TY - JOUR A1 - Epishin, A. A1 - Bokstein, B. A1 - Svetlov, I. A1 - Fedelich, Bernard A1 - Feldmann, Titus A1 - Le Bouar, Y. A1 - Ruffini, A. A1 - Finel, A. A1 - Viguier, B. A1 - Poquillon, D. T1 - A vacancy model for pore annihilation during hot isostatic pressing of single-crystal nickel-base superalloys N2 - An improved diffusion model is proposed for pore annihilation during HIP of single-crystal nickel-base superalloys. The model assumes the pore dissolution by emission of vacancies and their sink to the low angle boundaries. Calculation, considering distribution of the pore sizes, predicts the kinetics of pore annihilation similar to the experimental one. KW - Single crystal superalloys KW - Hot isostatic pressing (HIP) KW - Porosity KW - Diffusion KW - Vacancies PY - 2018 DO - https://doi.org/10.1134/S2075113318010100 SN - 2075-1133 VL - 9 IS - 1 SP - 57 EP - 65 PB - Pleiades Publishing, Ltd. AN - OPUS4-43990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viguier, B. A1 - Epishin, A. A1 - Fedelich, Bernard T1 - Creep of single-crystals of nickel-base gamma-alloy at high temperatures N2 - Porosity in single-crystal nickel-base superalloys is removed by hot isostatic pressing (HIP) at temperatures above gamma’-solvus where the material is very soft and ductile. For example, single-crystal nickel-base superalloy CMSX-4 is HIPed at temperature 1288 °C, which is slightly higher than the gamma’-solvus temperature of this alloy equal to about 1280 °C. It is assumed that pore shrinking during HIP is mostly due to dislocation creep. Such a modelling of HIP of CMSX-4 was started in our group on the base of results of creep tests of [001] single-crystals at 1288 °C [1]. However, it was found later [2] that the alloy CMSX-4 shows very strong creep anisotropy at 1288 °C. Therefore, for calibration of the creep law, creep tests of different orientations under different stress levels are required at the HIP temperature. This was the main task of present work. Single-crystals of CMSX-4 of axial orientations [001], [011], [123] and [111] were cast by VIAM Moscow and tested by BAM Berlin under creep conditions at 1288 °C and stress levels between 4 MPa and 16 MPa. At all stress levels, the creep rate increases by an order of magnitude when changing the orientation from [001] to [111] with [011] and [123] orientations in between. Such a character of creep anisotropy corresponds to the orientation dependence of the Schmid factor for octahedral glide. The crystal viscoplasticity model developed in [1] was improved to better represent the time induced softening observed during creep. The creep tests for different stresses and orientations as well as pore closure were simulated. The results of pore closure simulation are compared with measurements of porosity decrease during Hiping. T2 - 15th International Conference on Creep and Fracture of Engineering Materials and Structures CY - Online meeting DA - 14.06.2021 KW - Nickel-base superalloys KW - Creep KW - Single-Crystal PY - 2021 AN - OPUS4-53935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -