TY - JOUR A1 - Brusamarello-Santos, L. C. C. A1 - Alberton, D. A1 - Valdameri, G. A1 - Camilios-Neto, D. A1 - Covre, R. A1 - Lopes, K. d. P. A1 - Zibetti Tadra-Sfeir, M. A1 - Faoro, H. A1 - Adele Monteiro, R. A1 - Barbosa-Silva, A. A1 - Broughton, William John A1 - Oliveira Pedrosa, F. A1 - Wassem, R. A1 - de Souza, E.M. T1 - Modulation of defence and iron homeostasis genes in rice roots by the diazotrophic endophyte Herbaspirillum seropedicae N2 - Rice is staple food of nearly half the world’s population. Rice yields must therefore increase to feed ever larger populations. By colonising rice and other plants, Herbaspirillum spp. stimulate plant growthand productivity. However the molecular factors involved are largely unknown. To further explore this interaction, the transcription profiles of Nipponbare rice roots inoculated with Herbaspirillum seropedicae were determined by RNA-seq. Mapping the 104 million reads against the Oryza sativa cv. Nipponbare genome produced 65 million unique mapped reads that represented 13,840 transcripts each with at least two-times coverage. About 7.4% (1,014) genes were differentially regulated and of these 255 changed expression levels more than two times. Several of the repressed genes encoded proteins related to plant defence (e.g. a putative probenazole inducible protein), plant disease resistance as well as enzymes involved in flavonoid and isoprenoid synthesis. Genes related to the synthesis and efflux of phytosiderophores (PS) and transport of PS-iron complexes were induced by the bacteria. These data suggest that the bacterium represses the rice defence system while concomitantly activating iron uptake. Transcripts of H. seropedicae were also detected amongst which transcripts of genes involved in nitrogen fixation, cell motility and cell wall synthesis were the most expressed. KW - Herbaspirillum seropedicae KW - Pathogen KW - Rice KW - qPCR KW - Genome PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-490122 DO - https://doi.org/10.1038/s41598-019-45866-w SN - 2045-2322 VL - 9 SP - 10573-1 EP - 10573-15 PB - Nature CY - London AN - OPUS4-49012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guerra, E. S. S. A1 - Silva, B. L. A1 - Melo, J. D. D. A1 - Kalinka, Gerhard A1 - Barbosa, A. P. C. T1 - Microscale evaluation of epoxy matrix composites containing thermoplastic healing agent N2 - Among the strategies to produce healable thermosetting systems is their modification by the addition of thermoplastic particles. This work investigates the influence of poly(ethylene-co-methacrylic acid) (EMAA) on fibermatrix interfacial properties of a glass fiber reinforced epoxy matrix composite. Epoxy-EMAA interactions were evaluated using differential scanning calorimetry (DSC) and infrared spectroscopy. The effects of EMAA on the epoxy network formation were evidenced by changes in glass transition temperature, cure kinetics and alteration of chemical groups during cure. Interfacial shear strength (IFSS) measurements obtained by single fiber pull-out tests indicate similar interfacial properties for pure and EMAA modified epoxy. Additionally, the potential for self-healing ability of an EMAA modified epoxy was demonstrated. However, IFSS after a healing cycle for the EMAA modified epoxy was lower as compared to the pure epoxy, because of the lower fiber-EMAA interfacial shear strength. So, thermoplastic healing agents has not only to fill cracks in the matrix material, but also have to be optimized regarding its interface properties to the reinforcing fibers. KW - Interfacial strength KW - Fiber/matrix bond KW - Self-healing KW - Polymer-matrix composites (PMC) PY - 2022 DO - https://doi.org/10.1016/j.compscitech.2022.109843 SN - 0266-3538 VL - 232 SP - 1 EP - 9 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-56379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -