TY - CONF A1 - Graf, Benjamin A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Laser metal deposition as repair technology for stainless steel and titanium alloys N2 - In a repair process chain, damaged areas or cracks can be removed by milling and subsequently be reconditioned with new material deposition. The use of laser metal deposition has been investigated for this purpose. The material has been deposited into different groove shapes, using both stainless steel and Ti-6Al-4 V. The influence of welding parameters on the microstructure and the heat affected zone has been studied. The parameters have been modified in order to achieve low heat input and consequently low distortion as well as low metallurgical impact. Finally, an evaluation of the opportunities for an automatized repair process is made. T2 - LANE 2012 - Laser Assisted net shape engineering 7 CY - Fürth, Germany DA - 2012-11-12 KW - Laser metal deposition KW - Laser powder cladding KW - Repair welding KW - Ti-6Al-4 V KW - Stainless steel PY - 2012 DO - https://doi.org/10.1016/j.phpro.2012.10.051 N1 - Serientitel: Physics Procedia – Series title: Physics Procedia VL - 39 SP - 376 EP - 381 AN - OPUS4-27306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Graf, Benjamin A1 - Schuch, M. A1 - Kersting, R. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Additive process chain using selective laser melting and laser metal deposition N2 - Selective Laser Melting (SLM) and Laser Metal Deposition (LMD) are prominent methods in the field of additive manufacturing technology. While the powder-bed based SLM allows the manufacturing of complex structures, buildrate and part volumes are limited. In contrast, LMD is able to operate with high deposition rates on existing parts, however shape complexity is limited. Utilizing their respective strengths, a combination of these two additive technologies has the potential to produce complex parts with high deposition rates. In this paper, a process chain consisting of additive technologies SLM and LMD is described. The experiments are conducted using the alloys Ti-6Al-4V and Inconel 718. A cylindrical test specimen is produced and the microstructure along the SLM-LMD zone is described. In addition, this process chain was tested in the manufacturing of a turbine blade. The feasibility of implementing this process chain for small batch production is discussed. The results are evaluated to show advantages and limitations of the SLM-LMD process chain. This paper is relevant for industrial or scientific users of additive manufacturing technologies, who are interested in the feasibility of a SLM-LMD process chain and its potential for increased deposition rates. T2 - LiM 2015 - Lasers in manufacturing conference 2015 CY - Munich, Germany DA - 22.06.2015 KW - Macro processing KW - Additive manufacturing KW - Laser metal deposition KW - Ti-6Al-4V KW - Inconel 718 KW - Process chain KW - Deposition rate PY - 2015 SP - 1 EP - 6 AN - OPUS4-33778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -