TY - JOUR A1 - Moraleja, I. A1 - Esteban-Fernández, Diego A1 - Lázaro, A. A1 - Humanes, B. A1 - Neumann, B. A1 - Tejedor, A. A1 - Mena, M. A1 - Jakubowski, Norbert A1 - Gómez-Gómez, M. T1 - Printing metal-spiked inks for LA-ICP-MS bioimaging internal standardization: comparison of the different nephrotoxic behavior of cisplatin, carboplatin, and oxaliplatin N2 - The study of the distribution of the cytostatic drugs cisplatin, carboplatin, and oxaliplatin along the kidney may help to understand their different nephrotoxic behavior. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) allows the acquisition of trace element images in biological tissues. However, results obtained are affected by several variations concerning the sample matrix and instrumental drifts. In this work, an internal standardization method based on printing an Ir-spiked ink onto the surface of the sample has been developed to evaluate the different distributions and accumulation levels of the aforementioned drugs along the kidney of a rat model. A conventional ink-jet printer was used to print fresh sagittal kidney tissue slices of 4 μm. A reproducible and homogenous deposition of the ink along the tissue was observed. The ink was partially absorbed on top of the tissue. Thus, this approach provides a pseudo-internal standardization, due to the fact that the ablation sample and internal standard take place subsequently and not simultaneously. A satisfactory normalization of LA-ICP-MS bioimages and therefore a reliable comparison of the kidney treated with different Pt-based drugs were achieved even for tissues analyzed on different days. Due to the complete ablation of the sample, the transport of the ablated internal standard and tissue to the inductively coupled plasma-mass spectrometry (ICP-MS) is practically taking place at the same time. Pt accumulation in the kidney was observed in accordance to the dosages administered for each drug. Although the accumulation rate of cisplatin and oxaliplatin is high in both cases, their Pt distributions differ. The strong nephrotoxicity observed for cisplatin and the absence of such side effect in the case of oxaliplatin could explain these distribution differences. The homogeneous distribution of oxaliplatin in the cortical and medullar areas could be related with its higher affinity for cellular transporters such as MATE2-k. KW - Bioimaging KW - LA-ICP-MS KW - Cisplatin KW - Standardization KW - Printed internal standard KW - Pt-based drugs KW - Nephrotoxicity PY - 2016 DO - https://doi.org/10.1007/s00216-016-9327-0 SN - 1618-2642 SN - 1618-2650 VL - 408 IS - 9 SP - 2309 EP - 2318 AN - OPUS4-36110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moreno-Gordaliza, E. A1 - Giesen, Charlotte A1 - Lázaro, A. A1 - Esteban-Fernández, D. A1 - Humanes, B. A1 - Canas, B. A1 - Panne, Ulrich A1 - Tejedor, A. A1 - Jakubowski, Norbert A1 - Gómez-Gómez, M.M. T1 - Elemental bioimaging in kidney by LA-ICP-MS as a tool to study nephrotoxicity and renal protective strategies in cisplatin therapies N2 - A laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS)-based methodology is presented for Pt, Cu, and Zn bioimaging on whole kidney 3 µm sagittal sections from rats treated with pharmacological doses of cisplatin, which were sacrificed once renal damage had taken place. Pt turned out to accumulate in the kidney cortex and corticomedullary junction, corresponding to areas where the proximal tubule S3 segments (the most sensitive cells to cisplatin nephrotoxicity) are located. This demonstrates the connection between platinum accumulation and renal damage proved by histological examination of HE-stained sections and evaluation of serum and urine biochemical parameters. Cu and Zn distribution maps revealed a significant displacement in cells by Pt, as compared to control tissues. A dramatic decrease in the Pt accumulation in the cortex was observed when cilastatin was coadministered with cisplatin, which can be related to its nephroprotective effect. Excellent imaging reproducibility, sensitivity (LOD 50 fg), and resolution (down to 8 µm) were achieved, demonstrating that LA–ICP–MS can be applied as a microscopic metal detector at cellular level in certain tissues. A simple and quick approach for the estimation of Pt tissue levels was proposed, based on tissue spiking. PY - 2011 DO - https://doi.org/10.1021/ac201933x SN - 0003-2700 SN - 1520-6882 VL - 83 IS - 20 SP - 7933 EP - 7940 PB - American Chemical Society CY - Washington, DC AN - OPUS4-24965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moreno-Gordaliza, E. A1 - Esteban-Fernández, D. A1 - Giesen, Charlotte A1 - Lehmann, K. A1 - Lázaro, A. A1 - Tejedor, A. A1 - Scheler, C. A1 - Canas, B. A1 - Jakubowski, Norbert A1 - Linscheid, M.W. A1 - Gómez-Gómez, M.M. T1 - LA-ICP-MS and nHPLC-ESI-LTQ-FT-MS/MS for the analysis of cisplatin-protein complexes separated by two dimensional gle elctrophoresis in biological samples N2 - A method for the analysis of Pt–protein complexes in biological samples, previously subjected to cisplatin treatment, has been developed. Proteins were separated by gel electrophoresis, and those bound to Pt were detected with high sensitivity by LA-ICP-(SF)-MS. Pt-containing spots were in-gel digested with trypsin, and the peptides produced identified using nHPLC-ESI-LTQ-FT-MS/MS. The influence of protein separation conditions, staining and gel processing prior to laser ablation on Pt–protein bonds preservation have been evaluated using standard proteins incubated with cisplatin. 2-DE separation under non-reducing conditions followed by either Coomassie blue brilliant or silver staining is appropriate for Pt–protein complexes, achieving a good separating resolution of the proteins in biological samples. Direct LA-ICP-MS analysis of glycerol-treated dried gels for Pt–protein monitoring resulted in better sensitivity, more reliable relative Pt signals and a simpler and less time-consuming approach compared to the analysis of blotted membranes. Ablation of gels allowed tackling protein identification of Pt-spots in the remaining non-ablated material in the gel, making it unnecessary to run several gels in parallel for separate Pt detection and protein identification. By using this approach, Pt coordinated to proteins, such as α-2-macroglobulin, transferrin, albumin or hemoglobin, was detected in the serum from a rat treated in vivo with cisplatin after nrSDS-PAGE separation. Furthermore, the first complete LA-ICP-MS metalloprotein contour map in a 2-DE gel has been produced, in this case for the detection of Pt–protein complexes in renal proximal tubule epithelial cells (RPTECs) incubated with cisplatin. Several proteins were identified in those spots containing Pt, which may have a connection with the drug-induced nephrotoxicity mainly affecting this cell type in the kidney. PY - 2012 DO - https://doi.org/10.1039/c2ja30016h SN - 0267-9477 SN - 1364-5544 VL - 27 IS - 9 SP - 1474 EP - 1483 PB - Royal Society of Chemistry CY - London AN - OPUS4-26562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hösl, Simone A1 - Neumann, B. A1 - Techritz, Sandra A1 - Linscheid, M. A1 - Theuring, F. A1 - Scheler, C. A1 - Jakubowski, Norbert A1 - Müller, Larissa T1 - Development of a calibration and standardization procedure for LA-ICP-MS using a conventional ink-jet printer for quantification of proteins in electro- and western-blot assays N2 - We developed new procedures for internal standardization and calibration to be used for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for elemental micro mapping imaging of biological samples like Western blot membranes and tissue sections. These procedures are based on printing of metal spiked inks onto the top of thin layer samples for simultaneous internal standardization and calibration of LA-ICP-MS. In the case of internal standardization the ink is spiked with indium as an internal standard and homogenously printed over the entire membrane (size 56 cm2) prior to LA-ICP-MS detection, a standard deviation (RSD) value of 2% was achieved. In the second approach the metal content of lanthanide tagged proteins and antibodies after biological work flows was quantified by LA-ICP-MS on nitro-cellulose membranes. In this case the inks spiked with varying metals were printed with different densities on the same nitrocellulose membranes in well-defined squares to produce matrix-matched calibration standards. For validation and calibration the ink squares were excised and the specific metal content was measured by liquid ICP-MS after solubilization of the membrane slice. For the printed calibration standard limits of detection (LOD) of <4 fmol for different metals and relative process standard deviations of 1–2% only were determined via LA-ICP-MS. PY - 2014 DO - https://doi.org/10.1039/c4ja00060a SN - 0267-9477 SN - 1364-5544 VL - 29 IS - 7 SP - 1282 EP - 1291 PB - Royal Society of Chemistry CY - London AN - OPUS4-31171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cruz-Alonso, M. A1 - Fernandez, B. A1 - Álvarez, L. A1 - González-Iglesias, H. A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Pereiro, R. T1 - Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags N2 - An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma – mass spectrometry (ICP-MS).Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. KW - Metal nanoclusters KW - Fluorescence KW - Protein imaging KW - Thin tissue sections KW - Immunohistochemistry KW - Bioconjugation KW - Carbodiimide crosslinking KW - Laser ablation KW - Mass spectrometry PY - 2018 DO - https://doi.org/10.1007/s00604-017-2597-1 VL - 185 IS - 1 SP - 1 EP - 9 PB - Springer AN - OPUS4-44022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cruz-Alonso, M. A1 - Fernandez, B. A1 - Alvarez, L. A1 - Gonzalez-Iglesias, H. A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Pereiro, R. T1 - Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags N2 - An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma – mass spectrometry (ICP-MS). Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. KW - Nanocluster KW - Immunohistochemistry KW - Laser ablation KW - ICP-MS KW - Fluorescence KW - Bioimaging PY - 2018 DO - https://doi.org/10.1007/s00604-017-2597-1 SN - 1436-5073 SN - 0026-3672 VL - 185 IS - 1 SP - 64 EP - 72 PB - Springer CY - Vienna AN - OPUS4-44637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoesl, Simone A1 - Neumann, B. A1 - Techritz, Sandra A1 - Sauter, G. A1 - Simon, R. A1 - Schlüter, H. A1 - Linscheid, M. W. A1 - Theruing, F. A1 - Müller, Larissa A1 - Jakubowski, Norbert T1 - Internal standardization of LA-ICP-MS immunoimaging via printing of universal metal spiked inks onto tissue sections N2 - Formalin-fixed paraffin-embedded (FFPE) specimen from biopsy materials are a widespread sample format for pathologists and medical researchers. Pathologists are archiving vast numbers of FFPE samples which can be stored for decades. Conventional immunohistochemical staining (IHC) of biomarkers on FFPE tissue sections is one of the most important analytical techniques for cancer diagnosis and pathology in general. However standardization for IHC samples and quality management is tedious and differs significantly from clinic to clinic. Combining established IHC staining strategies with modern mass spectrometry mediated methods would increase it`s potential and enable access of large FFPE archives for multiplexed quantitation purposes. In this work element mass spectrometry and a new ink-jet printed internal standardization approach was successfully combined with IHC staining to facilitate quantitative multiplex assays for archived FFPE samples. The printing strategy improves elemental image resolution and reproducibility of paraffin embedded breast cancer tissue sections in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) using conventional IHC staining as a model system to investigate the new capabilities of this technique. For the internal standardization we applied a conventional CD-ink-jet printer to print a metal spiked ink onto the top of thin layer tissue sections with constant density. Printing was carried out in a direct comparison to an iodination of the tissue section as previously described as an alternative standardization method. The use of the printed internal standard allowed correction of the fluctuation during the laser ablation process and compensated instrumental drift effects. Mediated by the ink correction approach we achieved better signal-to-background-ratios (SBR) of 74 and better spatial resolution of 30 µm compared to iodination (SBR=23). This improved performance was demonstrated on tumorous areas in FFPE breast cancer tissue sections and allowing detection of Her-2 in tumorous areas of this tissue with significantly improved contrast. KW - Internal standardization KW - LA-ICP-MS KW - Immuno imaging PY - 2016 DO - https://doi.org/10.1039/c5ja00409h SN - 0267-9477 SN - 1364-5544 VL - 31 IS - 3 SP - 801 EP - 808 AN - OPUS4-35711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moraleja, I. A1 - Mena, M. L. A1 - Lázaro, A. A1 - Neumann, B. A1 - Tejedor, A. A1 - Jakubowski, Norbert A1 - Gómez-Gómez, M. M. A1 - Esteban-Fernández, D. T1 - An approach for quantification of platinum distribution in tissues by LA-ICP-MS imaging using isotope dilution analysis N2 - Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been revealed as a convenient technique for trace elemental imaging in tissue sections, providing elemental 2D distribution at a quantitative level. For quantification purposes, in the last years several approaches have been proposed in the literature such as the use of CRMs or matrix matched standards. The use of Isotope Dilution (ID) for quantification by LA-ICP-MS has been also described, being mainly useful for bulk analysis but not feasible for spatial measurements so far. In this work, a quantification method based on ID analysis was developed by printing isotope-enriched inks onto kidney slices from rats treated with antitumoral Pt-based drugs using a commercial ink-jet device, in order to perform an elemental quantification in different areas from bio-images. For the ID experiments ¹⁹⁴Pt enriched platinum was used. The methodology was validated by deposition of natural Pt standard droplets with a known amount of Pt onto the surface of a control tissue, where could be quantified even 50 pg of Pt, with recoveries higher than 90%. The amount of Pt present in the whole kidney slices was quantified for cisplatin, carboplatin and oxaliplatin-treated rats. The results obtained were in accordance with those previously reported. The amount of Pt distributed between the medullar and cortical areas was also quantified, observing different behavior for the three drugs. KW - Isotopic dilution KW - LA-ICP-MS KW - Quantification KW - Imaging KW - Kidney KW - Pt-based drugs PY - 2018 DO - https://doi.org/10.1016/j.talanta.2017.09.031 SN - 0039-9140 VL - 178 SP - 166 EP - 171 PB - Elsevier AN - OPUS4-43627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Khatib, A. H. A1 - Radbruch, H. A1 - Trog, S. A1 - Neumann, B. A1 - Paul, F. A1 - Koch, A. A1 - Linscheid, M. W. A1 - Jakubowski, Norbert A1 - Schellenberger, E. T1 - Gadolinium in human brain sections and colocalization with other elements N2 - Recent recommendations by the Food and Drug Administration1 and the European Medicines Agency2 are to limit the clinical use of linear gadolinium-based contrast agents (GBCAs) due to convincing evidence of deposition in tissues. Macrocyclic GBCA continued to be considered safe, provided that patients have normal renal function. To date, given the low sensitivity of conventional MRI, there has been a debate about the signal increase following the injections of a macrocyclic GBCA. KW - Gadolinium PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471309 DO - https://doi.org/10.1212/NXI.0000000000000515 SN - 2332-7812 VL - 6 IS - 1 SP - e515, 1 EP - 3 PB - American Academy of Neurology AN - OPUS4-47130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jakubowski, Norbert A1 - Schmidt, B. A1 - Sötebier, C. A1 - Pergantis, S. A1 - Shigeta, K. T1 - Single particle and single cell ICP-MS N2 - ICP-MS is a well-established analytical method which excels by high accuracy, high dynamic range and extremely low limits of detection for most metals. Furthermore ICP-MS offers a very high multi-element coverage so that many elements of the periodic table can be detected simultaneously. In this series of lectures, we want to focus on the historical developments, fundamentals, instrumentation and novel applications of ICP-MS in the life and material sciences. KW - Single particle ICP-MS KW - Single cell ICP-MS PY - 2017 AN - OPUS4-40952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grunert, B. A1 - Saatz, Jessica A1 - Hoffmann, Katrin A1 - Appler, F. A1 - Lubjuhn, Dominik A1 - Jakubowski, Norbert A1 - Resch-Genger, Ute A1 - Emmerling, Franziska A1 - Briel, A. T1 - Multifunctional rare-earth element nanocrystals for cell labeling and multimodal imaging N2 - In this work, we describe a simple solvothermal route for the synthesis of Eu3+-doped gadolinium orthovanadate nanocrystals (Eu:GdVO4−PAA) functionalized with poly(acrylic)acid (PAA), that are applicable as cell labeling probes for multimodal cellular imaging. The Eu3+ doping of the vanadate matrix provides optical functionality, due to red photoluminescence after illumination with UV light. The Gd3+ ions of the nanocrystals reduce the T1 relaxation time of surrounding water protons, allowing these nanocrystals to act as a positive MRI contrast agent with a r1 relaxivity of 1.97 mM−1 s−1. Low background levels of Eu3+, Gd3+, and V5+ in biological systems make them an excellent label for elemental microscopy by Laser Ablation (LA)-ICP-MS. Synthesis resulted in polycrystalline nanocrystals with a hydrodynamic diameter of 55 nm and a crystal size of 36.7 nm, which were further characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL) and transmission electron microscopy (TEM). The multifunctional nanocrystals were subsequently used for intracellular labeling of both human adipose-derived stem cells (MSCs) and A549 (adenocarcinomic human alveolar basal epithelial) cells. KW - Bioimaging KW - Nanoparticle KW - Multimodal KW - Lanthanide PY - 2018 DO - https://doi.org/10.1021/acsbiomaterials.8b00495 SN - 2373-9878 VL - 4 IS - 10 SP - 3578 EP - 3587 PB - ACS Publications CY - Washington, USA AN - OPUS4-46244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Heumann, K. G. A1 - Abbt-Braun, G. A1 - Behrens, K. A1 - Burba, P. A1 - Frimmel, F. H. A1 - Jakubowski, B. A1 - Knöchel, A. A1 - Mielcke, J. A1 - Rädlinger, G. A1 - Marx, G. A1 - Vogl, Jochen ED - Frimmel, F. H. T1 - Element determination and its quality control in fractions of refractory organic substances and the corresponding original water samples PY - 2002 SN - 3-527-30173-9 DO - https://doi.org/10.1002/9783527611195.ch1b SP - 39 EP - 53 PB - Wiley-VCH CY - Weinheim AN - OPUS4-7224 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hachenberger, Y. U. A1 - Rosenkranz, D. A1 - Kriegel, Fabian L. A1 - Krause, B. A1 - Matschaß, René A1 - Reichardt, P. A1 - Tentschert, J. A1 - Laux, P. A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Luch, A. T1 - Tackling Complex Analytical Tasks: An ISO/TS-Based Validation Approach for Hydrodynamic Chromatography Single Particle Inductively Coupled Plasma Mass Spectrometry N2 - Nano-carrier systems such as liposomes have promising biomedical applications. Nevertheless, characterization of these complex samples is a challenging analytical task. In this study a coupled hydrodynamic chromatography-single particle-inductively coupled plasma mass spectrometry (HDC-spICP-MS) approach was validated based on the technical specification (TS) 19590:2017 of the international organization for standardization (ISO). The TS has been adapted to the hyphenated setup. The quality criteria (QC), e.g., linearity of the calibration, transport efficiency, were investigated. Furthermore, a cross calibration of the particle size was performed with values from dynamic light scattering (DLS) and transmission electron microscopy (TEM). Due to an additional Y-piece, an online-calibration routine was implemented. This approach allows the calibration of the ICP-MS during the dead time of the chromatography run, to reduce the required time and enhance the robustness of the results. The optimized method was tested with different gold nanoparticle (Au-NP) mixtures to investigate the characterization properties of HDC separations for samples with increasing complexity. Additionally, the technique was successfully applied to simultaneously determine both the hydrodynamic radius and the Au-NP content in liposomes. With the established hyphenated setup, it was possible to distinguish between different subpopulations with various NP loads and different hydrodynamic diameters inside the liposome carriers. KW - Single particle ICP-MS KW - Nanoparticle characterization KW - Nano-carrier KW - Iposomes KW - Hydrodynamic chromatography (HDC) KW - Validation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506609 DO - https://doi.org/10.3390/ma13061447 VL - 13 IS - 6 SP - 1 EP - 14 CY - Basel, Switzerland AN - OPUS4-50660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pedrero, Z. A1 - Murillo, S. A1 - Cámara, C. A1 - Schram, E. A1 - Luten, J.B. A1 - Feldmann, I. A1 - Jakubowski, Norbert A1 - Madrid, Y. T1 - Selenium speciation in different organs of African catfish (Clarias gariepinus) enriched through a selenium-enriched garlic based diet N2 - Speciation of Se in fish is needed to elucidate the metabolism of this element in living organisms in the marine environment. In this paper, selenium concentration and its species distribution in several organs and tissues (liver, gills, kidney, muscle and gastrointestinal tract) of African catfish fed with a selenium-enriched garlic based diet was studied. The intention of this paper is focused on both the investigation of selenium distribution in the soluble protein fraction and the detection of selenoaminoacids. Thus, two different procedures have been developed. In the first procedure, screening of selenium in proteins in the Tris-buffer soluble fraction of different tissues was carried out by size exclusion chromatography-inductively coupled plasma-mass spectrometry (SEC-ICP-MS) and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) after sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) separation and electroblotting onto membranes. For the amino acid analysis, several sample treatments for Se-species extraction, based on enzymatic hydrolysis, were compared. The best results were obtained for incubation at controlled temperature. Application of several sample treatments in conjunction with different chromatographic techniques (reverse phase, anion exchange and ion exchange/size exclusion) was crucial to unambiguous Se-species identification. In Se-enriched African catfish a noticeable increase in the content of selenium in different organs was observed, except for the liver, where the Se level remained unaltered. The kidney was the Se-target organ in animals fed with enriched Se food. Selenomethionine (SeMet) was the main Se species identified in fillet extracts, whereas the presence of selenocysteine (SeCys) was detected in the liver and both SeMet and SeCys were present in the kidney. PY - 2011 DO - https://doi.org/10.1039/c003889j SN - 0267-9477 SN - 1364-5544 VL - 26 IS - 1 SP - 116 EP - 125 PB - Royal Society of Chemistry CY - London AN - OPUS4-22981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -