TY - CONF A1 - Hejazi, Bardia A1 - Fritsch, Tobias A1 - Benz, Christopher A1 - Radtke, Lars A1 - Sander, Manuela A1 - Bruno, Giovanni T1 - In-situ very high cycle fatigue experiments of additively manufactured Ti-6Al-4V using X-ray computed tomography N2 - X-ray computed tomography (XCT) is an invaluable method for evaluating the properties and performance of components both during service and after failure in a non-destructive manner. XCT is particularly useful for the investigation of additively manufactured (AM) components, which often have production defects that are inherent to the manufacturing process, such as lack of fusion defects. Understanding the mechanisms of fatigue crack growth throughout the life cycle of such components is crucial and so to address this need, we designed and performed experiments to investigate the fatigue life and fatigue crack growth behavior of Ti-6Al-4V components under very high cycle fatigue (VHCF) testing. The titanium samples were additively manufactured with intentional internal defects to control crack initiation location. XCT of the component was carried out to identify crack initiation sites and characterize the dynamics of crack growth. The findings from this work will benefit industries that rely on the AM of titanium alloys, aiding in the improvement of component design and manufacturing processes. T2 - Alloys for additive manufacturing 2025 (AAMS 2025) CY - Neuchâtel, Switzerland DA - 02.09.2025 KW - X-ray computed tomography KW - Deep learning KW - Titanium alloy KW - Very high-cycle fatigue PY - 2025 DO - https://doi.org/10.5281/zenodo.15261296 AN - OPUS4-64096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -