TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Strangfeld, Christoph T1 - Fluidic Ultrasound Generation for Non‐Destructive Testing JF - Advanced Materials N2 - AbstractAir‐coupled ultrasonic testing (ACU) is a pioneering technique in non‐destructive testing (NDT). While contact testing and fluid immersion testing are standard methods in many applications, the adoption of ACU is progressing slowly, especially in the low ultrasonic frequency range. A main reason for this development is the difficulty of generating high amplitude ultrasonic bursts with equipment that is robust enough to be applied outside a laboratory environment. This paper presents the fluidic ultrasonic transducer as a solution to this challenge. This novel aeroacoustic source uses the flow instability of a sonic jet in a bistable fluidic switch to generate ultrasonic bursts up to 60 kHz with a mean peak pressure of 320 Pa. The robust design allows operation in adverse environments, independent of the operating fluid. Non‐contact through‐transmission experiments are conducted on four materials and compared with the results of conventional transducers. For the first time, it is shown that the novel fluidic ultrasonic transducer provides a suitable acoustic signal for NDT tasks and has potential of furthering the implementation of ACU in industrial applications.This article is protected by copyright. All rights reserved KW - Aeroacoustics KW - Air-coupled ultrasound KW - Fluidics KW - Harsh environment KW - Laser Doppler vibrometer KW - Non-destructive testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594273 DO - https://doi.org/10.1002/adma.202311724 SN - 0935-9648 SP - 1 EP - 14 PB - Wiley AN - OPUS4-59427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bühling, Benjamin A1 - Schweitzer, T. A1 - Maack, Stefan A1 - Strangfeld, Christoph T1 - Influence of operating conditions on the fluidic ultrasonic transducer signal T2 - Fortschritte der Akustik - DAGA 2021 N2 - While contact and immersion ultrasonic testing are established methods in non-destructive testing (NDT), generating high power air-coupled ultrasound remains a challenging task. Solutions often involve setups that are restricted to lab environments. When field measurements are required, such as in NDT for civil engineering, a handy, robust and safe transducer is needed. For this purpose, an ultrasonic transducer based on a fluidic switch has been developed. A sonic air flow inside the device is switched rapidly so that an ultrasonic signal is generated. Both theory and previous flow simulations suggest that the control flow pressure ramp has only little influence on the switching time of the device. This publication gives an overview over the operating principle of the fluidic ultrasonic transducer and investigates the influence of control tube length and pulsing repetition rate on the ultrasonic pressure amplitude. High repetition rates are found to reduce the signal amplitude, whereas long tubing has only little negative influence on the amplitude while improving signal quality. T2 - 47. Jahrestagung für Akustik (DAGA 2021) CY - Vienna, Austria DA - 15.08.2021 KW - Ultrasound KW - Non-destructive testing KW - Fluidic devices PY - 2021 UR - https://pub.dega-akustik.de/DAGA_2021 SN - 978-3-939296-18-8 SP - 48 EP - 51 CY - Berlin, Germany AN - OPUS4-53493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Strangfeld, Christoph T1 - Recent Developments of Fluidic Ultrasonic Transducers at BAM N2 - Ultrasonic measurement technology has become indispensable in NDT. In order to reduce measurement time and extend the application to other materials, contactless ultrasound is the subject of many different research groups. Department 8 has been researching successfully in this field for years. A novel approach is based on so-called fluidic devices. These devices can be used to perform binary logic operations with the help of natural flow instabilities. Hence the abbreviated name, Fluidic (FLUID+LogIC). Only a pressure reservoir of the used fluid is required as energy supply. This enables the production of very robust actuators that generate ultrasonic signals in an extremely energy efficient way. The presentation includes the research results of the ZIM innovation project OsciCheck. The original idea will be presented and its application on different building materials is validated. Beyond this, the possible application areas are much larger and a detailed outlook is given to discuss the future potential of fluidic ultrasonic actuators. T2 - Abteilungsseminar Abteilung 8 CY - Berlin, Germany DA - 23.09.2021 KW - Uultrasound KW - Non-destructive testing KW - Fluidic devices KW - Hydrogen KW - Ranging KW - Harsh environments PY - 2021 AN - OPUS4-53356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Strangfeld, Christoph T1 - Using sonic crystals to separate the acoustic from the flow field of a fluidic transducer JF - Applied acoustics N2 - Ultrasonic testing is a widely applied measurement method in materials research and medicine. Commonly, a transducer is coupled to the specimen directly or via a liquid coupling agent. While reducing acoustic transmission losses significantly, this procedure is time-consuming and cannot be used for sensitive specimens. Air-coupled ultrasound is a viable alternative in such cases, although suffering from very high acoustic transmission losses between transducer, air and specimen. The recently introduced fluidic transducer (FT) generates ultrasound by utilizing the instability of a supersonic air jet switched inside a fluidic amplifier. Since only air is used as the working medium and no vibrating surfaces are used for ultrasound generation, the transducer is able to efficiently generate large acoustic pressure amplitudes. The resulting acoustic field shares its directivity with the ejected high-velocity air jet. Thus, the acoustic energy needs to be redirected from the jet axis in order to make the fluidic transducer applicable to sensitive specimens. In this study, the effectivity of using sonic crystals (SCs) for this redirection is investigated using acoustic and flow measurements. SCs are air-permeable while being reflective to large acoustic frequency bands. It was shown that both a defect waveguide and a mirroring strategy successfully redirected the acoustic field from the air jet. Furthermore, the interaction of flow and SC showed strong acoustic quenching if the SC was placed too close to the FT outlet. Blockage of the jet entrainment due to the SC may result in slightly higher off-axis flow velocities locally, which should be considered in sensitive applications. KW - Air-coupled ultrasound KW - Sonic crystal KW - Fluidics KW - Non-destructive testing KW - Metamaterial KW - Bandgap quenching PY - 2022 DO - https://doi.org/10.1016/j.apacoust.2021.108608 SN - 0003-682X VL - 189 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-54205 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scherr, J. F. A1 - Kollofrath, J. A1 - Popovics, J. S. A1 - Bühling, Benjamin A1 - Grosse, C. U. T1 - Detection of Delaminations in Concrete Plates Using a Laser Ablation Impact Echo Technique JF - Journal of Nondestructive Evaluation N2 - This study investigates the non-destructive detection of delaminations in concrete plates using non-contact laser ablation, instead of the conventional hammer excitation, as part of the impact echo method. We performed tests on five concrete specimens of different sizes, two of which contained artificial delaminations. A range of steel ball hammers was used as reference impulse sources, the responses of which were compared with wave excitation generated by a 7 ns pulsed 1064 nm Nd:YAG laser with 150 mJ pulse energy. Signals were recorded by surface-mounted accelerometers and two contactless methods: microphones and a laser Doppler vibrometer. The laser generates frequencies across a broad range of frequencies (0 to 150 kHz) but with much less energy than the hammers' narrower frequency spectra; the laser pulse energy transferred into the specimen is 0.07 mJ, corresponding to about 0.5 ‰ of the impulse source energy. Because of this, the thick intact plates' characteristic thickness stretch resonance frequency can be reliably detected by the hammer excitations but not when using laser excitation. However, the laser can excite low-frequency flexural vibration modes over a shallow delamination at 3 cm depth. The low-frequency flexural vibration results are verified by numerical natural frequency analysis. KW - Concrete testing KW - Defect detection KW - Lamb waves KW - Impact echo KW - Non-destructive testing KW - Vibration PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567932 DO - https://doi.org/10.1007/s10921-022-00921-x SN - 0195-9298 VL - 42 IS - 1 SP - 1 EP - 14 PB - Springer AN - OPUS4-56793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -