TY - JOUR A1 - Tuma, Dirk A1 - Kumbhar, V. S. A1 - Lee, Y. R. A1 - Ra, C. S. A1 - Min, B.-K. A1 - Shim, J.-J. T1 - Modified chemical synthesis of MnS nanoclusters on nickel foam for high performance all-solid-state asymmetric supercapacitors N2 - Novel MnS nanoclusters were synthesized on nickel foam (NF) using a successive ionic layer adsorption and reaction (SILAR) method. MnS nanoclusters with different sizes were obtained by varying the number of deposition cycles. The crystal structure, chemical composition, and surface microstructure of the electrodes were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field Emission scanning electron microscopy, and high-resolution transmission electron microscopy. The electrochemical behavior of the MnS nanoclusters was examined by cyclic voltammetry, galvanostatic charge–discharge, cycling test, and electrochemical impedance spectroscopy. The MnS nanoclusters prepared with 90 SILAR cycles showed the best supercapacitance in a 6 M KOH aqueous electrolyte with a specific capacitance of 828 F/g at a scan rate of 5 mV/s and cycling stability of 85.2 % after 5000 charge–discharge cycles. Moreover, an asymmetric supercapacitor (ASC) was assembled with the as-prepared MnS electrode on NF as the positive electrode, hydrothermally prepared reduced graphene oxide (rGO) on NF as the negative electrode, and PVA–KOH gel as the electrolyte. The MnS@NF//rGO@NF ASC showed excellent electrochemical performance with maximum energy and power densities of 34.1 Wh/kg and 12.8 kW/kg, respectively. The ASC also showed a capacitive retention of 86.5 % after 2000 charge–discharge cycles, highlighting its practical application for energy storage. KW - Nanocluster KW - Electrochemical behavior KW - Asymmetric supercapacitor KW - Graphene oxide PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-403147 DO - https://doi.org/10.1039/c7ra00772h SN - 2046-2069 VL - 7 IS - 27 SP - 16348 EP - 16359 PB - The Royal Society of Chemistry CY - London AN - OPUS4-40314 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nguyen, V. H. A1 - Ren, Y. A1 - Lee, Y. R. A1 - Tuma, Dirk A1 - Min, B.-K. A1 - Shim, J.-J. T1 - Microwave-assisted synthesis of carbon nanotube-TiO2 nanocomposites in ionic liquid for the photocatalytic degradation of methylene blue N2 - A simple and efficient method of preparing composites of carbon nanotubes and titania (CNT-TiO2) is reported via a microwave-assisted synthesis in an ionic liquid, [bmim][BF4]. CNT-TiO2 nanocomposites were formed by the thermal decomposition of titanium (IV) isopropoxide (Ti(OPri)4) in the presence of CNTs under microwave irradiation. The obtained product was characterized by BET surface area, XRD, SEM, and TEM. TiO2 particles with average size of 9 nm were as anatase. The surface area of the Composites increased with an increase of CNT content. Moreover, the catalytic efficiency of the composite was investigated through the photoelectrodegradation of methylene blue. KW - Carbon nanotube KW - Ionic liquid KW - Microwave KW - Photocatalyst KW - TiO2 nanoparticles PY - 2012 DO - https://doi.org/10.1080/15533174.2011.610021 SN - 1553-3174 SN - 1553-3182 VL - 42 IS - 2 SP - 296 EP - 301 PB - Taylor and Francis Group, LLC CY - London AN - OPUS4-35895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -