TY - JOUR A1 - Yang, Keke A1 - Wang, Zhuoqun A1 - Haak, Viktor A1 - Olfert, Viktoria A1 - El-Sari, Bassel A1 - Hein, David A1 - Biegler, Max A1 - Rethmeier, Michael A1 - Meschut, Gerson T1 - A novel welding schedule for expanding the expulsion-free process window in resistance spot welding of dissimilar joints with ultra-high strength steel N2 - This study introduces a novel approach to expanding the maximum expulsion-free process window in resistance spot welding (RSW) of dissimilar joints between ultra-high strength steel (UHSS) and mild steel. Quantitative analysis revealed that expulsion is driven by the interaction between nugget growth rate and plastic shell thickness. Based on this finding, the welding schedule was optimized by applying a preheating current to form an initial plastic shell, followed by a ramp-up current profile during the main welding phase. Welding simulations indicated that the ramp-up current slowed nugget growth, improved plastic shell formation, and prevented nugget breakthrough, thereby reducing the risk of expulsion. Experimental validation showed a 19 % increase in maximum expulsion-free heat input, with the nugget diameter increasing by 7.6 % to 8.94 mm compared to the reference welding schedule. Furthermore, even when expulsion occurred beyond the process window, this optimization delayed its occurrence, minimizing its impact on spot weld quality. Finally, the optimized welding schedule also exhibited significant robustness. Despite a 2 mm initial gap disturbance, the maximum expulsionfree heat input increased by 57 %, while the nugget diameter grew by 30 % to 8.92 mm. These results confirm that the proposed approach effectively extends the process window by preventing expulsion and enhances process stability. KW - Expulsion KW - Resistance spot welding KW - Finite element modelling KW - Preheating KW - Ultra-high-strength steel PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626877 DO - https://doi.org/10.1016/j.jmapro.2025.02.009 SN - 2212-4616 VL - 137 SP - 306 EP - 309 PB - Elsevier BV AN - OPUS4-62687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prabitz, Konstantin Manuel A1 - Antretter, Thomas A1 - Rethmeier, Michael A1 - El-Sari, Bassel A1 - Schubert, Holger A1 - Hilpert, Benjamin A1 - Gruber, Martin A1 - Sierlinger, Robert A1 - Ecker, Werner T1 - Numerical and experimental assessment of liquid metal embrittlement in externally loaded spot welds N2 - Zinc-based surface coatings are widely applied with high-strength steels in automotive industry. Some of these base materials show an increased brittle cracking risk during loading. It is necessary to examine electrogalvanized and uncoated samples of a high strength steel susceptible to liquid metal embrittlement during spot welding with applied external load. Therefore, a newly developed tensile test method with a simultaneously applied spot weld is conducted. A fully coupled 3D electrical, thermal, metallurgical and mechanical finite element model depicting the resistant spot welding process combined with the tensile test conducted is mandatory to correct geometric influences of the sample geometry and provides insights into the sample’s time dependent local loading. With increasing external loads, the morphology of the brittle cracks formed is affected more than the crack depth. The validated finite element model applies newly developed damage indicators to predict and explain the liquid metal embrittlement cracking onset and development as well as even ductile failure. KW - Resistance spot welding KW - Finite element simulation KW - Advanced high-strength steel KW - Liquid metal embrittlement KW - Damage prediction KW - Tensile resistance spot welding experiment PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594848 DO - https://doi.org/10.1007/s40194-024-01696-7 SN - 0043-2288 SP - 1 EP - 10 PB - Springer Science and Business Media LLC AN - OPUS4-59484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yang, Keke A1 - El-Sari, Bassel A1 - Olfert, Viktoria A1 - Wang, Zhuoqun A1 - Biegler, Max A1 - Rethmeier, Michael A1 - Meschut, Gerson T1 - Expulsion prevention in resistance spot welding of dissimilar joints with ultra-high strength steel: An analysis of the mechanism and effect of preheating current N2 - The widespread adoption of ultra-high strength steels, due to their high bulk resistivity, intensifies expulsion issues in resistance spot welding (RSW), deteriorating both the spot weld and surface quality. This study presents a novel approach to prevent expulsion by employing a preheating current. Through characteristic analysis of joint formation under critical welding current, the importance of plastic material encapsulation around the weld nugget (plastic shell) at high temperatures in preventing expulsion is highlighted. To evaluate the effect of preheating on the plastic shell and understand its mechanism in expulsion prevention, a two-dimensional welding simulation model for dissimilar ultra-high strength steel joints was established. The results showed that optimal preheating enhances the thickness of the plastic shell, improving its ability to encapsulate the weld nugget during the primary welding phase, thereby diminishing expulsion risks. Experimental validation confirmed that by employing the optimal preheating current, the maximum nugget diameter was enhanced to 9.42 mm, marking an increase of 13.4 % and extending the weldable current range by 27.5 %. Under quasi-static cross-tensile loading, joints with preheating demonstrated a 7.9 % enhancement in maximum load-bearing capacity compared to joints without preheating, showing a reproducible and complete pull-out failure mode within the heat-affected zone. This study offers a prevention method based on underlying mechanisms, providing a new perspective for future research on welding parameter optimization with the aim of expulsion prevention. KW - Resistance spot welding KW - Finite element modelling KW - Preheating KW - Weldable current range KW - Ultra-high strength steel PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-621719 DO - https://doi.org/10.1016/j.jmapro.2024.06.034 VL - 124 SP - 489 EP - 502 PB - Elsevier Ltd. AN - OPUS4-62171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gook, Sergej A1 - El-sari, Bassel A1 - Biegler, Max A1 - Rethmeier, Michael T1 - Application of AI-based welding process monitoring for quality control in pipe production N2 - The paper presents the experimental results into the development of a multi-channel system for monitoring and quality assurance of the multi-wire submerged arc welding (SAW) process for the manufacture of large diameter pipes. Process signals such as welding current, arc voltage and the acoustic signal emitted from the weld zone are recorded and processed to provide information on the stability of the welding process. It was shown by the experiments that the acoustic pattern of the SAW process in a frequency range between 30 Hz and 2.5 kHz contains the most diagnostic information. The on-line quality assessment of the weld seam produced is carried out in combination with methods of artificial intelligence (AI). From the results obtained, it can be concluded that the use of the latest concepts in welding and automation technology, combined with the high potential of AI, can achieve a new level of quality assurance in pipe manufacturing. KW - Submerged arc welding KW - Artificial intelligence KW - High-strength fine-grain steels KW - Quality control PY - 2024 DO - https://doi.org/10.37434/tpwj2024.06.01 SN - 0957-798X IS - 6 SP - 3 EP - 8 PB - The Paton Publishing House AN - OPUS4-61000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gook, Sergej A1 - El-Sari, Bassel A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Biegler, Max T1 - Kombination des Laserhybridschweißens und UP-Engspaltschweißens für dickwandige Bauteile zur Erhöhung der Wirtschaftlichkeit N2 - Dieser Beitrag befasst sich mit der Entwicklung eines wirtschaftlichen und robusten Verfahrens zum Schweißen dicker Stahlbleche. Es werden Ergebnisse für das Fügen von Blechen im Dickenbereich von 25 mm bis 80 mm vorgestellt. Die 30 mm dicken Schweißnähte konnten im Stumpfstoß in zwei Durchgängen unter Verwendung des Laserhybridschweißens und des Unterpulverschweißens (UP) geschweißt werden. Das Laserhybridschweißen wird als Einschweißung mit einer Tiefe von ca. 25 mm ausgeführt. Die UP-Lagen werden auf der gegenüberliegenden Seite des Blechs aufgebracht. Bei richtiger Wahl der Schweißparameter wird der Nahtquerschnitt durch eine sichere Überlappung beider Lagen geschlossen. Bei Blechdicken über 30 mm ist eine Kantenvorbereitung erforderlich, die eine Ausführung der UP-Fülllagen in Engspalttechnik ermöglicht. Die Vorteile der vorgeschlagenen Prozesskombination liegen darin, dass die Nahtwurzel der Laserhybridnaht nicht geformt werden muss. Defekte in der Wurzel der Laserhybrideinschweißung können durch die UP-Lagen effektiv beseitigt werden. Das Verfahren bietet eine hohe Stabilität des Schweißprozesses in Bezug auf die Qualität der Blechkanten. Plasmageschnittene Kanten konnten ohne Bindefehler geschweißt werden. Die erreichte Nahtqualität wurde durch zerstörende und zerstörungsfreie Prüfungen bestätigt. T2 - Innovationstag 2024 CY - Düsseldorf, Germany DA - 10.04.2024 KW - Laserhybridschweißen KW - Windturm KW - Dickblech KW - Unterpulverschweißen PY - 2024 SN - 978-3-96144-253-9 VL - 391 SP - 186 EP - 194 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-60031 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - El-Sari, Bassel A1 - Biegler, Max A1 - Gook, Sergej T1 - AI-based welding process monitoring for quality control in the manufacture of large-diameter pipes N2 - The paper presents the experimental results into the development of a multi-channel system for monitoring and quality assurance of the multi-wire submerged arc welding (SAW) process for the manufacture of large diameter pipes. Process signals such as welding current, arc voltage and the acoustic signal emitted from the weld zone are recorded and processed to provide information on the stability of the welding process. It was shown by the experiments that the acoustic pattern of the SAW process in a frequency range between 30 Hz and 2.5 kHz contains the most diagnostic information. In the spectrogram of the acoustic signal, which represents the time course of the frequency spectrum of the welding process, the formation of weld irregularities such as undercuts could be reliably identified. The on-line quality assessment of the weld seam produced is carried out in combination with methods of artificial intelligence (AI). From the results obtained, it can be concluded that the use of the latest concepts in welding and automation technology, combined with the high potential of AI, can achieve a new level of quality assurance in pipe manufacturing. T2 - Pipeline Technology Conference 2024 CY - Berlin, Germany DA - 08.04.2024 KW - Process monitoring KW - Submerged arc welding KW - Acoustic signal KW - Artificial intelligence PY - 2024 UR - https://www.pipeline-conference.com/abstracts/ai-based-welding-process-monitoring-quality-control-large-diameter-pipe-manufacturing SP - 1 EP - 9 AN - OPUS4-62226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -