TY - JOUR A1 - Robens-Radermacher, Annika A1 - Lacy Jr., T. E. A1 - Bednarcyk, B. A. A1 - Pineda, E. J. A1 - Arnold, S. M. A1 - Ricks, T. M. T1 - Solution of the nonlinear high-fidelity generalized method of cells micromechanics relations via order-reduction techniques N2 - The High-Fidelity Generalized Method of Cells (HFGMC) is one technique, distinct from traditional finite-element approaches, for accurately simulating nonlinear composite material behavior. In this work, the HFGMC global system of equations for doubly periodic repeating unit cells with nonlinear constituents has been reduced in size through the novel application of a Petrov-Galerkin Proper Orthogonal Decomposition order-reduction scheme in order to improve its computational efficiency. Order-reduced models of an E-glass/Nylon 12 composite led to a 4.8–6.3x speedup in the equation assembly/solution runtime while maintaining model accuracy. This corresponded to a 21–38% reduction in total runtime.Thesignificant difference in assembly/solution and total runtimes was attributed to the evaluation of integration point inelastic field quantities; this step was identical between the unreduced and order-reduced models. Nonetheless, order-reduced techniques offer the potential to significantly improve the computational efficiency of multiscale calculations. KW - High-Fidelity KW - Micromechanics KW - HFGMC PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-445303 DO - https://doi.org/10.1155/2018/3081078 SN - 1024-123X SN - 1563-5147 VL - 2018 SP - Article ID 3081078-1 EP - 11 PB - Hindawi Publishing Corporation CY - Kairo, Ägypten AN - OPUS4-44530 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -