Dabei setzt die Bewertung des Alterungsverhaltens von RBS voraus, dass die Mechanismen der Alterung hinreichend bekannt sind. Dafür wurden zunächst systematisch Daten von Kurz- und Langzeitversuchen von nationalen Zulassungsprüfungen der letzten Jahrzehnte ausgewertet. Anschließend wurden umfangreiche experimentelle Untersuchungen an einer wasserbasierten sowie einer epoxidharzbasierten Richtrezeptur durchgeführt. Da aus der Literatur bekannt ist, dass die Einflüsse der Bewitterung zu einer Veränderung der Konzentration der Bestandteile innerhalb der Beschichtung führen können, wurden Untersuchungen mit Mangelrezepturen durchgeführt, wobei systematisch einzelne Bestandteile reduziert wurden. Neben optischen Untersuchungen wurden thermoanalytische Verfahren (DSC-TG-, ATR-FTIR-, Elementar-, Farbanalyse) angewandt sowie Brandversuche an beschichteten Stahlplatten durchgeführt. Des Weiteren wurden die Richtrezepturen den beschleunigten Kurzzeitversuchen gemäß EAD 350402-00-1106 (2017) unterzogen, welche die Zulassung von Produkten auf europäischer Ebene regelt. Für die wasserbasierte Richtrezeptur wurden die Bewitterung für den feuchten Innenraum (Typ Z1) mehrfach wiederholt (1x, 3x, 6x). Für die epoxidharzbasierte Richtrezeptur entsprach die Bewitterung dem Zyklus für die Außenanwendung (Typ X). In Brandversuchen sowie thermoanalytischen und optischen Untersuchungen wurde das Alterungsverhalten sowie die thermische Schutzwirkung analysiert. Anschließend wurden numerische Simulationen von Stahlbauteilen mit gealterten RBS durchgeführt und anhand der experimentellen Untersuchungen validiert. Mithilfe der numerischen Modelle kann eine Bewertung der thermischen Schutzwirkung von Stahlbauteilen mit gealterten RBS vorgenommen werden. Mithilfe der gesammelten Erkenntnisse wurde ein Vorschlag für ein Prüfkonzept für den Nachweis einer Nutzungsdauer von mehr als 10 Jahren abgeleitet. Das Prüfkonzept besteht dabei aus einem Katalog von Möglichkeiten, die aktuellen Zulassungsprüfungen auf europäischer Ebene für eine Nutzungsdauer von 10 Jahren auf einen längeren Zeitraum zu erweitern. N2 - Within the scope of the research project IGF 20470N, investigations were carried out on the assessment of the aging behavior of intumescent coatings (ICs) for the fire protection of steel members. With the help of the results of an extensive literature research as well as experimental and numerical investigations, a proposal for a test concept for the proof of a service life of ICs of more than 10 years was to be derived on the basis of short-term tests. The evaluation of the aging behavior of ICs presupposes that the aging mechanisms are sufficiently known. For this purpose, data from short- and long-term tests of national approval tests of the last decades were first systematically evaluated. Subsequently, extensive experimental investigations were carried out on a water-based and epoxy resin-based model formulation. Since it is known from the literature that the effects of weathering may lead to a change in the concentrations of the constituents within the coating, investigations were carried out with formulations of the ICs in which individual constituents were systematically reduced. In addition to optical investigations, thermoanalytical methods (DSC-TG-, ATR-FTIR-, elemental-, color analysis) were used and fire tests were carried out on coated steel plates. Furthermore, the model formulations were subjected to the accelerated short-term tests of EAD 350402-00-1106 (2017), which regulates the approval of products at the European level. For the water-based model formulation, the weathering for the interior application with a high moisture content (type Z1) was repeated several times (1x, 3x, 6x). For the epoxy resin-based model formulation, the weathering corresponded to the cycle for exterior application (type X). Fire tests as well as thermoanalytical and optical investigations were carried out to analyze the aging behavior and the thermal protection performance. Subsequently, numerical simulations of steel members with aged ICs were carried out and validated on the basis of the experimental investigations. With the help of the numerical models, an evaluation of the thermal protection performance of steel members with aged ICs can be carried out. Bases on the findings, a proposal for a test concept for the verification of a service life of more than 10 years was derived. The test concept consists of a catalogue of possibilities for extending the current approval tests at European level for a service life of 10 years to a longer period. KW - Brandschutz KW - Dauerhaftigkeit KW - Alterung KW - Reaktive Brandschutzsysteme KW - Brandversuche PY - 2022 UR - https://dast.deutscherstahlbau.de/veroeffentlichungen/forschungsberichte SP - 1 EP - 367 PB - Stahlbau Verlags- und Service GmbH CY - Düsseldorf AN - OPUS4-57257 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strommer, Bettina A1 - Battig, Alexander A1 - Schulze, Dietmar A1 - Agudo Jacome, Leonardo A1 - Schartel, Bernhard A1 - Böhning, Martin T1 - Shape, orientation, interaction, or dispersion: valorization of the influence factors in natural rubber nanocomposites N2 - The addition of nanoparticles as reinforcing fillers in elastomers yields nanocomposites with unique property profiles, which opens the door for various new application fields. Major factors influencing the performance of nanocomposites are studied by varying the type and shape of nanoparticles and their dispersion in the natural rubber matrix. The industrial applicability of these nanocomposites is put into focus using two types of graphene and a nanoscale carbon black, all commercially available, and scalable processing techniques in the form of a highly filled masterbatch production via latex premixing by simple stirring or ultrasonically assisted dispersing with surfactant followed by conventional two-roll milling and hot pressing. Different processing and measurement methods reveal the potential for possible improvements: rheology, curing behavior, static and dynamic mechanical properties, swelling, and fire behavior. The aspect ratio of the nanoparticles and their interaction with the surrounding matrix prove to be crucial for the development of superior nanocomposites. An enhanced dispersing method enables the utilization of the improvement potential at low filler loadings (3 parts per hundred of rubber [phr]) and yields multifunctional rubber nanocomposites: two-dimensional layered particles (graphene) result in anisotropic material behavior with strong reinforcement in the in-plane direction (157% increase in the Young's modulus). The peak heat release rate in the cone calorimeter is reduced by 55% by incorporating 3 phr of few-layer graphene via an optimized dispersing process. KW - Graphene KW - Natural rubber KW - Nanocomposites KW - Anisotropy KW - Fire behavior PY - 2023 U6 - https://doi.org/10.5254/rct.23.77961 SN - 0035-9475 SN - 1943-4804 VL - 96 IS - 1 SP - 40 EP - 58 PB - Allen Press CY - Lawrence (KA), USA AN - OPUS4-57568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chan, Yin Yam A1 - Korwitz, A. A1 - Pospiech, D. A1 - Schartel, Bernhard T1 - Flame Retardant Combinations with Expandable Graphite/ Phosphorus/CuO/Castor Oil in Flexible Polyurethane Foams N2 - A series of flexible polyurethane foams (FPUFs) were prepared with single and different combinations of flame retardants and additives. Expandable graphite (EG), phosphorous polyol (OP), copper (II) oxide (CuO), and/or castor oil (CAS) were added to FPUF during the foam preparation in a one-step process. The purpose of the study is to evaluate the synergistic effects of the flame retardants, additives, and the presence of bio-based content on the mechanical properties, flame retardancy, and smoke behavior of FPUFs. The combination of 10 wt % EG and 5 wt % OP in FPUF significantly improves the char yield. In the cone calorimeter experiment, the char yield is nearly three times higher than that with 10 wt % EG alone. The smoke behavior is additionally evaluated in a smoke density chamber (SDC). Comparing the samples with a single flame retardant, 10 wt % EG in FPUF considerably reduces the amount of smoke released and the emission of toxic gases. Replacing the amount of 10 wt % polyether polyol in FPUF with CAS maintains the physical and mechanical properties and fire behavior and enhances the bio-based content. The presence of 0.1 wt % CuO in FPUF effectively reduces the emission of hydrogen cyanide. As a result, this study proposes a multicomponent flame retardant strategy for FPUF to enhance the biomass content and address the weaknesses in flame retardancy, smoke, and toxic gas emissions. A starting point is disclosed for future product development. KW - Flexible polyurethane foam KW - Flame retardancy KW - Synergistic effect KW - Smoke behavior KW - Expandable graphite KW - Bio-based PY - 2023 U6 - https://doi.org/10.1021/acsapm.2c01969 SN - 2637-6105 VL - 5 IS - 3 SP - 1891 EP - 1901 PB - ACS AN - OPUS4-57507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Schartel, Bernhard T1 - Flame retardant biocomposites: Up-and-coming N2 - - biocomposite (=biopolymer/natural fibres) replacing technical polymers - renewable building blocks for flame retardants - exploiting waste streams for sustainable adjuvants and flame retardants - bio-vitrimers T2 - 1st Conference - Flame Retardancy for Composite Applications in the Transport Sector CY - Berlin, Germany DA - 10.05.2023 KW - Biocomposite KW - Flame retardant KW - Vitrimer KW - Renewable KW - Sustainable PY - 2023 AN - OPUS4-57511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Battig, Alexander A1 - Böhning, Martin A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Strommer, Bettina A1 - Tabaka, Weronika A1 - Wachtendorf, Volker T1 - Small but Great – Multifunctional Graphene in Rubber Nanocomposites N2 - A few layer/multilayer graphene (MLG) with a specific surface area of BET ≥ 250 m2/g is proposed as an efficient multifunctional nanofiller for rubbers. The preparation method, i.e., ultrasonically-assisted solution or latex premixing of master batches followed by conventional two-roll milling, strongly influences the dispersion in the elastomeric matrix and is fundamental for the final properties. When homogenously dispersed, single stacks of only approximately 10 graphene sheets, with an aspect ratio of ca. 35, work at low loadings, enabling the replacement of large amounts of carbon black (CB), an increase in efficiency, and a reduction in filler load. The appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing, gas barrier properties, electrical and thermal conductivity, as well as mechanical properties of different rubbers, as shown for chlorine-Isobutylene-Isoprene rubber (CIIR), nitrile-butadiene rubber (NBR), natural rubber (NR), and styrene-butadiene rubber (SBR).[1-5] 3 phr of MLG tripled the Young’s modulus of CIIR, an effect equivalent to 20 phr of CB. The stronger interactions between MLG and NR or SBR also resulted in a reduction in the elongation at break by 20% and 50%, respectively, while the same parameter was hardly changed for CIIR/MLG and NBR/MLG. CIIR/MLG and NBR/MLG were stiffer but just as defomable than CIIR and NBR. The strong reinforcing effect of 3 phr MLG was confirmed by the increase of greater than 10 Shore A in hardness. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards flammability. We investigated MLG also as a synergist for reducing the aluminium trihydrate loading in flame retardant hydrogenated acrylonitrile-butadiene (HNBR), polybutadiene chloroprene (BR/CR), and chlorosulfonated polyethylene rubber(CSM).[6-8] The higher the nanofiller concentration is, the greater the improvement in the properties. For instance, the permeability decreased by 30% at 3 phr of MLG, 50% at 5 phr and 60% at 10 phr, respectively. Moreover, the MLG nanocomposites improve stability of mechanical properties against the effects of weathering. In key experiments an increase in UV-absorption and a pronounced radical scavenging were proved as stabilizing mechanisms. In a nutshell, MLG is an efficient multifunctional nanofiller ready to be used for innovative rubber development. T2 - 34th PDDG Conference CY - Dubrovnik, Croatia DA - 11.06.2023 KW - Graphene KW - Nanocomposites KW - Reinforcement KW - Antioxydant KW - Flame retardant KW - Durability PY - 2023 AN - OPUS4-57693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flame retardancy features sustainability: Fake fiction, food for thought, or future N2 - • Renewable sources find their way into flame retardancy • Innovative solutions meet sustainability • Facing recycling and circular economy T2 - AMI Fire Retardants in Plastics CY - Philadelphia, PA, US DA - 26.04.2023 KW - Flame retardants KW - Sustainability KW - Resources from waste streams KW - Biocomposite KW - Vitrimers PY - 2023 AN - OPUS4-57415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Turski Silva Diniz, Analice A1 - Schartel, Bernhard T1 - The effects of property variation on the dripping behaviour of polymers during UL94 test simulated by particle finite element method N2 - The dripping behaviour of polymers is often observed experimentally through the UL94 flammability standard test. In this work, polymeric dripping under fire is investigated numerically using particle finite element method. A parametric analysis was carried out to observe the influence of a single property on overall dripping behaviour via a UL94 vertical test model. Surrogates and property ranges were defined for variation of the following parameters: glass transition temperature (Tg), melting temperature (Tm), decomposition temperature (Td), density (ρ), specific heat capacity (Cp), apparent effective heat of combustion of the volatiles, char yield (μ), thermal conductivity (k), and viscosity (η). Polyamide, poly(ether ether ketone), poly(methyl methacrylate), and polysulfone were used as benchmarks. Simulated results showed that specific heat capacity, thermal conductivity, and char yield allied with viscosity were the properties that most influenced dripping behaviour (starting time and occurrence). KW - Dripping KW - PFEM KW - UL 94 KW - Simulation KW - Fire behaviour PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-597449 SN - 1618-7229 VL - 24 IS - 1 PB - De Gruyter AN - OPUS4-59744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goller, Sebastian M. A1 - Schartel, Bernhard A1 - Krüger, Simone T1 - Block it and rock it: Smoke suppressants that form a protective layer in PA 6.6 N2 - To ensure fire safety, polymers are filled with flame retardants and smoke suppressants. To meet the highest requirements, it is essential to understand the decomposition of those polymeric materials. This study reveals interactions between polymer, smoke suppressants, and flame retardants, and discusses their impact on the materials’ flame retardancy, smoke emission, smoke toxicity, and particle emission in conventional loadings to provide deeper general understanding. Low melting oxide glass, melem, spherical silica, sepiolite, melamine polyphosphate, and boehmite in an aluminum diethylphosphinate flame-retarded polyamide 6.6 were investigated. All smoke suppressants improve the protective layer and act as an adjuvant. Silica and melem performed best under forced flaming conditions. Spherical silica reduces the peak of heat release rate by 39% and the total heat evolved by 14%, whereas 10 wt% melem lowers the total smoke production by 41%. Melem alters the mode of action of aluminum diethylphosphinate from gas to more condensed phase activity. This change reduces flame inhibition and hence smoke toxicity, but further improves the protective layer due to charring reactions in the decomposition mechanism. In addition, the sizes of the smoke particles decrease because of the prolonged time in the pyrolytic zone. This study highlights that interactions between polymer, flame retardants, and smoke suppressants can significantly determine the smoking and burning behavior. KW - Smoke suppressant KW - Flame retardancy KW - Aluminum diethylphosphinate KW - Smoke KW - Polyamide 6.6 PY - 2024 U6 - https://doi.org/10.1177/07349041231220250 SN - 0734-9041 VL - 42 IS - 2 SP - 117 EP - 141 PB - SAGE Publications AN - OPUS4-59533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fornacon-Wood, C. A1 - Stühler, M. R. A1 - Gallizioli, C. A1 - Manjunatha, B. R. A1 - Wachtendorf, Volker A1 - Schartel, Bernhard A1 - Plajer, A. J. T1 - Precise construction of weather-sensitive poly(ester-alt-thioesters) from phthalic thioanhydride and oxetane N2 - We report the selective ring opening copolymerisation (ROCOP) of oxetane and phthalic thioanhydride by a heterobimetallic Cr(III)K catalyst precisely yielding semi-crystalline alternating poly(esteralt- thioesters) which show improved degradability due to the thioester links in the polymer backbone. KW - Sulfur containing polymers KW - Durability KW - Weathering KW - Synthesis PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-590762 SN - 1364-548X VL - 59 IS - 76 SP - 11353 EP - 11356 PB - RSC AN - OPUS4-59076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hupp, Vitus A1 - Schartel, Bernhard A1 - Flothmeier, K. A1 - Hartwig, A. T1 - Fire Behavior of Pressure-sensitive Adhesive Tapes and Bonded Materials N2 - Pressure-sensitive adhesive tapes are used in several industrial applications such as con-struction, railway vehicles and the automotive sector,where the burning behavior is ofcrucial importance. Flame retarded adhesivetapes are developed and provided, however,often without considering the interaction of adhesive tapes and the bonded materialsduring burning nor the contribution of the tapes to fire protection goal of the bondedcomponents in distinct fire tests. This publication delivers an empirical comprehensiveknowledge how adhesive tapes and their flame retardancy effect the burning behaviorof bonded materials. With a special focus on the interaction between the single compo-nents, one flame retarded tape and one tapewithout flame retardant are examined inscenarios of emerging and developing fires, along with their bonds with the commonmaterials wood, zinc-plated steel, mineral wool, polycarbonate, and polymethylmethacry-late. The flame retardant significantly improved the flame retardancy of the tape as afree-standing object and yielded a V-2 rating in UL 94 vertical test and raised the OxygenIndex by 5 vol.%. In bonds, or rather laminates, the investigations prove that the choiceof carrier and substrates are the factors with the greatest impact on the fire propertiesand can change the peak of heat release rate and the maximum average rate of heatemission up to 25%. This research yielded a good empirical overall understanding of thefire behavior of adhesive tapes and bonded materials. Thus, it serves as a guide for tapemanufacturers and applicants to develop tapes and bonds more substrate specific. KW - Adhesives KW - Cone calorimeter KW - Flame retardancy KW - Laminates KW - Phosphorus flame retardants KW - Pressure-sensitive adhesive KW - Tapes PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-593207 SN - 0308-0501 SN - 1099-1018 VL - 48 IS - 1 SP - 114 EP - 127 PB - Wiley CY - New York, NY AN - OPUS4-59320 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flame Retardancy of Polymers - A Bunch of Thoughts N2 - Short overview is given of BAM's research within the topic "Flame Retardancy of Polymeric Materials". Fire science is identified as a crucial compentenc of BAM following our mission "Safety in Technology and Chemistry". In the area of polymers we work interdisciplinary, in the dimensions from nm to 2m, and we love to combine experiment and simulation. Multimethodical examples are given to describe the burning phenomena and flame-retardant modes of action. Further some examples are presented for tailored bench-scale fire testing and assessing concepts. Our goal is to provide the fundaments for a evidenced-based development of future materials. T2 - Klausurtagung Transregio 150 CY - Weinheim, Germany DA - 21.11.2023 KW - Flame retardants KW - Mode of action KW - Flame retardancy concepts KW - Flame inhibition KW - Protective layer KW - Charring KW - Dripping KW - Synergy PY - 2023 AN - OPUS4-58899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sunder, S. A1 - Jauregui Rozo, Maria A1 - Schartel, Bernhard A1 - Ruckdäschel, H. T1 - Adapting intumescent/low-melting glass flame-retardant formulations for transfer to glass-fiber-reinforced composites and post-fire mechanical analysis N2 - The residual post-fire mechanical properties of fiber-reinforced epoxy composites are influenced by their fire residues after burning. This study uses intumescent/low-melting glass flame retardants to tailor fire residues in epoxy resin. Processibility of prepregs and their quality are analysed for transfer of the flame-retardant epoxy resins to layered glass-fiber reinforced composites. Minimal effects were found on the pre-fire flexural strengths of the composites due to low loading of the flame retardants. However, when transferred to glass-fiber reinforced composites, the fire residues diminish significantly. Further studies are required to improve theoretical and experimental estimations of the post-fire mechanics of the composites. T2 - SAMPE Europe Conference 2023 CY - Madrid, Spain DA - 03.10.2023 KW - Fire residue KW - Prepregs KW - Mechanics KW - Lightweight materials KW - Composites KW - Flame retardancy PY - 2023 SP - 1 EP - 7 AN - OPUS4-59138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sanchez Olivares, G. A1 - Rockel, Daniel A1 - Calderas, F. A1 - Schartel, Bernhard T1 - Utilizing leather fibers from industrial wastes as bio-filler to improve flame retardancy in polypropylene N2 - Combining buffing leather fibers from industrial waste streams with ammonium polyphosphate and bentonite clay is proposed as a flame-retardant additive for polypropylene. The paper addresses how they can be processed into attractive composites with the desired mechanical properties. Buffing leather fibers function as a multifunctional bio-filler and as a synergist for the flame retardant, resulting in fire retardancy successful enough to increase the oxygen index (LOI) by up to 7 vol.-% and to achieve a V0 UL 94 classification. Impressively reduced heat release rates are obtained in the cone calorimeter at 50 kW/m2 irradiation; for instance, the maximum average rate heat evolved (MARHE) drops from 765 to below 200 kW m􀀀 2. The synergistic effects are quantified and shown to be very strong for LOI and MARHE. This work opens the door to use waste buffing leather fibers as a promising multifunctional and synergistic bio-filler. KW - Polypropylene KW - Flame retardancy KW - Industrial waste KW - Leather fibers KW - Bio-filler PY - 2024 U6 - https://doi.org/10.1016/j.jiec.2023.11.008 SN - 1226-086X SN - 1876-794X VL - 132 SP - 148 EP - 160 PB - Elsevier B.V. AN - OPUS4-59556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -