TY - JOUR A1 - Westwood, S. A1 - Josephs, R. A1 - Choteau, T. A1 - Daireaux, A. A1 - Wielgosz, R. A1 - Davies, S. A1 - Moad, M. A1 - Chan, B. A1 - Munoz, A. A1 - Conneely, P. A1 - Ricci, M. A1 - Do Rego, E.C.P. A1 - Garrido, B.C. A1 - Violante, F.G.M. A1 - Windust, A. A1 - Dai, X. A1 - Huang, T. A1 - Zhang, W. A1 - Su, F. A1 - Quan, C. A1 - Wang, H. A1 - Lo, M. A1 - Wong, W. A1 - Gantois, F. A1 - Lalerle, B. A1 - Dorgerloh, Ute A1 - Koch, Matthias A1 - Klyk-Seitz, Urszula-Anna A1 - Pfeifer, Dietmar A1 - Philipp, Rosemarie A1 - Piechotta, Christian A1 - Recknagel, Sebastian A1 - Rothe, Robert A1 - Yamazaki, T. A1 - Zakaria, O. B. A1 - Castro, E. A1 - Balderas, M. A1 - González, N. A1 - Salazar, C. A1 - Regalado, L. A1 - Valle, E. A1 - Rodríguez, L. A1 - Laguna, L.Á.. A1 - Ramírez, P. A1 - Avila, M. A1 - Ibarra, J. A1 - Valle, L. A1 - Arce, M. A1 - Mitani, Y. A1 - Konopelko, L. A1 - Krylov, A. A1 - Lopushanskaya, E. A1 - Lin, T.T. A1 - Liu, Q. A1 - Kooi, L.T. A1 - Fernandes-Whaley, M. A1 - Prevoo-Franzsen, D. A1 - Nhlapo, N. A1 - Visser, R. A1 - Kim, B. A1 - Lee, H. A1 - Kankaew, P. A1 - Pookrod, P. A1 - Sudsiri, N. A1 - Shearman, K. A1 - Gören, A.C. A1 - Bilsel, G. A1 - Yilmaz, H. A1 - Bilsel, M. A1 - Cergel, M. A1 - Coskun, F.G. A1 - Uysal, E. A1 - Gündüz, S. A1 - Ün, I. A1 - Warren, J. A1 - Bearden, D.W. A1 - Bedner, M. A1 - Duewer, D.L. A1 - Lang, B.E. A1 - Lippa, K.A. A1 - Schantz, M.M. A1 - Sieber, J.R. T1 - Final report on key comparison CCQM-K55.c (L-(+)-Valine): Characterization of organic substances for chemical purity N2 - KEY COMPARISON Under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a key comparison, CCQM K55.c, was coordinated by the Bureau International des Poids et Mesures (BIPM) in 2012. Twenty National Measurement Institutes or Designated Institutes and the BIPM participated. Participants were required to assign the mass fraction of valine present as the main component in the comparison sample for CCQM-K55.c. The comparison samples were prepared from analytical grade L-valine purchased from a commercial supplier and used as provided without further treatment or purification. Valine was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of organic compounds of low structural complexity [molecular weight range 100–300] and high polarity (pKOW > –2). The KCRV for the valine content of the material was 992.0 mg/g with a combined standard uncertainty of 0.3 mg/g. The key comparison reference value (KCRV) was assigned by combination of KCRVs assigned from participant results for each orthogonal impurity class. The relative expanded uncertainties reported by laboratories having results consistent with the KCRV ranged from 1 mg/g to 6 mg/g when using mass balance based approaches alone, 2 mg/g to 7 mg/g using quantitative 1H NMR (qNMR) based approaches and from 1 mg/g to 2.5 mg/g when a result obtained by a mass balance method was combined with a separate qNMR result. The material provided several analytical challenges. In addition to the need to identify and quantify various related amino acid impurities including leucine, isoleucine, alanine and a-amino butyrate, care was required to select appropriate conditions for performing Karl Fischer titration assay for water content to avoid bias due to in situ formation of water by self-condensation under the assay conditions. It also proved to be a challenging compound for purity assignment by qNMR techniques. There was overall excellent agreement between participants in the identification and the quantification of the total and individual related structure impurities, water content, residual solvent and total non-volatile content of the sample. Appropriate technical justifications were developed to rationalise observed discrepancies in the limited cases where methodology differences led to inconsistent results. The comparison demonstrated that to perform a qNMR purity assignment the selection of appropriate parameters and an understanding of their potential influence on the assigned value is critical for reliable implementation of the method, particularly when one or more of the peaks to be quantified consist of complex multiplet signals. PY - 2014 DO - https://doi.org/10.1088/0026-1394/51/1A/08010 SN - 0026-1394 SN - 1681-7575 VL - 51 SP - 08010, 1 EP - 44 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-31072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Josephs, R. A1 - Choteau, T. A1 - Daireaux, A. A1 - Stoppacher, N. A1 - Wielgosz, R. A1 - Davies, S. A1 - do Rego, E. A1 - Wollinger, W. A1 - Garrido, B. A1 - Fernandes, J. A1 - Lima, J. A1 - Oliveira, R. A1 - de Sena, R. A1 - Windust, A. A1 - Huang, T. A1 - Dai, X. A1 - Quan, C. A1 - He, H. A1 - Zhang, W. A1 - Wei, C. A1 - Li, N. A1 - Gao, D. A1 - Liu, Z. A1 - Lo, M. A1 - Wong, W. A1 - Pfeifer, Dietmar A1 - Koch, Matthias A1 - Dorgerloh, Ute A1 - Rothe, Robert A1 - Philipp, Rosemarie A1 - Hanari, N. A1 - Rezali, M. A1 - Arzate, C. A1 - Berenice, M. A1 - Caballero, V. A1 - Osuna, M. A1 - Krylov, A. A1 - Kharitonov, S. A1 - Lopushanskaya, E. A1 - Liu, Q. A1 - Lin, T. A1 - Fernandes-Whaley, M. A1 - Quinn, L. A1 - Nhlapo, N. A1 - Prevoo-Franzsen, D. A1 - Archer, M. A1 - Kim, B. A1 - Baek, S. A1 - Lee, S. A1 - Lee, J. A1 - Marbumrung, S. A1 - Kankaew, P. A1 - Chaorenpornpukdee, K. A1 - Chaipet, T. A1 - Shearman, K. A1 - Gören, A. A1 - Gündüz, S. A1 - Yilmaz, H. A1 - Un, I. A1 - Bilsel, G. A1 - Clarkson, C. A1 - Bedner, M. A1 - Camara, J. A1 - Lang, B. A1 - Lippa, K. A1 - Nelson, M. A1 - Toman, B. A1 - Yu, L. T1 - Mass fraction assignment of folic acid in a high purity material - CCQM-K55.d (Folic acid) Final Report N2 - The comparison required the assignment of the mass fraction of folic acid present as the main component in the comparison sample. Performance in the comparison is representative of a laboratory's measurement capability for the purity assignment of organic compounds of medium structural complexity [molecular weight range 300–500] and high polarity (pKOW < −2). Methods used by the eighteen participating NMIs or DIs were based on a mass balance (summation of impurities) or qNMR approach, or the combination of data obtained using both methods. The qNMR results tended to give slightly lower values for the content of folic acid, albeit with larger associated uncertainties, compared with the results obtained by mass balance procedures. Possible reasons for this divergence are discussed in the report, without reaching a definitive conclusion as to their origin. The comparison demonstrates that for a structurally complex polar organic compound containing a high water content and presenting a number of additional analytical challenges, the assignment of the mass fraction content property value of the main component can reasonably be achieved with an associated relative standard uncertainty in the assigned value of 0.5% KW - CCQM key comparison KW - Purity assessment KW - Folic acid PY - 2018 UR - https://www.bipm.org/utils/common/pdf/final_reports/QM/K55/CCQM-K55.d.pdf DO - https://doi.org/10.1088/0026-1394/55/1A/08013 VL - 55 IS - Technical Supplement, 2018 SP - 08013, 1 EP - 38 PB - Institute of Physics Publishing (IOP) ; Bureau International des Poids et Mesures AN - OPUS4-44999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, X.M. A1 - Li, H.M. A1 - Zhang, Q.H. A1 - Lu, X.H. A1 - Li, S.Q. A1 - Koch, Matthias A1 - Polzer, J. A1 - Hackenber, R. A1 - Moniruzzaman, M. A1 - Khan, M. A1 - Kakoulides, E. A1 - Pak-Wing, K. A1 - Richy, A1 - Chi-Shing, N. A1 - Lu, T. A1 - Gui, E.M. A1 - Cheow, P.S. A1 - Teo, T.L. A1 - Rego, E. A1 - Garrido, B. A1 - Carvalho, L. A1 - Leal, R. A1 - Violante, F. A1 - Baek, S.Y. A1 - Lee, S. A1 - Choi, K. A1 - Kim, B. A1 - Bucar-Miklavcic, M. A1 - Hopley, C. A1 - Nammoonnoy, J. A1 - Murray, J. A1 - Wilson, W. A1 - Toman, B. A1 - Itoh, N. A1 - Gokcen, T. A1 - Krylov, A. A1 - Mikheeva, A. T1 - CCQM-K146 low-polarity analyte in high fat food: benzo a pyrene in olive oil N2 - The demonstration of competency and equivalence for the assessment of levels of contaminants and nutrients in primary foodstuffs is a priority within the 10-year strategy for the OAWG Track A core comparisons. The measurements are core challenges for reference material producers and providers of calibration Services. This key comparison related to low polarity analytes in a high fat, low protein, low carbohydrate food matrix and Benzo[a]pyrene in edible oil was the model System selected to align with this class within the OAWG strategy. Evidence of successful participation in formal, relevant international comparisons is needed to document measurement capability claims (CMCs) made by national metrology institutes (NMIs) and designated institutes (Dis). 16 National Metrology Institutions participated in the Track A Key Comparison CCQM-K146 Low-Polarity Analyte in high fat food: Benzo[a]pyrene in Olive Oil. Participants were requested to evaluate the mass fractions, expressed in µg/kg, of Benzo[a]pyrene in the olive oil material. The KCRV was determined from the results of all NMIs/DIs participating in the key comparison that used appropriately validated methods with demonstrated metrological traceability. Different methods such as liquid-liquid extraction, GPC and SPE were applied in the sample pretreatment and HPLC-FLD, HPLC-MS/MS, and GC-MS or GC-MS/MS were applied for detection by the participants. The mass fractions for BaP were in the range of (1.78 to 3.09) µg/kg with Standard uncertainties of (0.026 to 0.54) µg/kg, with corresponding relative Standard uncertainties from 0.9% to 21%. Five labs withdrew their result from the Statistical evaluation of the KCRV for technical reasons. One lab was excluded from the KCRV evaluation, as they did not meet the CIPM metrological traceability requirements. A Hierarchical Bayes option was selected for the KCRV value, which was determined as 2.74 µg/kg with a Standard uncertainty of 0.03 µg/kg. The 10 institutes those were included in the calculation of the consensus KCRV all agreed within their Standard uncertainties. Successful participation in CCQM-K146 demonstrates the measurement capabilities in determining mass fraction of organic compounds, with molecular mass of 100 g/mol to 500 g/mol, having low polarity pKow < -2, in mass fraction range from 0.1 µg/kg to 1000 µg/kg in a high fat, low protein, low carbohydrate food matrix. KW - Metrology KW - CCQM KW - Food KW - PAH PY - 2020 DO - https://doi.org/10.1088/0026-1394/57/1a/08017 VL - 57 IS - 1a SP - 08017 AN - OPUS4-52435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rothbart, Nick A1 - Maierhofer, Christiane A1 - Goldammer, M. A1 - Hohlstein, F. A1 - Koch, J. A1 - Kryukov, I. A1 - Mahler, G. A1 - Stotter, B. A1 - Walle, G. A1 - Oswald-Tranta, B. A1 - Sengebusch, M. T1 - Probability of detection analysis of round robin test results performed by flash thermography N2 - Within the scope of a standardisation research project, a flash thermography round robin test that evaluates reliability, comparability and efficiency of different testing situations was performed. Data recorded at metal test specimens with flat bottom holes (FBHs) were analysed by calculating the signal-to-noise ratio (SNR) of the defect signatures in the thermograms as well as in the phase images as a function of defect parameters. A new multi-parameter probability of detection (POD) model was developed, where an â versus a continuous signal analysis was based on the linear relationship between the SNR and a multi-parameter a. This linear relationship was verified by comparison to data obtained from an analytical model that is considering lateral thermal heat diffusion as well as to data obtained by numerical simulation. The resulting POD curves for the thermograms and phase images give an estimation for the detectability of the FBHs with known geometry in steel using different equipment and obtained by different participants. By comparing the SNRs of FBHs with similar geometries, this POD model was transferred to aluminium and copper as well. KW - Active thermography KW - Flash excitation KW - Signal-to-noise ratio KW - Round robin test KW - Multi-parameter POD PY - 2016 UR - http://www.tandfonline.com/doi/full/10.1080/17686733.2016.1229246 DO - https://doi.org/10.1080/17686733.2016.1229246 SN - 1768-6733 SN - 2116-7176 VL - 14 IS - 1 SP - 1 EP - 23 PB - Taylor and Francis CY - Abingdon, UK AN - OPUS4-38192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane A1 - Rothbart, Nick A1 - Goldammer, M. A1 - Hohlstein, F. A1 - Koch, J. A1 - Kryukov, I. A1 - Mahler, G. A1 - Stotter, B. A1 - Walle, G. A1 - Oswald-Tranta, B. A1 - Sengebusch, M. T1 - A round robin test of flash thermography – detectability and quantification of artificial and natural defects in CFRP and metal structures N2 - Within the scope of a DIN INS project, a flash thermography round robin test that evaluates reliability, comparability, and efficiency of different testing situations was organized. The results give information about the detectability of defects, e.g. depending on their size and depth, the evaluation methods and the materials used. Besides, the influences of equipment and parameters used by the participants on the results were analysed. All of the quantitative results as well as the feedback given by the participants will be presented in a DIN committee in order to contribute to a flash thermography standard. T2 - Conference QIRT 2016 CY - Gdansk, Poland DA - 04.07.2016 KW - Active thermography KW - Flash excitation KW - Round robin test KW - CFRP KW - Metal PY - 2016 UR - http://qirt.gel.ulaval.ca/archives/qirt2016/papers/075.pdf DO - https://doi.org/10.21611/qirt.2016.075 SN - 2371-4085 SP - Paper 075, 517 EP - 526 CY - Quebec, Canada AN - OPUS4-37510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rothbart, Nick A1 - Maierhofer, Christiane A1 - Goldammer, M. A1 - Hohlstein, F. A1 - Koch, J. A1 - Kryukov, I. A1 - Mahler, G. A1 - Stotter, B. A1 - Oswald-Tranta, B. A1 - Sengebusch, M. T1 - A round robin test of flash thermography of CFRP and metal structures N2 - Within the scope of a DIN INS project, a flash thermography round robin test that evaluates reliability, comparability and efficiency of different testing situations is organized. The results give information about the detectability of defects e.g. by their size and depth, the evaluation method and by the materials used. Besides, the influence of equipment and parameters used by the participants on the results were analysed. All of the quantitative results as well as the feedback given by the participants will be presented in a DIN committee in order to contribute to a flash thermography standard. T2 - 7th International Symposium on NDT in Aerospace CY - Bremen, Germany DA - 16.11.2015 KW - Flash thermography KW - Round robin test KW - Metal KW - Flat bottom holes KW - SNR PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-351070 UR - https://www.ndt.net/?id=18921 SN - 1435-4934 VL - 21 IS - 4 SP - 1 EP - 8 PB - NDT.net CY - Kirchwald AN - OPUS4-35107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rothbart, Nick A1 - Maierhofer, Christiane A1 - Goldammer, M. A1 - Hohlstein, F. A1 - Koch, J. A1 - Kryukov, I. A1 - Mahler, G. A1 - Stotter, B. A1 - Walle, G. A1 - Oswald-Tranta, B. A1 - Sengebusch, M. T1 - A round robin test on flash thermography N2 - A round robin test on flash thermography was organized within the scope of a standardization research project. This test gives information on reliability, comparability and efficiency of different testing situations. Data recorded on metal and CFRP test specimens with flat bottom holes (FBH) were analysed by evaluating the detectability and by calculating the signal-to-noise ratio (SNR) of the defect signatures as a function of defect parameters. For the investigation of the influence of material properties on the spatial resolution as well as on penetration depth, test specimens made of steel and copper with crossed notches and a notch ramp were constructed and investigated. Here, the minimum resolvable notch distance and the maximum detectable depth of the ramp were analysed. T2 - 19th World Conference on Non-destructive Testing (WCNDT) CY - Munich, Germany DA - 13.06.2016 KW - Active thermography KW - Flash excitation KW - Round robin test KW - Standardisation PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-366853 SN - 978-3-940283-78-8 VL - BB 158 SP - We.3.D.4., 1 EP - 8 PB - DGZfP CY - Berlin AN - OPUS4-36685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmack, R. A1 - Eckhardt, B. A1 - Koch, G. A1 - Ortel, Erik A1 - Kraehnert, R. T1 - ZnO coatings with controlled pore size, crystallinity and electrical conductivity N2 - Zinc oxide is a wide bandgap semiconductor with unique optical, electrical and catalytic properties. Many of its practical applications rely on the materials pore structure, crystallinity and electrical conductivity. We report a synthesis method for ZnO films with ordered mesopore structure and tuneable crystallinity and electrical conductivity. The synthesis relies on dip-coating of solutions containing micelles of an amphiphilic block copolymer and complexes of Zn2+ ions with aliphatic ligands. A subsequent calcination at 400 °C removes the template and induces crystallization of the pore walls. The pore structure is controlled by the template polymer, whereas the aliphatic ligands control the crystallinity of the pore walls. Complexes with a higher thermal stability result in ZnO films with a higher content of residual carbon, smaller ZnO crystals and therefore lower electrical conductivity. The paper discusses the ability of different types of ligands to assist in the synthesis of mesoporous ZnO and relates the structure and thermal stability of the precursor complexes to the crystallinity and electrical conductivity of the zinc oxide. KW - conductivity KW - EISA KW - pore templating KW - pore size control KW - ligands KW - zinc oxide PY - 2016 DO - https://doi.org/10.5755/j01.ms.22.1.8634 SN - 1392–1320 VL - 22 IS - 1 SP - 74 EP - 81 PB - Kaunas University of Technology, Lithuania AN - OPUS4-35550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krumbholz, N. A1 - Jansen, A. A1 - Scheller, M. A1 - Müller-Wirts, T. A1 - Lübbecke, S. A1 - Holzwarth, R. A1 - Scheunemann, R. A1 - Wilk, R. A1 - Sartorius, B. A1 - Roehle, H. A1 - Stanze, D. A1 - Beckmann, Jörg A1 - von Chrzanowski, Lars A1 - Ewert, Uwe A1 - Koch, M. ED - Keith A. Krapels, ED - Neil A. Salmon, T1 - Handheld terahertz spectrometer for the detection of liquid explosives N2 - We present a handheld fiber-coupled terahertz spectrometer operating at a center wavelength of 1550 nm. The key elements are a fs-fiber laser, a fiber stretcher delay line and fiber-coupled antennas, which contain novel InAlAs-InGaAs multi layer chips. First experimental data obtained with this system demonstrates its great potential and robustness. In addition, we investigate different hazardous and harmless liquids in reflection geometry. These experiments show that liquids are in principle distinguishable by terahertz spectroscopy. Finally, first steps towards an algorithm that allows for an extraction of the liquids dielectric properties are discussed. The algorithm works for the analysis of reflection data even if the liquid is located inside a container. KW - Handheld terahertz spectrometer KW - Liquid explosives PY - 2009 DO - https://doi.org/10.1117/12.830381 SN - 0277-786X VL - 7485 SP - 748504-1 - 748504-12 AN - OPUS4-20268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Faust, R. A1 - Nauroozi, D. A1 - Bruhn, C. A1 - Koch, B. A1 - Kuhlich, Paul A1 - Piechotta, Christian A1 - Nehls, Irene T1 - (3,5,5,6,8,8-Hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)methanol: a possible metabolite of the synthetic musk fragrance AHTN N2 - The title compound (AHTN-OH), C17H26O, was prepared in order to provide standard materials for the qualitative and quantitative analysis of environmental pollutants. The molecule possesses a chiral C atom, although the structure determination was performed on racemic material, expressed in the structure as disordered chiral sites. The asymmetric unit consists of four AHTN-OH molecules containing an hydroxy group and forming a tetrameric cyclic motif built up by four strong hydrogen bonds between these hydroxy groups and additionally by two weak C–H···π interactions. Furthermore, these tetramers are linked via very weak C–H···π interactions, forming chains along the c axis. PY - 2011 DO - https://doi.org/10.1107/S1600536811018009 SN - 1600-5368 VL - 67 SP - o1462-o1463, sup1-15 PB - Munksgaard CY - Copenhagen AN - OPUS4-24310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -