TY - JOUR A1 - Schönhals, Andreas A1 - Goering, Harald A1 - Schick, C. A1 - Frick, B. A1 - Zorn, R. T1 - Glassy dynamics of polymers confined to nanoporous glasses revealed by relaxational and scattering experiments JF - The European Physical Journal E N2 - The glassy dynamics of poly(propylene glycol) (PPG) and poly(dimethyl siloxane) (PDMS) confined to a nanoporous host system revealed by dielectric spectroscopy, temperature-modulated DSC and neutron scattering is compared. For both systems the relaxation rates estimated from dielectric spectroscopy and temperature-modulated DSC agree quantitatively indicating that both experiments sense the glass transition. For PPG the segmental dynamics is determined by a counterbalance of adsorption and confinement effect. The former results form an interaction of the confined macromolecules with the internal surfaces. A confinement effect originates from an inherent length scale on which the underlying molecular motions take place. The increment of the specific-heat capacity at the glass transition vanishes at a finite length scale of 1.8 nm. Both results support the conception that a characteristic length scale is relevant for glassy dynamics. For PDMS only a confinement effect is observed which is much stronger than that for PPG. Down to a pore size of 7.5 nm, the temperature dependence of the relaxation times follows the Vogel-Fulcher-Tammann dependence. At a pore size of 5 nm this changes to an Arrhenius-like behaviour with a low activation energy. At the same pore size vanishes for PDMS. Quasielastic neutron scattering experiments reveal that also the diffusive character of the relevant molecular motions --found to be characteristic above the glass transition-- seems to disappear at this length scale. These results gives further strong support that the glass transition has to be characterised by an inherent length scale of the relevant molecular motions. KW - Glass transitions KW - Dielectric loss and relaxation KW - Macromolecular and polymer solutions KW - Polymer melts KW - Swelling PY - 2003 DO - https://doi.org/10.1140/epje/i2003-10036-4 SN - 1292-8941 SN - 1292-895X VL - 12 IS - 1 SP - 173 EP - 178 PB - EDP Sciences CY - Orsay AN - OPUS4-2866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frick, B. A1 - Schönhals, Andreas A1 - Zorn, R. A1 - Alba-Simionesco, C. A1 - Dosseh, G. A1 - LeQuellec, C. T1 - Inelastic neutron scattering probing the dynamics of glass forming systems in confinement - recent results on organic liquids and polymers T2 - 3th International Conference on Broadband Dielectric Spectroscopy and its Applications T2 - 3th International Conference on Broadband Dielectric Spectroscopy and its Applications CY - Delft, Netherlands DA - 2004-08-23 PY - 2004 AN - OPUS4-3903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schönhals, Andreas A1 - Goering, Harald A1 - Schick, C. A1 - Frick, B. A1 - Zorn, R. ED - Fourkas, J. T. T1 - Poly(methyl phenyl siloxane) in random nanoporous glasses - molecular dynamics and structure T2 - Dynamics in small confining systems - 2003 N2 - The effect of a nanometer confinement on the molecular dynamics of poly(methyl phenyl siloxane) (PMPS) was studied by dielectric spectroscopy (DK), temperature modulated DSC (TMDSC) and neutron scattering (NS). DK and TMDSC experiments show that for PMPS in 7.5 nm pores the molecular dynamics is faster than in the bulk which originates from an inherent length scale of the underlying molecular motions. At a pore size of 5 nm the temperature dependence of the relaxations times changes from a Vogel-Fulcher-Tammann like behavior to an Arrhenius one. At the same pore size Dcp vanishes. These results give strong support that the glass transition has to be characterized by an inherent length scale of the relevant molecular motions. Quasielastic neutron scattering experiments reveal a strong change even in the microscopic dynamic. T2 - Symposium P: "Dynamics in Small Confining Systems VII" ; MRS fall meeting 2004 CY - Boston, MA, USA DA - 2003-12-01 KW - Nanometer Confinement KW - Dielectric and thermal spectroscopy KW - Neutron scattering KW - Poly(methyl phenyl siloxane) PY - 2004 SN - 1-558-99728-8 DO - https://doi.org/10.1557/PROC-790-P9.3 SN - 0272-9172 N1 - Serientitel: Materials Research Society symposium proceedings – Series title: Materials Research Society symposium proceedings IS - 790 SP - P9.3.1 EP - P9.3.6 PB - Materials Research Society CY - Warrendale, Pa. AN - OPUS4-3520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schönhals, Andreas A1 - Goering, Harald A1 - Schick, C. A1 - Frick, B. A1 - Zorn, R. T1 - Glass transition of polymers confined to nanoporous glasses JF - Colloid and polymer science N2 - The glassy dynamics of poly(propylene glycol) (PPG) and poly(methyl phenyl siloxane) (PMPS) confined to nanoporous glasses (pore sizes 2.5–20 nm) investigated by dielectric spectroscopy, temperature modulated DSC and neutron scattering is compared. For both systems the relaxation rates estimated from dielectric spectroscopy and temperature modulated DSC agree quantitatively indicating that both experiments sense the glass transition. For PPG the glassy dynamics in nanopores is determined by a counterbalance of an adsorption and a confinement effect where the temperature dependence of the relaxation times obeys the Vogel/Fulcher/Tammann (VFT-) equation. The former effect results from an interaction of the confined macromolecules with the internal surfaces which in general slows down the molecular dynamics. A confinement effect leads to an acceleration of the segmental dynamics compared to the bulk state and points to an inherent length scale on which the glassy dynamics takes place. The step of the specific heat capacity Deltacp at the glass transition vanishes at a finite length scale of 1.8 nm. This result supports further the conception that a characteristic length scale is relevant for glassy dynamics. For PMPS down to a pore size of 7.5 nm the temperature dependence of the relaxation times follows the VFT-dependence and a confinement effect is observed like for PPG. At a pore size of 5 nm this changes to an Arrhenius-like behavior with a low activation energy. At the same pore size Deltacp vanishes for PMPS. This points to a dramatic change in the character of molecular motions responsible for glassy dynamics and supports further the relevance of a characteristic length scale on which it takes place. Quasielastic neutron scattering experiments on PMPS reveal that the microscopic dynamics characterized by the mean square displacement depends on confinement above the glass transition. The diffusive character of the relevant molecular motions seems to disappear at a length scale of about 1.6 nm. KW - Glass transition KW - Polymers KW - Nanoporous glasses KW - Glassy dynamics KW - Poly(propylene glycol) KW - Poly(methyl phenyl siloxane) PY - 2004 DO - https://doi.org/10.1007/s00396-004-1106-3 SN - 0303-402X SN - 1435-1536 VL - 282 SP - 882 EP - 891 PB - Springer CY - Berlin AN - OPUS4-3630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frick, B. A1 - Alba-Simionesco, C. A1 - Anastasiadis, S. H. A1 - Chrissopulou, K. A1 - Dalnoki-Veress, K. A1 - Dosseh, G. A1 - Forest, J. A1 - Hartmann, L. A1 - LeQuellec, C. A1 - Moreno, A. A1 - Schönhals, Andreas A1 - Zorn, R. T1 - Inelastic neutron scattering studies on glass-forming systems in coninement T2 - Fall Meeting Material Research Society of America T2 - Fall Meeting Material Research Society of America CY - Boston, MA, USA DA - 2003-12-01 PY - 2003 AN - OPUS4-4194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frick, B. A1 - Alba-Simionesco, C. A1 - Dosseh, G. A1 - Le Quellec, C. A1 - Moreno, A. J. A1 - Colmenero, J. A1 - Schönhals, Andreas A1 - Zorn, R. A1 - Chrissopoulou, K. A1 - Anastasiadis, S. H. A1 - Dalnoki-Veress, K. T1 - Inelastic neutron scattering for investigating the dynamics of confined glass-forming liquids JF - Journal of non-crystalline solids N2 - Inelastic neutron scattering was employed over recent years to investigate the influence of spatial confinement on the dynamics of glass-forming systems. We review the common phenomena observed by neutron scattering in such different confining hosts like porous glasses, molecular sieves, clays or free standing polymer films, which impose a spatial limitation to the motion of small organic molecules, oligomers or polymers. Near the glass transition temperature the mean squared displacements of the confined molecules show clear deviations from the bulk behavior. The observed increase or decrease of the mean squared displacements confirms the high relevance of the interface interaction near walls of confining media without excluding additional real confinement effects. We show a new comparison of the mean squared displacement for PDMS and PMPS in bulk and in different type of restricting geometries, which evidence a weak influence of the restricting geometry on the local methyl group motion, but a strong influence on the glass transition dynamics, if wall interactions are taken into account. Strong wall interaction is also supported by the intermediate scattering function, measured either by combining neutron backscattering and time-of-flight experiments to cover 3 decades in time from ns to ps or by neutron spin echo, which reveal above Tg an increasing elastic fraction with decreasing pore size and a slowing down of the dynamics. Furthermore we show that a reduction of modes below the Boson peak frequency is a more general feature of confined glass-forming systems. PY - 2005 DO - https://doi.org/10.1016/j.jnoncrysol.2005.03.061 SN - 0022-3093 VL - 351 IS - 33-36 SP - 2657 EP - 2667 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-10831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schönhals, Andreas A1 - Goering, Harald A1 - Schick, Ch. A1 - Frick, b. A1 - Zorn, R. T1 - Polymers in nanoconfinement: What can be learned from relaxation and scattering experiments? JF - Journal of non-crystalline solids N2 - Dielectric spectroscopy in combination with temperature modulated differential scanning calorimetry and quasielastic/inelastic neutron scattering are employed to investigate the molecular (glassy) dynamics of poly(dimethyl siloxane) (PDMS) and poly(methyl phenyl siloxane) (PMPS) confined to random nanoporous glasses with nominal pore sizes between 2.5 nm and 20 nm. Inside the pores PDMS and PMPS have faster molecular dynamics than in the bulk state. Down to a pore size of 7.5 nm the temperature dependence of the relaxation times (or rates) obeys the Vogel/Fulcher/Tammann (VFT) equation where the data obtained from dielectric and thermal spectroscopy agree quantitatively. At a pore size of 5 nm this VFT-like temperature dependence changes to an Arrhenius behavior. At the same confining length scale the increment of the specific heat capacity at Tg normalized to the weight of the confined polymer vanishes. The results indicate that a minimal length scale seems to be relevant for glassy dynamics in both polymers although the estimated length scale of about 5 nm seems to a bit too large in comparison to other experimental results and theoretical approaches. Neutron scattering is employed to investigate methyl group reorientation and the fast segmental dynamics of both polymers in confinement. Although the methyl group rotation is a localized process these experiments show that a part of the methyl groups is immobilized by the confinement whereas the effects for PDMS are much more pronounced than for PMPS. With regard to the segmental dynamics, neutron scattering reveals a big difference in the behavior of both polymers. Whereas the data obtained for PMPS are in accord with a boundary layer formed at the surfaces of the nanopores, for PDMS a considerable amount of elastic scattering is observed. To explain this result it is assumed that some structure formation of PDMS takes place in the nanopores, although the thermal data show no crystallization or melting effects. KW - Glass transition KW - Dielectric loss and relaxation KW - Macromolecular and polymer solutions KW - Polymer melts KW - Swelling PY - 2005 DO - https://doi.org/10.1016/j.jnoncrysol.2005.03.062 SN - 0022-3093 VL - 351 IS - 33-36 SP - 2668 EP - 2677 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-10856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zorn, R. A1 - Frick, B. A1 - Hartmann, L. A1 - Kremer, F. A1 - Schönhals, Andreas A1 - Richter, D. T1 - Dynamics of confined glass-forming systems observed by neutron scattering JF - Physica B N2 - In this article, results on the microscopic dynamics of a low-molecular glass former and a polymer confined in nanoporous silica obtained by inelastic neutron scattering are presented. By combining time-of-flight spectroscopy and backscattering spectroscopy we are able to cover a large dynamical range, from the low-frequency vibrations to the relaxation. The most prominent effect was observed on the “boson peak” in the vibrational spectrum. A strong reduction of the modes at lowest frequencies could be observed in both cases. The main effect on the relaxation is a broadening for the salol system. For the polymeric system a difference of the confinement influence on the methyl-group rotation and the relaxation can be detected from a first qualitative interpretation of the data. T2 - 3rd European Conference on Neutron Scattering (ECNS-3) CY - Montpellier, France DA - 2003-09-03 KW - Glass transition KW - Confinement PY - 2004 DO - https://doi.org/10.1016/j.physb.2004.03.303 SN - 0921-4526 SN - 1873-2135 VL - 350 IS - 1-3 SP - e1115 EP - e1118 PB - North-Holland Physics Publ. CY - Amsterdam AN - OPUS4-4589 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schönhals, Andreas A1 - Schick, C. A1 - Huth, H. A1 - Frick, B. A1 - Mayorova, M. A1 - Zorn, R. T1 - Molecular dynamics in glass-forming poly(phenyl methyl siloxane) as investigated by broadband thermal, dielectric and neutron spectroscopy JF - Journal of non-crystalline solids KW - Neutron diffraction/scattering KW - Dielectric properties KW - Relaxation KW - Electric modulus KW - Glass transition PY - 2007 SN - 0022-3093 VL - 353 IS - 41-43 SP - 3853 EP - 3861 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-15898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zorn, R. A1 - Mayorova, M. A1 - Richter, D. A1 - Schönhals, Andreas A1 - Hartmann, L. A1 - Kremer, F. A1 - Frick, B. T1 - Effect of Nanoscopic Confinement on the Microscopic Dynamics of Glass-Forming Liquids and Polymers Studied by Inelastic Neutron Scattering T2 - AIP Conference Proceedings 982 N2 - In this article we present inelastic neutron scattering (INS) experiments on different systems of confined glass-formers. The aim of these experiments is to study the influence of spatial restriction on the microscopic dynamics related to the glass transition. Such results could be helpful for the detection of a currently speculated cooperativity length of the glass transition. The glass-forming component is either a molecular liquid or a polymer. The confining matrices are `hard' (silica glass, silicon) or `soft' (microemulsion droplets). For some experiments the confining structure could be spatially oriented. Except for the soft confinement the naïvely expected acceleration effect could only be found at low temperatures where INS experiments are difficult because of the long relaxation times. A clear effect of confinement could be observed for the glass-typical low energy vibrations (boson peak). This effect seems to be completely different for soft and hard confinement. Surprisingly, the experiments on oriented nanopores did not show any signs of an anisotropy of the dynamics. KW - Alpha relaxation KW - Boson peak KW - Confinement KW - Cooperativity length KW - Glass transition PY - 2008 SN - 978-0-7354-0501-1 DO - https://doi.org/10.1063/1.2897907 SN - 0094-243X SN - 1551-7616 SP - 79 EP - 84 PB - American Institute of Physics CY - Melville, NY, USA AN - OPUS4-17454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schönhals, Andreas A1 - Schick, C. A1 - Huth, H. A1 - Frick, B. A1 - Mayorova, M. A1 - Zorn, R. T1 - Molecular Mobility of Poly(phenyl methyl siloxane) Investigated by Thermal, Dielectric and Neutron Spectroscopy JF - PMSE preprints PY - 2007 SN - 0743-0515 VL - 97 SP - 948 EP - 949 PB - Division of Polymeric Materials Science and Engineering, American Chemical Society CY - Washington, DC AN - OPUS4-15736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schönhals, Andreas A1 - Goering, Harald A1 - Schick, C. A1 - Frick, B. A1 - Mayorova, M. T1 - Segmental dynamics of poly(methyl phenyl siloxane) confined to nanoporous glasses JF - The European physical journal / Special topics N2 - The effect of a nanometer confinement on the molecular dynamics of poly(methyl phenyl siloxane) (PMPS) was studied by dielectric spectroscopy (DS), temperature modulated DSC (TMDSC) and neutron scattering (NS). Nanoporous glasses with pore sizes of 2.5–20 nm have been used. DS and TMDSC experiments show that for PMPS in 7.5 nm pores the molecular dynamics is faster than in the bulk which originates from an inherent length scale of the underlying molecular motions. For high temperatures the temperature dependence of the relaxation rates for confined PMPS crosses that of the bulk state. Besides finite states effects also the thermodynamic state of nano-confined PMPS is different from that of the bulk. At a pore size of 5 nm the temperature dependence of the relaxation times changes from a Vogel/Fulcher/Tammann like to an Arrhenius behavior where the activation energy depends on pore size. This is in agreement with the results obtained by NS. The increment of the specific heat capacity at the glass transition depends strongly on pore size and vanishes at a finite length scale between 3 and 5 nm which can be regarded as minimal length scale for glass transition to appear in PMPS. PY - 2007 SN - 1951-6355 SN - 1951-6401 VL - 141 IS - 1 SP - 255 EP - 259 PB - Springer CY - Berlin AN - OPUS4-14602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schönhals, Andreas A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed Aejaz A1 - Böhning, Martin A1 - Zamponi, M. A1 - Frick, B. A1 - Appel, M. A1 - Günther, G. A1 - Russina, M. A1 - Alentiev, D. A1 - Bermeshev, M. A1 - Zorn, R. T1 - Microscopic dynamics of highly permeable super glassy polynorbornenes revealed by quasielastic neutron scattering JF - Journal of Membrane Science N2 - The molecular dynamics of addition-type poly(tricyclononenes) with Si-substituted bulky side groups has been investigated by a combination of neutron time-of-flight and neutron backscattering spectroscopy methods on a time scale from 0.1 ps to ca. 3 ns. The investigated poly(tricyclononenes) PTCNSi1 and PTCNSi2g both bear a high microporosity which makes them promising candidates for active separation layers for gas separation membranes. At least for larger gas molecules it is assumed that the pathways for diffusion require an enlargement of pre-existing micropores in terms of an activated zone. A low temperature relaxation process was found for both polymers by the performed neutron scattering experiments. This process was assigned to the methyl group rotation. It was analysed in terms of a jump diffusion in a three-fold potential. The analysis of the dependence of the elastic incoherent structure factor on the scattering vector yields the number of methyl groups which might be immobilized. For PTCNSi1 (3 methyl groups in the monomeric unit) it was found that all methyl groups take part in the methyl group rotation whereas for PTCNSi2g (6 methyl groups in monomeric unit) a considerable number of methyl groups are blocked in their rotation. This immobilization of methyl groups is due to the sterically demanding arrangement of the methyl groups in PTCNSi2g. This conclusion is further supported by the result that the activation energy for the methyl group rotation is three times higher for PTCNSi2g than that of PTCNSi1. KW - Highly permeably polynorbornenes KW - Polymers of intrinsic microporosity KW - Gas separation membranes KW - Quasielastic neutron scattering PY - 2021 DO - https://doi.org/10.1016/j.memsci.2021.119972 SN - 0376-7388 VL - 642 PB - Elesevier B.V. AN - OPUS4-53508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krause, Christina A1 - Zorn, R. A1 - Emmerling, Franziska A1 - Falkenhagen, Jana A1 - Frick, B. A1 - Huber, P. A1 - Schönhals, Andreas T1 - Vibrational density of states of triphenylene based discotic liquid crystals: dependence on the length of the alkyl chain JF - Physical chemistry, chemical physics N2 - The vibrational density of states of a series of homologous triphenylene-based discotic liquid crystals HATn (n = 5, 6, 8, 10, 12) depending on the length of the aliphatic side chain is investigated by means of inelastic neutron scattering. All studied materials have a plastic crystalline phase at low temperatures, followed by a hexagonally ordered liquid crystalline phase at higher temperatures and a quasi isotropic phase at the highest temperatures. The X-ray scattering pattern for the plastic crystalline phase of all materials shows a sharp Bragg reflection corresponding to the intercolumnar distance in the lower q-range and a peak at circa 17 nm-1 related to intracolumnar distances between the cores perpendicular to the columns as well as a broad amorphous halo related to the disordered structure of the methylene groups in the side chains in the higher q-range. The intercolumnar distance increases linearly with increasing chain length for the hexagonal columnar ordered liquid crystalline phase. A similar behaviour is assumed for the plastic crystalline phase. Besides n = 8 all materials under study exhibit a Boson peak. With increasing chain length, the frequency of the Boson peak decreases and its intensity increases. This can be explained by a self-organized confinement model. The peaks for n = 10, 12 are much narrower than for n = 5, 6 which might imply the transformation from a rigid system to a softer one with increasing chain length. Moreover the results can also be discussed in the framework of a transition from an uncorrelated to a correlated disorder with increasing n where n = 8 might be speculatively considered as a transitional state. KW - X-ray scattering KW - Neutron scattering KW - Differential scanning calorimetry PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-304789 DO - https://doi.org/10.1039/c3cp55303e SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 16 SP - 7324 EP - 7333 PB - The Royal Soc. of Chemistry CY - Cambridge AN - OPUS4-30478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krause, Christina A1 - Zorn, R. A1 - Frick, B. A1 - Schönhals, Andreas T1 - Thermal properties and vibrational density of states of a nanoconfined discotic liquid crystal JF - Colloid and polymer science N2 - Neutron scattering is employed to investigate the vibrational density of states (VDOS) of the discotic liquid crystal 2,3,6,7,10,11-hexakis[hexyloxy] triphenylene (HAT6) confined to the pores of alumina oxide membranes with different pore sizes. Additionally, the phase transitions were studied by differential scanning calorimetry. The transitions were observed down to the smallest pore size. The decrease of the transition enthalpies versus inverse pore size for both transitions implies an increase of the amount of disordered amorphous material. By extrapolation of its pore size dependence, a critical pore diameter for structure formation of 17 nm is estimated. Similar to the bulk, excess contributions to the VDOS (Boson peak) are also observed for confined HAT6. The Boson peak gains in intensity and shifts to lower frequencies with decreasing pore diameter. This is discussed in the framework of a softening of HAT6 induced by the confinement due to a less-developed plastic crystalline state inside the pores compared to the bulk. KW - Discotic liquid crystals KW - Confinement KW - Neutron scattering KW - Boson peak PY - 2014 DO - https://doi.org/10.1007/s00396-014-3247-3 SN - 0303-402X SN - 1435-1536 VL - 292 IS - 8 SP - 1949 EP - 1960 PB - Springer CY - Berlin AN - OPUS4-31254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kityk, A.V. A1 - Busch, M. A1 - Rau, D. A1 - Calus, S. A1 - Cerclier, C.V. A1 - Lefort, R. A1 - Morineau, D. A1 - Grelet, E. A1 - Krause, Christina A1 - Schönhals, Andreas A1 - Frick, B. A1 - Huber, P. T1 - Thermotropic orientational order of discotic liquid crystals in nanochannels: an optical polarimetry study and a Landau-de Gennes analysis JF - Soft matter N2 - Optical polarimetry measurements of the orientational order of a discotic liquid crystal based on a pyrene derivative confined in parallelly aligned nanochannels of monolithic, mesoporous alumina, silica, and silicon as a function of temperature, channel radius (3–22 nm) and surface chemistry reveal a competition of radial and axial columnar orders. The evolution of the orientational order parameter of the confined systems is continuous, in contrast to the discontinuous transition in the bulk. For channel radii larger than 10 nm we suggest several, alternative defect structures, which are compatible both with the optical experiments on the collective molecular orientation presented here and with a translational, radial columnar order reported in previous diffraction studies. For smaller channel radii our observations can semi-quantitatively be described by a Landau–de Gennes model with a nematic shell of radially ordered columns (affected by elastic splay deformations) that coexists with an orientationally disordered, isotropic core. For these structures, the cylindrical phase boundaries are predicted to move from the channel walls to the channel centres upon cooling, and vice-versa upon heating, in accord with the pronounced cooling/heating hystereses observed and the scaling behavior of the transition temperatures with the channel diameter. The absence of experimental hints of a paranematic state is consistent with a biquadratic coupling of the splay deformations to the order parameter. PY - 2014 DO - https://doi.org/10.1039/c4sm00211c SN - 1744-683X VL - 10 IS - 25 SP - 4522 EP - 4534 PB - RSC Publ. CY - Cambridge AN - OPUS4-30866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schönhals, Andreas A1 - Frunza, S. A1 - Frunza, L. A1 - Unruh, T. A1 - Frick, B. A1 - Zorn, R. T1 - Vibrational and molecular dynamics of a nanoconfined liquid crystal JF - The European physical journal / Special topics N2 - The effect of a nanometer confinement on the vibrational and molecular dynamics of a liquid crystals E7 was studied by dielectric spectroscopy (DS) and neutron scattering (NS). E7 undergoes a glass transition phenomenon besides the nematic to isotropic phase transition. As confining host a molecular sieve of the MCM-41 type is used having cylindrical pores with a radius of 1.25 nm. The results obtained by both methods are compared in detail. PY - 2010 DO - https://doi.org/10.1140/epjst/e2010-01329-5 SN - 1951-6355 SN - 1951-6401 VL - 189 IS - 1 SP - 251 EP - 255 PB - Springer CY - Berlin AN - OPUS4-22638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schönhals, Andreas A1 - Zorn, R. A1 - Frick, B. T1 - Inelastic neutron spectroscopy as a tool to investigate nanoconfined polymer systems JF - Polymer N2 - The effect of a nanometer scale confinement (pore sizes 7.5 nm down to 2.5 nm) on the vibrational density of states (VDOS) and on the molecular dynamics of Poly(dimethyl siloxane) (PDMS) and Poly(-methyl phenyl siloxane) (PMPS) is studied by inelastic Neutron scattering. The high penetration depth of neutrons makes neutron scattering a suitable tool for the study of confined systems. Moreover, Neutrons are sensitive to light nuclei therefore the confined polymers can be investigated directly, more or less independently of the confining host. Resulting findings are firstly, a reduction of the low frequency contributions to the VDOS below the Boson Peak frequency for both polymers. Including literature data, this reduction can be regarded as a more general feature for glass-forming systems confined by hard walls. Secondly, clear deviations in the temperature dependence of the mean squared displacement of the confined molecules compared to the bulk were found close to the thermal glass transition temperature, whereas localized methyl group rotations were only weakly influenced. Furthermore, the molecular dynamics is accessed. The combination of neutron Time-of-Flight with neutron backscattering, thus covering a broad dynamical range from sub ps to ns, reveal clear influence from confinement on the intermediate incoherent scattering function S(q,t). The latter was obtained by combining the inverse Fourier transform of the individual dynamical structure factors measured by the both methods. The time and q dependence of S(q,t) are discussed in detail for the local methyl group rotations and the segmental dynamics, considering both the interaction of the segments with the pore walls and possible geometrical confinement effects. KW - Confinement KW - Density of states KW - Dynamic glass transition PY - 2016 DO - https://doi.org/10.1016/j.polymer.2016.06.006 SN - 0032-3861 SN - 1873-2291 VL - 105 SP - 393 EP - 406 PB - Elsevier AN - OPUS4-38256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krause, Christina A1 - Zorn, R. A1 - Frick, B. A1 - Schönhals, Andreas T1 - Quasi- and inelastic neutron scattering to investigate the molecular dynamics of discotic molecules in the bulk JF - The European physical journal - Web of Conferences : proceedings N2 - In- and quasielastic neutron scattering is employed to investigate both the vibrational density of states and the molecular dynamics of two homologous discotic liquid crystals (DLC) with different length of the alkyl side chain based on a triphenylene derivate. For both compounds characteristic low frequency excess contributions to the vibrational density of states are found. Therefore it is concluded that these liquid crystals show a glass-like behaviour. Elastic scans further show that in these materials a rich molecular dynamics takes place. T2 - QENS/WINS 2014 - 11th International Conference on Quasielastic Neutron Scattering and 6th International Workshop on Inelastic Neutron Spectrometers CY - Autrans, France DA - 2014-05-11 PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-325477 DO - https://doi.org/10.1051/epjconf/20158302017 SN - 2100-014X VL - 83 SP - 02017-1 EP - 02017-4 PB - EDP Sciences CY - Les Ulis AN - OPUS4-32547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schönhals, Andreas A1 - Frick, B. A1 - Zorn, R. ED - Kremer, Friedrich ED - Loidl, Alois T1 - The scaling of the molecular dynamics of liquid crystals as revealed by broadband dielectric, specific heat, and neutron spectroscopy T2 - The scaling of relaxation processes, Advances in dielectrics N2 - A combination of different complementary methods is employed to investigate scaling of the molecular dynamics of two different liquid crystals. Each method is sensitive to different kind of fluctuations and provides therefore a different window to look at the molecular dynamics. In detail, broadband dielectric spectroscopy is combined with specific heat spectroscopy and neutron scattering. As systems the nematic liquid crystal E7 and a discotic liquid crystalline pyrene are considered. First of all it was proven that both systems show all peculiarities which are characteristic for glassy dynamics and the glassy state. Especially for the nematic liquid crystal E7 it could be unambiguously shown by a combination of dielectric and specific heat spectroscopy that the tumbling mode is the underlying motional process responsible for glassy dynamics. Dielectric investigations on the discotic liquid crystalline pyrene reveal that at the phase transition from the plastic crystalline to the hexagonal columnar liquid crystalline phase the molecular dynamics changes from a more strong to fragile temperature dependence of the relaxation rates. Moreover a combination of results obtained by specific heat spectroscopy with structural methods allows an estimation of the length scale relevant for the glass transition. KW - Broadband dielectric spectroscopy KW - Specific heat spectroscopy KW - Rod-like liquid crystals KW - Discotic liquid crystals PY - 2018 UR - https://link.springer.com/content/pdf/10.1007%2F978-3-319-72706-6.pdf SN - 978-3-319-72705-9 SN - 978-3-319-72706-6 DO - https://doi.org/10.1007/978-3-319-72706-6_9 SN - 2190-930X SN - 2190-9318 SP - 279 EP - 306 PB - Springer International publishing AG CY - Cham, Switzerland ET - 1. AN - OPUS4-45624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Krause, Christina A1 - Zorn, R. A1 - Lohstroh, W. A1 - Schneider, G. J. A1 - Zamponi, M. A1 - Holerer, O. A1 - Frick, B. A1 - Schönhals, Andreas T1 - Complex molecular dynamics of a symmetric model discotic liquid crystal revealed by broadband dielectric, thermal and neutron spectroscopy JF - Soft Matter N2 - The molecular dynamics of the triphenylene-based discotic liquid crystal HAT6 is investigated by broadband dielectric spectroscopy, advanced dynamical calorimetry and neutron scattering. Differential scanning calorimetry in combination with X-ray scattering reveals that HAT6 has a plastic crystalline phase at low temperatures, a hexagonally ordered liquid crystalline phase at higher temperatures and undergoes a clearing transition at even higher temperatures. The dielectric spectra show several relaxation processes: a localized gamma-relaxation a lower temperature and a so called alpha-2-relaxation at higher temperatures. The relaxation rates of the alpha-2-relaxation have a complex temperature dependence and bear similarities to a dynamic glass transition. The relaxation rates estimated by hyper DSC, Fast Scanning calorimetry and AC Chip calorimetry have a different temperature dependence than the dielectric alpha-2-relaxation and follows the VFT-behavior characteristic for glassy dynamics. Therefore, this process is called alpha-1-relaxation. Its relaxation rates show a similarity with that of polyethylene. For this reason, the alpha-1-relaxation is assigned to the dynamic glass transition of the alkyl chains in the intercolumnar space. Moreover, this process is not observed by dielectric spectroscopy which supports its assignment. The alpha-2-relaxation was assigned to small scale translatorial and/or small angle fluctuations of the cores. The neutron scattering data reveal two relaxation processes. The process observed at shorter relaxation times is assigned to the methyl group rotation. The second relaxation process at longer time scales agree in the temperature dependence of its relaxation rates with that of the dielectric gamma-relaxation. KW - Discotic Liquid Crystals PY - 2020 DO - https://doi.org/10.1039/c9sm02487e VL - 16 IS - 8 SP - 2005 EP - 2016 PB - Royal Chemical Society AN - OPUS4-50466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bruhn, D. A1 - Köhler, S. A1 - Regenspurg, S. A1 - Schumann, F. A1 - Bäßler, Ralph A1 - Dunkelberg, E. A1 - Huenges, E. A1 - Frick, M. A1 - Hirschl, B. A1 - Sass, I. T1 - Positionspapier Wärmeversorgung in Berlin und Brandenburg durch GeoEnergie - Empfehlungen der GeoEnergie Allianz Berlin Brandenburg zu Forschung und Umsetzung N2 - Das gesellschaftliche Ziel der Defossilisierung der Energieversorgung erfordert eine disruptive Veränderung der Wärmebereitstellung. In Berlin und in den größten Brandenburger Städten Potsdam und Cottbus werden noch über 80 % der Nutzwärme über fossile Energieträger bereitgestellt. Die notwendigen Veränderungen erfordern Lösungen, die den tiefen Untergrund der Region nutzen. Allein die Nutzung der tiefen Geothermie kann mindestens 25% des Wärmebedarfs in Deutschland decken. Die Infrastruktur zur Verteilung dieser erneuerbaren Wärme ist bereichsweise vorhanden. Sie muss allerdings lokal und in ländlichen Gebieten weiter ausgebaut werden. Für die Sektoren Strom und Verkehr steht zwar Energie insbesondere aus Sonne und Wind bereit, aber wegen des zeitlich variablen Angebots besteht ein erheblicher Bedarf an großtechnischen Speichern für Strom und Wärme oder auch für Energieträger (z. B. Wasserstoff). Die saisonale oder temporale Überproduktion an Strom und Wärme aus erneuerbaren Energien zwingt dazu, eine urbane Speicherinfrastruktur aufzubauen, um eine grundlastfähige und bedarfsgerechte Lieferung zu realisieren. Hinzu kommt die Aufgabe das Treibhausgas Kohlendioxid aus der Atmosphäre zu reduzieren und unterirdisch dauerhaft zu lagern. Auch hier werden Speichertechnologien und ‐räume benötigt. Die nachhaltige energetische Nutzung des unterirdischen Raumes ist geeignet, entscheidende Beiträge zu einer zukünftigen Energiewirtschaft ohne fossile Brennstoffe zu leisten. Diese große interdisziplinäre Aufgabe erfordert die Zusammenarbeit vieler Fach‐, und Forschungseinrichtungen, die im Raum Berlin‐ Brandenburg vorhanden sind und in einer regionalen Forschungsallianz gebündelt werden sollen. Für die Region Berlin‐Brandenburg ergibt sich daraus die Chance, eine Schlüsselrolle in der Grundlagen‐ und angewandter Forschung zur Transformation des Energiesystems zu übernehmen und weltweit als Vorbild zu dienen. Im vorliegenden Papier werden die Formen einer nachhaltigen Geoenergienutzung, das geologische Potenzial der Region Berlin Brandenburg und dessen bisherige geoenergetische Nutzung dargestellt. Aus diesem Wissen wird der Ist‐Zustand hinsichtlich des energiewirtschaftlichen Potenzials und der sich daraus ergebenden Nutzungsoptionen abgeleitet, um darauf aufbauend Maßnahmen darzustellen, mit denen spürbare Beiträge zur Dekarbonisierung erreicht werden können. Daraus ergeben sich Handlungsempfehlungen für die Region, verbunden mit einem möglichen Beitrag der GEB² zum Risikomanagement, Investitionen in Schlüsseltechnologien, der Aus‐ und Weiterbildung, sowie der Akzeptanzerhöhung für geoenergetische Projekte. T2 - Gründungsveranstaltung der GeoEnergie Allianz Berlin Brandenburg CY - Berlin, Germany DA - 24.11.2023 KW - Geoenergie KW - Geothermie KW - Nachhaltigkeit PY - 2023 SP - 1 EP - 18 CY - Berlin & Potsdam AN - OPUS4-58924 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -