TY - THES A1 - Askar, Enis T1 - Experimentelle Bestimmung und Berechnung sicherheitstechnischer Kenngrößen ethylenoxidhaltiger Gasphasen N2 - Ethylenoxid ist vor allem aufgrund seiner hohen Reaktivität ein wichtiges organisches Zwischenprodukt der chemischen Industrie und in vielen Fällen bisher unersetzbar. Da es auch in Abwesenheit jeglicher Reaktionspartner explosionsartig zerfallen kann, ist der Umgang mit ethylenoxidhaltigen Gemischen jedoch nur mit besonderen sicherheitstechnischen Maßnahmen möglich. Für die sicherheitstechnische Beurteilung der Lagerung, des Transports sowie der Verarbeitung von ethylenoxidhaltigen Gasgemischen und die Ableitung angemessener sicherheitstechnischer Maßnahmen ist die Kenntnis der sicherheitstechnischen Eigenschaften von ethylenoxidhaltigen Gasgemischen unbedingt erforderlich. In der Vergangenheit wurden sicherheitstechnische Kenngrößen von Ethylenoxid immer wieder vereinzelt nur für bestimmte Prozessbedingungen und zum Teil mit unterschiedlichen Methoden durchgeführt. Insbesondere beschränken sich die bisher veröffentlichten Untersuchungen fast ausschließlich auf atmosphärische und nur leicht erhöhte Drücke, obwohl höhere Ausgangsdrücke für industrielle Prozesse mit Ethylenoxid durchaus relevant sind. Die Anwendbarkeit vorhandener Berechnungsmodelle, durch die der experimentelle Aufwand bei der Bestimmung sicherheitstechnischer Kenngrößen erheblich reduziert werden könnte, wurde bei chemisch instabilen Gasen, wie Ethylenoxid bisher kaum untersucht. Für eine umfangreichere Validierung der Berechnungsmethoden ist die in der Literatur verfügbare Datenbasis an sicherheitstechnischen Kenngrößen von Ethylenoxid nicht ausreichend. In dieser Arbeit werden sicherheitstechnische Kenngrößen ethylenoxidhaltiger Gasgemische systematisch in Abhängigkeit verschiedener Einflussgrößen, mit einheitlichen Bestimmungsmethoden und auch bei höheren Betriebsbedingungen untersucht und Methoden für die Berechnung der in dieser Arbeit ermittelten Kenngrößen entwickelt bzw. weiterentwickelt. Durch die Bestimmung der Explosionsbereiche ternärer Gemische aus Ethylenoxid, einem Inertgas und Luft und der Stabilitätsgrenzkonzentrationen binärer Gemische aus Ethylenoxid und einem Inertgas wird zunächst ausführlich untersucht, in welchen Stoffmengenverhältnissen ethylenoxidhaltige Gemische überhaupt explosionsfähig sind. Die Kenntnis dieser Kenngrößen ist zur Ableitung sogenannter primärer Explosionsschutzmaßnahmen zur Vermeidung explosionsfähiger Gemische, z.B. durch Inertisierung, erforderlich. Insbesondere werden die Einflüsse von Ausgangstemperatur und Ausgangsdruck auf die Explosionsgrenzen systematisch untersucht. Dabei werden vor allem auch die praxisrelevanten höheren Betriebsdrücke berücksichtigt. Gerade für Explosionsgrenzen im Bereich der Zerfallsreaktion kann ein enormer Einfluss des Drucks festgestellt werden. Für die Berechnung der Explosionsgrenzen und Stabilitätsgrenzkonzentrationen von Ethylenoxid wird das halbempirische Modell der konstanten Flammentemperaturen weiterentwickelt. Die Explosionsgrenzen und Stabilitätsgrenzkonzentrationen von Ethylenoxid werden unter der modifizierten Annahme, dass das Profil der berechneten Flammentemperaturen entlang der Explosionsgrenzkurve für verschiedene Systeme unabhängig von Ausgangsdruck, Ausgangstemperatur und Art des Inertgases konstant ist, rechnerisch bestimmt. Dazu wird ein spezielles Rechenprogramm entwickelt, dass die Berechnung der Explosionsgrenzen für ein beliebiges Gemisch aus Brenngas, Inertgas und Luft bei beliebiger Ausgangstemperatur und beliebigem Ausgangsdruck ermöglicht, wenn der gesamte Explosionsbereich für ein einzelnes System aus Brenngas, Inertgas und Luft bekannt ist. Die Explosionsgrenzen und Stabilitätsgrenzkonzentrationen von Ethylenoxid können mit diesem Rechenprogramm mit einer durchschnittlichen Abweichung von weniger als 2 Mol-% berechnet werden. Durch die Bestimmung von Zündtemperaturen für den Zerfall von Ethylenoxid und von definierten Gemischen aus Ethylenoxid und einem Inertgas wird schließlich untersucht, bei welchen Temperaturen ein explosionsartiger Zerfall von Ethylenoxid durch eine heiße Oberfläche in einem geschlossenen System initiiert werden kann. Die Abhängigkeit vom Druck, vom Behältervolumen und vom Stoffmengenanteil an EO werden bei den Untersuchungen berücksichtigt. Anders als die nach standardisierten Verfahren bestimmte Zündtemperatur von Gasen, die in offenen Systemen und ausschließlich für Gemische mit Luft ermittelt wird, kann durch die Bestimmung der bisher nicht standardisierten Zündtemperatur für den Zerfall festgestellt werden, bei welcher Oberflächentemperatur es innerhalb eines geschlossenen Systems bei höheren Drücken und in Abwesenheit von Luft zu einem explosionsartigen Zerfall von chemisch instabilen Gasen kommen kann. Es zeigt sich, dass die Zündtemperatur des Zerfalls von Ethylenoxid bei höheren Drücken auch niedriger sein kann als die nach den Standardverfahren für offene Systeme bestimmte Zündtemperatur von Ethylenoxid. Außerdem zeigt sich, dass der Einfluss von Inertgasen auf die Zündtemperatur für den Zerfall von Ethylenoxid stark von der Art des Inertgases abhängig ist. Die Zündtemperaturen für den Zerfall von Ethylenoxid werden mit verschiedenen Modellen mit unterschiedlichem Grad an Vereinfachungen berechnet. Dabei wird rechnerisch die Wandtemperatur bestimmt, bei der es zu einem thermischen Durchgehen der Reaktion („Runaway“) kommt. Es zeigt sich, dass hinsichtlich der Genauigkeit und des Rechenaufwands eine transiente 0-dimensionale numerische Simulation besonders gut für die rechnerische Bestimmung der Zündtemperatur für den Zerfall von Ethylenoxid in Abhängigkeit des Drucks und des Behältervolumens geeignet ist. Temperaturgradienten innerhalb des Behälters werden bei diesem Modell vernachlässigt und die Wärmeabfuhr wird ausschließlich durch die Temperaturdifferenz zwischen Wand und Reaktionsmasse, die Wärmeaustauschfläche und den inneren Wärmeübergangskoeffizienten bestimmt, der nach einem empirischen Ansatz für den Wärmeübergang an senkrechten Platten bei natürlicher Konvektion berechnet wird. Die Berücksichtigung von lokalen Abhängigkeiten innerhalb des Behälters durch ein 2-dimensionales Modell bringt trotz höheren Rechenaufwands keine weiteren ersichtlichen Vorteile. T3 - BAM Dissertationsreihe - 80 KW - Explosion KW - Entzündung KW - Stabilitätsgrenze KW - Chemisch instabile Gase KW - Zerfall PY - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-789 SN - 978-3-9814634-2-2 SN - 1613-4249 VL - 80 SP - 1 EP - 148 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-78 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Holtappels, Kai T1 - Messunsicherheit bei der Bestimmung von Explosionsgrenzen T2 - 5. Fachtagung "Messunsicherheit praxisgerecht bestimmen" CY - Erfurt, Germany DA - 2011-11-08 PY - 2011 AN - OPUS4-24821 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schröder, Volkmar A1 - Askar, Enis A1 - Acikalin, Hatice Aydan A1 - Steinbach, J. T1 - Chemically unstable gases - flammability of ethylene oxide mixtures in sterilization processes N2 - For the assessment of explosion hazards by industrial sterilization processes with ethylene oxide (EO), the flammability regions of 3-component systems EO/nitrogen/air, EO/carbon dioxide/air and EO/water vapor/air were determined. The tests were performed at temperatures of 20 °C and 100 °C and at pressures of 40 kPa and 100 kPa in accordance with the standard test method EN 1839-B. The observed flammability regions are similar in shape and typical for mixtures with ethylene oxide. According to the molecular heat capacities the regions get larger with nitrogen and smaller with carbon dioxide. They become larger with increasing pressure and increasing temperature. Using experimental data a semi-empirical model was created that allows the calculation of flammability limits of process gases in sterilization processes. Such process gases can consist of EO, nitrogen, carbon dioxide, water vapor and air. The model is based on the assumption that the adiabatic flame temperatures along the boundary curves of a flammability region have a certain temperature profile that is nearly independent of the type of the inert gas. The adiabatic flame temperatures were calculated by using the “Gaseq” Code. Using a temperature profile calculated from only one experimental system EO/inert gas/air it is possible to predict the flammability limits of systems with other inert gases or of process gases containing several inert gases. T2 - AIChE 100 - Spring National Meeting CY - New Orleans, Louisiana, USA DA - 2008-04-06 KW - Explosion protection KW - Process safety KW - Sterilization KW - Flammability limits KW - Gas mixtures PY - 2008 SN - 978-0-8169-1023-6 N1 - Serientitel: P / AIChE, American Institute of Chemical Engineers – Series title: P / AIChE, American Institute of Chemical Engineers IS - 247 SP - 1 EP - 8 PB - AIChE CY - New York AN - OPUS4-17483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Askar, Enis A1 - Schröder, Volkmar A1 - Acikalin, Hatice Aydan A1 - Steinbach, J. T1 - Die Explosionsgrenzen von Ethylenoxidgemischen bei Sterilisationsprozessen N2 - Für die sicherheitstechnische Beurteilung von Sterilisationsprozessen wurden die Explosionsgrenzen von Gasgemischen aus Ethylenoxid, Inertgas und Luft experimentell bestimmt. Die Messungen sind mit Stickstoff, Kohlenstoffdioxid und Wasserdampf bei 20 und 100 °C sowie bei 0,4 und 1,0 bar durchgeführt worden. Mit Hilfe der Daten wurde ein halbempirisches Modell entwickelt, mit dem die Explosionsfähigkeit von Prozessgasgemischen berechnet werden kann. KW - Ethylenoxid KW - Explosionsgrenze KW - Explosionsschutz KW - Inertisierung KW - Sterilisation PY - 2008 U6 - https://doi.org/10.1002/cite.200800010 SN - 0009-286X SN - 1522-2640 VL - 80 IS - 5 SP - 643 EP - 647 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-17484 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Schröder, Volkmar A1 - Acikalin, Hatice Aydan A1 - Steinbach, J. A1 - Milde, J. T1 - Berechnung der Explosionsgrenzen von Kohlenwasserstoffen in ternären Systemen nach dem Modell konstanter Temperaturprofile T2 - 9. Fachtagung Anlagen-, Arbeit- und Umweltsicherheit CY - Köthen, Germany DA - 2008-11-06 PY - 2008 AN - OPUS4-18350 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Askar, Enis A1 - Schröder, Volkmar A1 - Holtappels, Kai A1 - Acikalin, Hatice Aydan A1 - Steinbach, J. A1 - Milde, J. T1 - Berechnung der Explosionsgrenzen von Kohlenwasserstoffen in ternären Systemen nach dem Modell konstanter Temperaturprofile T2 - 9. Fachtagung "Anlagen-, Arbeit- und Umweltsicherheit" CY - Köthen, Deutschland DA - 2008-11-06 KW - Explosionsgrenzen KW - Kohlenwasserstoff KW - Inertisierung KW - Sicherheitstechnik PY - 2008 SN - 978-3-89746-099-7 SP - 1 EP - 11 PB - VDI, Hallescher Bezirksverein CY - Halle AN - OPUS4-18303 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zeps, Robert A1 - Askar, Enis A1 - Ferrero, Fabio A1 - Kluge, Martin T1 - Zündtemperatur von Gasen/ Gasgemischen bei erhöhten Anfangsdrücken in Abhängigkeit vom Behältervolumen N2 - Zur Einschätzung der Wirksamkeit einer heißen Oberfläche als Zündquelle für ein Gas oder ein Gasgemisch werden in der Praxis Zündtemperaturen experimentell bestimmt. Die Zündtemperatur gemäß dem europäischen Standardverfahren EN 14522 wird bei Atmosphärendruck bestimmt und ist vor allem dazu geeignet die Wirksamkeit einer heißen Oberfläche als Zündquelle bei einem unerwünschten Stoffaustritt aus einer geschlossenen Anlage einzuschätzen. Eine Aussage bzgl. der der Zündfähigkeit an heißen Oberflächen innerhalb einer geschlossenen Anlage, z. B. in größeren Behältern bei bestimmten Gemischzusammensetzungen und höheren Anfangsdrücken, kann anhand der Zündtemperatur gemäß EN 14522 nicht getroffen werden. Die Bestimmung nach dem europäischen Standard erfolgt in einem offenen System, bei atmosphärischem Druck und in Luft als Oxidationsmittel. T2 - 11. Fachtagung Anlagen-, Arbeits- und Umweltsicherheit CY - Köthen, Germany DA - 07.11.2013 KW - Sicherheitstechnische Kenngrößen KW - Chemisch instabile Gase KW - Zerfallsfähige Gase KW - Explosion KW - Ethylenoxid KW - Tetrafluorethylen KW - Acetylen PY - 2013 SN - 978-3-86011-058-4 IS - F-02 SP - 1 EP - 14 AN - OPUS4-29534 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Askar, Enis A1 - Schröder, Volkmar A1 - Acikalin, Hatice Aydan A1 - Steinbach, J. T1 - Berechnung von Explosionsgrenzen ethylenoxidhaltiger Gasphasen in Sterilisatoren / Calculation of flammability limits of gas phases with ethylene oxide in sterilisers N2 - Es wurde ein Verfahren zur Berechnung von Explosionsgrenzen ethylenoxidhaltiger Gasphasen in Sterilisatoren entwickelt. Mit Hilfe der Software GasEq® und des neu entwickelten Makros „SterEx“ für MS-Excel® lassen sich die Explosionsgrenzen für Gemische aus Ethylenoxid, Luft und Inertgasen bei Temperaturen zwischen 20°C und 100°C sowie 0,4 bar und 1,0 bar berechnen. Somit ist es schnell möglich, sichere Betriebsbedingungen für Sterilisationsprozesse mit Ethylenoxid festzulegen. Das halbempirische Modell basiert auf der Annahme konstanter Flammentemperaturprofile an den Explosionsgrenzen in Abhängigkeit der EO-Konzentration für verschiedene Gemische. Durch systematische Zündversuche wurden Explosionsgrenzen für Gemische aus Ethylenoxid, Stickstoff, Kohlenstoffdioxid, Wasserdampf und Luft zur Bestimmung von Modellparametern und zur Validierung des Verfahrens bestimmt. Um die Prozessbedingungen in Sterilisatoren möglichst genau zu simulieren, wurden die Versuche in einem geschlossenen Autoklav in Anlehnung an DIN EN 1839-B durchgeführt. Berechnungen der Explosionsgrenzen von Prozessgasgemischen mit „SterEx“ ergeben eine gute Übereinstimmung mit experimentell ermittelten Werten. ---------------------------------------------------------------------------------------------------------------------------------- A calculation method for flammability limits of gas phases with ethylene oxide in sterilisers was developed. Using the Software GasEq® and the newly developed Makro “SterEx” for MS-Excel®, flammability limits of mixtures with ethylene oxide, air and inert gases at temperatures between 20°C and 100°C and pressures between 0.4 bar and 1.0 bar can be calculated. This method can be used to easily determine safe operating conditions. The used semi-empirical model is based upon the assumption of constant flame temperature profiles at the flammability limits subject to the EO-concentration for different mixtures. To collect model parameters and to validate the model, several experiments with mixtures of ethylene oxide, nitrogen, carbon dioxide, water vapour and air were carried out to determine flammability limits. To simulate the structural conditions of sterilisers, the experiments were conducted in accordance to DIN EN 1839-B in a closed autoclave with temperatures and pressures relevant for sterilisation processes. The calculation of flammability limits of process gas mixtures with “SterEx” provides good agreement with flammability limits that were determined in experiments. KW - Dry antiseptic KW - Ethylene oxide KW - Explosions KW - Inertisation KW - Safety engineering KW - Sterilisation PY - 2008 U6 - https://doi.org/10.1515/BMT.2008.042 SN - 0013-5585 SN - 1862-278X VL - 53 IS - 6 SP - 265 EP - 269 PB - De Gruyter CY - Berlin AN - OPUS4-18688 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Askar, Enis A1 - Schröder, Volkmar A1 - Steinbach, J. T1 - Berechnung der Zündtemperatur des Zerfalls von Ethylenoxid und Ethylenoxid/Inertgas-Gemischen in Abhängigkeit vom Druck und vom Behältervolumen T2 - 10. Fachtagung Anlagen-, Arbeits- und Umweltsicherheit CY - Köthen, Deutschland DA - 2010-11-04 KW - Zündtemperatur KW - Ethylenoxid KW - Zerfall KW - Sicherheitstechnik PY - 2010 SN - 978-3-89746-119-2 IS - P-14 SP - 1 EP - 14 CY - Frankfurt/M. AN - OPUS4-22386 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Schröder, Volkmar A1 - Acikalin, Hatice Aydan A1 - Steinbach, J. T1 - Berechnung der Zündtemperatur des Zerfalls von Ethylenoxid und Ehylenoxid / Inertags-Gemischen in Abhängigkeit vom Druck und vom Behältnisvolumen T2 - 10. Fachtagung "Anlagen-, Arbeits- und Umweltsicherheit" CY - Köthen, Germany DA - 2010-11-04 PY - 2010 AN - OPUS4-22373 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Balcazar Pust, Emilio A1 - Askar, Enis A1 - Schröder, Volkmar T1 - Bestimmung von Explosionskenngrößen von Methan/Sauerstoffgemischen bei erhöhtem Anfangsdruck N2 - Die zeitlichen Druckanstiege dp/dt von binären Methan/Sauerstoffgemischen wurden im Explosionsbereich bei Anfangsdrücken von 1 bar und 5 bar experimentell untersucht und das normierte europäische Bestimmungsverfahren für zeitliche Druckanstiege DIN EN 15967 [1] auf Anwendbarkeit bei erhöhtem Anfangsdruck und reinem Sauerstoff als Oxidator geprüft. Die Messergebnisse zeigen eine Zunahme der zeitlichen Druckanstiege bei einem Annähern der Gemischzusammensetzung an das stöchiometrische Verhältnis der vollständigen Verbrennungsreaktion (CH4:O2 1:2). Eine zuverlässige Bestimmung der zeitlichen Druckanstiege ist ab einer bestimmten Zusammensetzung nicht mehr möglich, da starke Oszillationen der Drucksignale auftreten. Um trotz der Oszillationen Auswertungen zu ermöglichen wird erstmals zur Glättung der Signale ein physikalisches Modell für Gasexplosionen im geschlossenen Gefäß verwendet. Damit ist es möglich, noch stark oszillierende Signale auszuwerten. Trotzdem gelingt es nicht, den gesamten Explosionsbereich mit der üblichen Messtechnik zu untersuchen. Für die Druckmessung wurden sowohl piezoresistive als auch piezoelektrische Druckmessensoren eingesetzt. Die Messergebnisse der beiden Sensoren stimmen sehr gut überein. Die verwendeten piezoresistive Druckmesssensoren können jedoch ab einer bestimmten Gemischzusammensetzung durch die sehr schnellen Druckstöße (dp/dt > 30000 bar/s) zerstört werden. Für solche Fälle wären die robusteren piezoelektrischen Sensoren besser geeignet. Bei einem Anfangsdruck von 5 bar liegen die Konzentrationsbereiche, in denen keine Auswertung mehr möglich ist bei 16 Mol-% bis 53 Mol-% Methananteil. Bei einem Anfangsdruck von 1 bar fällt dieser Konzentrationsbereich kleiner aus (von 24 Mol-% bis 42 Mol-% Methananteil). Die Messergebnisse zeigen jedoch, dass die ausschließlich für Atmosphärendruck geltende Norm DIN EN 15967 auch für höhere Anfangsdrücke und reinen Sauerstoff als Oxidator prinzipiell anwendbar ist. T2 - 11. Fachtagung Anlagen-, Arbeits- und Umweltsicherheit CY - Köthen, Germany DA - 2013-11-07 KW - Explosionskenngrößen KW - Zeitlicher Druckanstieg KW - Anlagensicherheit KW - Umweltschutz KW - Sicherheitstechnik KW - Explosionsschutz PY - 2013 SN - 978-3-86011-058-4 IS - P 13 SP - 1 EP - 4 AN - OPUS4-29482 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis T1 - Sicherheitstechnische Fragestellungen im Zusammenhang mit Elektrolyseanlagen N2 - Im Vortrag werden aktuelle Entwicklungen bei verschiedenen Elektrolysetechnologien kurz vorgestellt. Dann werden für Elektrolyseanlagen spezifische Gefährdungen diskutiert, v.a. die im Zusammenhang mit den Eigenschaften der Gase Wasserstoff und Sauerstoff stehen. Dabei wird auch Bezug auf die Normung- und Regelsetzung genommen und Sicherheitskonzepte werden beispielhaft kurz vorgestellt. Abschließend wird auf Unfallereignisse im Zusammenhang mit der Elektrolyse eingegangen. T2 - BAM/UBA-Behördenerfahrungsaustausch CY - Berlin, Germany DA - 27.06.2022 KW - Explosionsschutz KW - Wasserstofferzeugung KW - Sauerstoff KW - Sicherheit PY - 2022 AN - OPUS4-55220 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Grunewald, Thomas T1 - Experimentelle Untersuchung von Zündwahrscheinlichkeiten bei mechanischen Schlagvorgängen in wasserstoffhaltigen Atmosphären N2 - Im Projekt HySpark wird die Wirksamkeit mechanischer Schlagvorgänge beim Aufprall von unterschiedlichen Werkstoffen als Zündquelle für wasserstoffhaltige Atmosphären experimentell untersucht. Zum Einen wird die Zündwirksamkeit bei Wasserstoff/Luft-Gemischen in Abhängigkeit der Werkstoffpaarung untersucht. Dabei konnte v.a. festgestellt werden, dass bei Schlagvorgängen von Nicht-Eisen-Metallen mit verschiedenen Stahlsorten die wirksame Zündung vermieden werden kann. Jedoch können bei Schlagvorgängen mit Estrichbeton hohe Zündwahrscheinlichkeiten beobachtet werden. Zum anderen wird der Einfluss von Wasserstoffbeimischungen im Erdgasnetz auf die Zündwirksamkeit von mechanischen Schlägen untersucht. Bei Anteilen bis 25% Wasserstoff konnte bei den Versuchen kein Erhöhung der Zündwahrscheinlichkeit festgestellt werden. T2 - H2-Kolloquium des Kompetenzzentrums „H2Safety@BAM” CY - Online meeting DA - 04.07.2022 KW - Explosionsschutz KW - Zündquellen KW - Schlagfunken KW - Erdgas PY - 2022 AN - OPUS4-55224 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spitzer, Stefan A1 - Askar, Enis A1 - Benke, Alexander A1 - Cloney, C. A1 - D’Hyon, S. A1 - Dufaud, O. A1 - Dyduch, Z. A1 - Gabel, D. A1 - Geoerg, P. A1 - Heilmann, V. A1 - Jankuj, V. A1 - Jian, W. A1 - Krause, U. A1 - Krietsch, Arne A1 - Mynarz, M. A1 - Norman, F. A1 - Skrinsky, J. A1 - Taveau, J. A1 - Vignes, A. A1 - Zakel, S. A1 - Zhong, S. T1 - 1st international round robin test on safety characteristics of hybrid mixtures N2 - There is no applicable existing standard for the determination of safety characteristics for hybrid mixtures. While developing a new standard in a joint research project in Germany first results from parameter studies led to a standard procedure that can be adopted by laboratories that are already testing dusts in the so called 20L-sphere with as little additional effort as necessary. In fact, one of the main objectives of this research project was to keep modifications and adjustments from the generally accepted dust testing procedures as easy and minimal as possible so as to limit potential deviations from one laboratory to another. In this first round robin test on hybrid mixtures ever, with methane as gas component and a specific corn starch as dust sample, the practicality of the whole procedure, the scattering of the results and the deviation between the testing apparatuses is investigated. This paper summarizes the experimental procedure adopted and objectives of the first round-robin phase involving three of the four original German companies, plus volunteering laboratories from Australia, Belgium, Czech Republic, France, Poland and P.R. China. The results will have an impact on the new standard and may lead to robust data for later simulation purposes. KW - Hybrid mixtures KW - 20L-sphere KW - Round robin test KW - Turbulent combustion PY - 2022 U6 - https://doi.org/10.1016/j.jlp.2022.104947 SN - 0950-4230 VL - 81 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-56516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis T1 - Hydrogen Safety - Explosion Protection for Hydrogen Applications N2 - In this lecture the safety related properties og hydrogen compared to other fuel gases and the explosion protection measures of avoiding flammable mixtures, avoiding ignition sources and mitigating the consequences of explosions when handling hydrogen and hydrogen mixtures are presented. The Joint European Summer School JESS 2021 addresses these issues by offering high quality graduate level courses on selected topics of vehicle technology, innovation & business development, safe handling of hydrogen, and modelling. The course content is tailored to the needs of a diverse audience: newcomers to the field, experienced students, and young professionals working at the forefront of fuel cell and hydrogen applications. T2 - Joint European Summer School (JESS) CY - Online meeting DA - 06.09.2021 KW - Explosionsschutz KW - Explosionsgrenzen KW - Zündenergie KW - Zündquellen KW - Auswirkung von Explosionen PY - 2021 AN - OPUS4-53808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Holtappels, Kai T1 - Fire and explosion safety for hydrogen technologies N2 - The presentation gives an overview about the research and testing activities of H2Safety@bam in the field of process and plant safety. T2 - HYDROGENIUS BAM Joint Hydrogen Symposium CY - Online meeting DA - 06.07.2021 KW - Explosion protection KW - LH2 KW - Jet-fires KW - Test area PY - 2021 AN - OPUS4-53720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis T1 - Sicherheitstechnische Eigenschaften von Erdgas/Wasserstoff-Gemischen - Auswirkungen auf den Explosionsschutz N2 - Hinsichtlich ihrer sicherheitstechnischen Kenngrößen (STK) unterscheiden sich Wasserstoff und Erdgas zum Teil stark. Im Vortrag werden verschiedene STK von Erdgas/Wasserstoff-Gemischen im Abhängigkeit des Wasserstoffanteils vorgestellt und die Auswirkung der Beimischung von Wasserstoff zum Erdgas auf die Wirksamkeit von Explosionsschutzmaßnahmen erläutert. T2 - DVGW-Kongress 2021 "Gasinfrastruktur für Erdgas-H2-Gemische" CY - Online meeting DA - 07.10.2021 KW - Explosionsschutz KW - Explosionsgrenzen KW - Zündenergie KW - Power to Gas KW - Erdgasnetz KW - Zündquellen PY - 2021 AN - OPUS4-53725 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spitzer, Stefan A1 - Askar, Enis A1 - Benke, Alexander A1 - Janovsky, B. A1 - Krause, U. A1 - Krietsch, Arne T1 - Influence of pre-ignition pressure rise on safety characteristics of dusts and hybrid mixtures N2 - For the determination of the safety characteristics of dusts it is necessary to disperse the dust in the oxidating atmosphere (usually air). In the standard procedures for dusts this is realized by a partially evacuated explosion vessel (20L-sphere) in which the dust gets injected from a dust chamber pressurized with air. Shortly after that injection (60 ms) the dust cloud gets ignited under turbulent conditions, that are otherwise seen as almost ambient with 20 ◦C and about 1 bar (abs). While there has been a lot of research about the influence of the ignition delay time and the level of turbulence in the recent years little attention was paid to the pre–ignition pressure rise and the allowed variations in the standards. In the following work we showed that the allowed ranges for the pressures in the different dust standards influence the safety characteristics of dust alone severely. Even though hybrid mixtures are an emerging risk problem in an interconnected industry there is no standard for the determination of their safety characteristics. In this work it is shown that especially for the preparation of hybrid mixtures of flammable dust and gas the pressures after injection of the dust and the mixing procedure have a large influence on the composition of the tested mixtures and therefore on the safety characteristics. Considering both effects, wrong concentration of gas and wrong initial pressure, the discrepancy of safety characteristics from different facilities will be too big to applicable. The methods to overcome these weaknesses are also presented. KW - Hybrid mixtures KW - 20L-sphere KW - Pre-ignition pressure rise KW - Post-injection pressure drop KW - Safety characteristics KW - Mixing procedure PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-537358 VL - 311 SP - 122495 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-53735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spitzer, Stefan A1 - Askar, Enis A1 - Krietsch, Arne A1 - Schröder, Volkmar T1 - Comparative study on standardized ignition sources used for explosion testing N2 - For the determination of safety characteristics of gases, vapors and dusts different types of ignition sources are used in international standards and guidelines. The paper presents test results of a comparative calorimetric and visual study between four different types of ignition sources. The ignition procedures were analyzed visually with a high-speed camera and electric recordings. In addition to that, the influence of the electrode-orientation, -distance as well as ignition energy on the reproducibility of the exploding wire igniter was tested. The exploding wire is already in use for standardized determination of safety characteristics of gases, first tests on the suitability of the exploding wire igniter for dust testing have been carried out but are not standardized yet. Using the exploding wire, the ignition energy can be varied from 2 J to 10 000 J (2 x 5000 J) and thus it could be used for gases, vapors, dusts and hybrid mixtures. Moreover it can be used at high initial pressures and it is the only ignition source with an easily measurable ignition energy release. Furthermore, it does not introduce another chemical reaction into the system. Finally, a proposal for a standard ignition source for explosion tests on hybrid mixtures is derived from the test results. T2 - 13th International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions CY - Braunschweig, Germany DA - 27.07.2020 KW - Ignition source KW - Exploding wire KW - Hybrid mixtures KW - Safety characteristics determination PY - 2021 U6 - https://doi.org/10.1016/j.jlp.2021.104516 SN - 0950-4230 VL - 71 IS - July SP - 1 EP - 15 PB - Elsevier CY - Amsterdam AN - OPUS4-52548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abdelkhalik, A. A1 - Askar, Enis A1 - Markus, D. A1 - Stolz, T. A1 - Brandes, E. A1 - Zakel, S. T1 - Explosion regions of 1,3-dioxolane/nitrous oxide and 1,3-dioxolane/air with different inert gases - Experimental data and numerical modelling N2 - In this study, experimental determination and modelling investigations for the explosion regions of 1,3-dioxolane/inert gas/N2O and 1,3-dioxolane/inert gas/air mixtures were carried out and compared. The experimental measurements were carried out at 338 K and atmospheric pressure according to EN1839 method T using the inert gases N2, CO2, He and Ar. The results showed that the ratio of the lower explosion limit in N2O (LELN2O) to the lower explosion limit in air (LELair) is 0.52 and the ratio of the maximum oxygen content in air (MOCair) to the limiting oxidizer fraction in nitrous oxide (LOFN2O) is 0.36 ± 0.02 independent of the inert gas. When comparing the inert gas amount at the apex based on the pure oxidizing component, which is O2 in case of air, N2O-containing mixtures need less inert gas to reach the limiting oxidizer quantity whereas the efficiency of inert gases is in the same order. The coefficients of nitrogen equivalency however were found to differ to some extent. The explosion regions of 1,3-dioxolane/inert gas/oxidizer mixtures were modelled using the calculated adiabatic flame temperature profile (CAFTP) method as well as corrected adiabatic flame temperatures. The results indicate good agreement with experimental data for CO2, N2 and Ar- containing mixtures. The noticeable deviations that occur when He is the inert gas are due to the lacking transport data of that mixture. KW - Explosion limits KW - Flammability KW - CAFTP KW - Adiabatic Flame Temperatures PY - 2021 U6 - https://doi.org/10.1016/j.jlp.2021.104496 SN - 0950-4230 VL - 71 SP - 4496 PB - Elsevier Ltd AN - OPUS4-52849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spitzer, Stefan A1 - Askar, Enis A1 - Hecht, Kristin A1 - Gabel, D. A1 - Zakel, S. A1 - Krietsch, Arne T1 - Requirements for a Hybrid Dust-Gas-Standard: Influence of the Mixing Procedure on Safety Characteristics of Hybrid Mixtures N2 - While developing a standard for the determination of safety characteristics for hybrid mixtures the authors discovered, that, beside the ignition source, the mixing procedure is the main difference between the single-phase standards for dusts and gases. The preparation of hybrid mixtures containing a flammable gas and a flammable dust in the 20 L-sphere can be realized in different ways. Either the flammable gas is filled only in the sphere or only in the dust container or in both. In previous works, almost always the first method is applied, without giving any information on the accuracy of the gas mixtures. In this work the accuracy of the gas mixtures and the results of the tests applying two methods of mixing were studied. No significant influence of the mixing method itself on the safety characteristics explosion pressure pex and the normalized rate of pressure rise (K-value) was found. Obviously, homogenization of the gas mixtures can be obtained sufficiently by the turbulence that is caused during the injection from the dust container into the explosion chamber within a short time. However, the mixing procedure has a great influence on the accuracy of the gas amount of the mixtures obtained. Without modifying the 20 L-sphere by installing precise pressure sensors, assuring its tightness and performing gas analysis, it must be expected, that the accuracy of the gas mixtures is very low. This has a significant influence on the measured safety characteristics and may lead to unsafe facilities or unnecessary expensive safety measures. KW - Hybrid mixtures KW - 20 L-sphere KW - Pre-ignition pressure rise KW - Post-injection pressure drop KW - Safety characteristics PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-554610 VL - 5 IS - 4 SP - 1 EP - 10 PB - MDPI CY - Basel AN - OPUS4-55461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis T1 - Hydrogen safety - Explosion protection for hydrogen applications N2 - In this lecture the safety related properties of hydrogen and hydrogen mixtures and explosion protection measures are shown and compared with other fuel gases. Measures for primary explosion protection (avoiding flammable mixtures), secondary explosion protection (avoiding ignition sources) and constructive explosion protection (mitigating the consequences of explosions) when handling hydrogen and hydrogen mixtures are presented. The Joint European Summer School JESS 2022 addresses these issues by offering high quality graduate level courses on selected topics of vehicle technology, innovation & business development, safe handling of hydrogen, and modelling. The course content is tailored to the needs of a diverse audience: newcomers to the field, experienced students, and young professionals working at the forefront of fuel cell and hydrogen applications. T2 - Joint European Summer School (JESS) on Fuel Cell, Electrolyser and Battery Technologies CY - Athens, Greece DA - 11.09.2022 KW - Ignition source KW - ATEX KW - Explosion limits KW - Hazardous areas KW - Hydrogen accidents KW - Detonation PY - 2022 AN - OPUS4-57066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tschirschwitz, Rico A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Habib, Abdel Karim A1 - Askar, Enis A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Rudolph, Michael A1 - Schoppa, André A1 - Szczepaniak, Mariusz T1 - Versagen von Gasbehältern für alternative Treibstoffe N2 - Im Rahmen des Projekts „Complex Fires – Auswirkung von Behälterversagen“ (CoFi-ABV) sollen die Auswirkungen des Versagens von Gasbehältern für alternative Treibstoffe in Fahrzeugen unter Berücksichtigung komplexer Brand- und Explosionsszenarien untersucht werden. Es wird der aktuelle Hintergrund des Forschungsvorhabens erläutert sowie die geplanten Untersuchungen und beabsichtigten Ergebnisse vorgestellt. Hauptbestandteil des Projekts ist eine Vielzahl von zerstörenden Großversuchen. Im Vorfeld dieser Großversuche werden zur Weiterentwicklung und Adaptierung von Messtechnik Versuche im kleineren Maßstab durchgeführt. Im Folgenden werden Teile dieser Ver-suchsaufbauten im „mid-scale“ sowie die dabei verwendete Messtechnik dargestellt. Weiterhin werden erste Ergebnisse aus Wärmeeintragsversuchen zur Quantifizierung verschiedener Unterfeuerungsmethoden für die zerstörenden Großversuche vorgestellt. T2 - 14. Kolloquium zur chemischen und physikalischen Sicherheitstechnik (BAM-PTB-Kolloquium) CY - Berlin, Germany DA - 14.06.2016 KW - Explosion KW - alternative Treibstoffe KW - Behälterversagen KW - Composite PY - 2016 SN - 978-3-9817853-5-7 SN - 0938-5533 SP - 1 EP - 143 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) AN - OPUS4-37172 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Schröder, Volkmar A1 - Habib, Abdel Karim A1 - Tashqin, Temir A1 - Seemann, A. A1 - Schütz, S. T1 - Explosion protection for mixtures of hydrogen and natural gas N2 - The effects of hydrogen admixture to natural gas on explosion regions, explosion group classification, explosion severity and on areas with explosive mixtures in case of gas release was studied experimentally. With increasing hydrogen fractions the mixtures become mainly more "critical", but up to 10 mole% hydrogen the influence on the safety characteristics are very low. By using appropriate calculation methods some of the safety characteristics could be calculated with good accuracy. T2 - 21st World Hydrogen Energy Conference 2016 (WHEC) CY - Zaragoza, Spain DA - 13.06.2016 KW - power-to-gas KW - explosion limits KW - explosion groups KW - model of constant adiabatic flame temperatures (CAFT) KW - methane PY - 2016 AN - OPUS4-37232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Schröder, Volkmar A1 - Seemann, A. A1 - Schütz, S. T1 - Power-to-Gas: Safety characteristics of hydrogen/natural-gas-mixtures N2 - LEL, UEL LOC, MESG, pmax and (dp/dt)max of hydrogen/natural gas-mixtures were determined systematically according to international standards. Mixtures of natural gas and hydrogen mainly become more „critical“ with increasing hydrogen fraction. The effect of up to 10 Vol% H2–admixture to natural gas on safety characteristics is very low, no major adaption of existing measures for explosion protection is necessary. More substantial adjustment of measures for explosion protection is necessary at hydrogen fractions of more than 25 Vol%. Some of the safety characteristics can be estimated with good accuracy by calculation methods. T2 - 15th International Symposium on Loss Prevention and Safety Promotion in the Process Industries CY - Freiburg, Germany DA - 05.06.2016 KW - explosion protection KW - hydrogen enriched natural gas KW - methane/hydrogen-mixtures KW - hydrogen safety KW - energy storage PY - 2016 AN - OPUS4-36717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Schröder, Volkmar A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Tashqin, T. T1 - Sicherheitstechnische Eigenschaften von Erdgas-Wasserstoff-Gemischen N2 - Bei der Power-to-Gas-Technologie wird überschüssiger Strom aus erneuerbaren Energien durch Elektroly-se von Wasser in Wasserstoff umgewandelt. Dieser Wasserstoff kann als „chemischer Energiespeicher“ dienen und rückverstromt werden oder aber in das Erdgasnetz eingespeist werden. Die BAM hat die Aus-wirkungen von Wasserstoffzusätzen zum Erdgas im Hinblick auf den Explosionsschutz untersucht und sicherheitstechnische Kenngrößen für Erdgas-Wasserstoff-Gemische bestimmt. Untersucht wurden die Explosionsgrenzen, die Sauerstoffgrenzkonzentrationen, die maximalen Explosi-onsdrücke, die KG-Werte und die Normspaltweiten. Für die Messungen sind zwei Modellgase eingesetzt worden, reines Methan und ein Modell-Erdgas mit Anteilen höherer Kohlenwasserstoffe. Sie repräsentie-ren die Bandbreite der in Deutschland eingesetzten Erdgase. Die Untersuchungen ergaben, dass bei einem Zusatz von bis zu 10 Mol-% Wasserstoff keine der untersuchten Kenngrößen relevant beeinflusst wird. Die Gemische haben nur geringfügig erweiterte Explosionsbereiche und bleiben, wie die reinen Erdgase, in der Explosionsgruppe IIA. Auch die maximalen Explosionsdrücke und die zeitlichen Druckanstiege bei den Gasexplosionen werden nur wenig beeinflusst. Vergleichende Berechnungen zur Festlegung von explosionsgefährdeten Bereichen (Ex-Zonen) auf Basis von Gasausbreitungsberechnungen ergaben ebenfalls nur geringfüge Unterschiede im Rahmen der Fehler-toleranz für Erdgas und Erdgas-Wasserstoff-Gemische mit bis zu 10 Mol-% Wasserstoff. Die Berechnun-gen sind in der BAM nach einem Freistrahlmodell von Schatzmann und mit dem häufig bei Gasnetzbetrei-bern eingesetzten e.BEx-Tool® durchgeführt worden. Der Einsatz von Gaswarngeräten, die für reines Erdgas geeignet sind, ist für Erdgas-Wasserstoff-Gemische mit bis zu 10 Mol-% Wasserstoff grundsätzlich möglich, erfordert aber eine gesonderte Sicher-heitsbewertung und ggf. eine Nachkalibrierung. N2 - Power-to-Gas technology is used to convert excess power from renewable energies to hydrogen by means of water electrolysis. This hydrogen can serve as "chemical energy storage" and be converted back to elec-tricity or be fed into the natural gas grid. BAM has studied the addition of hydrogen to natural gas in view of explosion protection and has determined safety characteristics for natural gas-hydrogen mixtures. BAM investigated the explosion limits, the limiting oxygen concentrations, the maximum explosion pres-sures, KG values and the MESG. Two model gases have been investigated, pure methane and a model gas with portions of higher hydrocarbons. They represent the range of natural gases which are used in Germa-ny. The investigations have shown that none of the examined characteristics is affected significantly by the addition of up to 10 mol% hydrogen. The explosion ranges are increased only slightly and the mixtures remain in explosion group IIA; as is pure natural gas. Also the maximum explosion pressure and the rates of pressure rise of gas explosions are almost unaffected. Comparative calculations – on the basis of gas dispersion calculations – to determine hazardous areas (explosion zones) for pure natural gas and natural gas-hydrogen mixtures with up to 10 mol% hydrogen, also revealed only minor differences within the margin of error of the calculation methods. The calcula-tions were executed at BAM according to the free jet model from Schatzmann and with the e.BEx-Tool®, often applied by gas grid operators. In principle, gas detectors that are suitable for natural gas can be used for natural gas-hydrogen mixtures with a maximum of 10 mol% hydrogen. However, this requires a separate safety assessment and, if nec-essary, a recalibration. KW - Power-to-Gas KW - Erneuerbare Energien KW - Energiespeicherung KW - Wasserstofftechnologie KW - Explosionsschutz KW - Erdgas-Wasserstoff-Gemische PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-372977 SP - 1 EP - 36 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-37297 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Volkmar A1 - Askar, Enis A1 - Seemann, A. T1 - Power-to-Gas: Zusatz von Wasserstoff zum Erdgas N2 - Bei der Power-to-Gas-Technologie wird überschüssiger Strom aus erneuerbaren Energien durch Elektrolyse von Wasser in Wasserstoff umgewandelt. Dieser Wasserstoff kann als „chemischer Energiespeicher“ dienen und rückverstromt werden oder aber in das Erdgasnetz eingespeist wer-den. Im Rahmen dieser Arbeit sind die Auswirkungen von Wasserstoffzusätzen zum Erdgas im Hin-blick auf den Explosionsschutz untersucht und die sicherheitstechnischen Kenngrößen für Erdgas-Wasserstoff-Gemische bestimmt worden. Von besonderem Interesse waren diejenigen Kenngrößen, die für reines Methan (Erdgas) und Wasserstoff deutliche Unterschiede aufweisen. Anders als bei vielen Literaturquellen, sollten im Rahmen dieser Arbeit die im Bereich der ATEX geltenden, harmo-nisierten Normen zur Bestimmung der Kenngrößen angewendet werden. Die Untersuchungen ergaben, dass bei einem Zusatz von bis zu 10 Mol-% Wasserstoff keine der un-tersuchten Kenngrößen relevant beeinflusst wird. Die Gemische haben nur geringfügig erweiterte Explosionsbereiche und bleiben, wie die reinen Erdgase, in der Explosionsgruppe IIA. Auch die ma-ximalen Explosionsdrücke und die maximalen zeitlichen Druckanstiege bei Gasexplosionen werden nur wenig beeinflusst. Vergleichende Berechnungen zur Festlegung von explosionsgefährdeten Be-reichen (Ex-Zonen) auf Basis von Gasausbreitungsberechnungen ergaben ebenfalls nur geringfüge Unterschiede zum reinen Erdgas. Der Einsatz von Gaswarngeräten, die für Erdgas kalibriert wurden, ist für Erdgas-Wasserstoff-Gemische grundsätzlich möglich, erfordert aber eine gesonderte Sicher-heitsbewertung und ggf. eine Nachjustierung. KW - Wasserstoff KW - Erdgasnetz KW - Energiewende KW - Energiespeicherung KW - Explosionsschutz PY - 2016 SN - 2191-0073 VL - 6 IS - 7/8 SP - 22 EP - 26 PB - Springer VDI Verlag CY - Düsseldorf AN - OPUS4-37300 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Volkmar A1 - Askar, Enis A1 - Tashqin, T. T1 - Sicherheitstechnische Eigenschaften von Gemischen aus Wasserstoff und Erdgas N2 - Bei der Power-to-Gas-Technologie wird überschüssiger Strom aus erneuerbaren Ener-gien durch Elektrolyse von Wasser in Wasserstoff umgewandelt. Dieser Wasserstoff kann als „chemischer Energiespeicher“ dienen und rückverstromt werden oder aber in das Erdgasnetz eingespeist werden. Die BAM hat die Auswirkungen von Wasserstoffzu-sätzen zum Erdgas im Hinblick auf den Explosionsschutz untersucht und sicherheitstechnische Kenngrößen für Erdgas-Wasserstoff-Gemische bestimmt. Von besonderem Interesse waren dabei die Explosionsgrenzen, die Sauerstoffgrenzkonzentration, die maximalen Explosionsdrücke, die KG-Werte und die Normspaltweiten. Für die Messungen sind zwei Modellgase eingesetzt worden, reines Methan und ein Modell-Erdgas mit Anteilen höherer Kohlenwasserstoffe. Sie repräsentieren die Bandbreite der in Deutschland eingesetzten Erdgase. Die Untersuchungen ergaben, dass bei einem Zusatz von bis zu 10 Mol-% Wasserstoff keine der untersuchten Kenngrößen signifikant beeinflusst wird. Die Gemische haben nur geringfügig erweiterte Explosionsbereiche und bleiben, wie die reinen Erdgase, in der Explosionsgruppe IIA. Auch die maximalen Explosionsdrücke und die zeitlichen Druckanstiege bei den Gasexplosionen werden nur wenig beeinflusst. T2 - Kolloquium zur chemischen und physikalischen Sicherheitstechnik CY - Berlin, Germany DA - 14.06.2016 KW - Wasserstoff KW - Erdgasnetz KW - Energiespeicherung KW - Explosionsschutz KW - Sicherheitstechnische Kenngrößen PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-373099 SN - 978-3-9817853-5-7 SN - 0938-5533 VL - 2016 SP - 60 EP - 67 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin, Germany AN - OPUS4-37309 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Askar, Enis A1 - Schröder, Volkmar A1 - Seemann, A. A1 - Schuetz, S. T1 - Power-to-Gas: Safety Characteristics of Hydrogen/NaturalGas-Mixtures N2 - Safety characteristics for explosion protection of natural gas/hydrogen mixtures relevant in connection with the Power2Gas technology were studied in this work. Lower explosion limits (LEL) and upper explosion limits (UEL), limiting oxygen concentrations (LOC), maximum experimental safety gaps (MESG), maximum explosion pressures (pmax) and maximum rates of pressure rise (dp/dt)max were determined experimentally in dependence of the hydrogen fraction. Adding hydrogen did mainly effect the UEL, LOC, MESG and (dp/dt)max. The mixtures become more "critical" concerning the explosion hazards with increasing hydrogen fraction. However, the dependency of the safety characteristics from the hydrogen fraction is mainly not linear. Adding up to 10% hydrogen to natural gas had nearly no effect on the safety characteristics. More significant effects on the safety characteristics were observed at hydrogen fractions of more than 25%. For example the explosion group changes from IIA to IIB. Considering the huge explosion region and very high (dp/dt)max of hydrogen compared to natural gas, even adding 50% hydrogen to natural gas has a rather small effect on these characteristics. Furthermore pmax of hydrogen/natural-gas mixtures can be calculated with good accuracy assuming ideal adiabatic conditions. EL and LOC of natural gas/hydrogen mixtures in ternary systems with inert gas and air were calculated in dependence of the type of inert gas with the so called “model of constant adiabatic flame temperature profiles”. KW - Explosion protection KW - Hydrogen safety KW - Hydrogen enriched natural gas KW - Energy storage PY - 2016 SN - 78-88-95608-39-6 U6 - https://doi.org/10.3303/CET1648067 SN - 2283-9216 VL - 2016/48 SP - 397 EP - 402 PB - AIDIC AN - OPUS4-36788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Askar, Enis A1 - Schröder, Volkmar A1 - Steinbach, J. ED - Suter, G. ED - de Rademaeker, E. T1 - Calculation of explosion regions of gas mixtures T2 - 13th International symposium on loss prevention and safety promotion in the process industries CY - Brugge, Belgium DA - 2010-06-06 KW - Kohlenwasserstoffe KW - Instabile Gase KW - Ethylenoxid Inertisierung KW - Sicherheitstechnik KW - Explosionsgrenzen PY - 2010 SN - 978-90-76019-291 SP - 141 EP - 148 CY - Brugge, Belgium AN - OPUS4-21587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Schröder, Volkmar A1 - Steinbach, J. T1 - Calculation of Explosion Regions of Gas Mixtures T2 - 13th International Symposium on Loss Prevention and Safety Promotion in the Process Industries CY - Bruges, Belgium DA - 2010-06-07 PY - 2010 AN - OPUS4-21585 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ferrero, Fabio A1 - Kluge, Martin A1 - Schmidtchen, Ulrich A1 - Pahl, Robert A1 - Noack, Jennifer A1 - Kolvitz, Kristian A1 - Runge, Thomas A1 - Holtappels, Kai A1 - Hensel, Christina A1 - Bönig, Jürgen A1 - Schulze, Uwe A1 - Askar, Enis A1 - Frank, M. A1 - Thornton, D. T1 - Experimentelle und numerische Untersuchungen des Verhaltens von Acetylenflaschen im Feuer T2 - 12. Kolloquium zu Fragen der chemischen und physikalischen Sicherheitstechnik CY - Berlin, Deutschland DA - 2010-06-15 KW - Acetylendruckgasbehälter KW - Unterfeuerung KW - Aufheizverhalten KW - CFD-Modellierung PY - 2010 SN - 978-3-9813550-1-7 SN - 0938-5533 N1 - Geburtsname von Kluge, Martin: Beckmann-Kluge, M. - Birth name of Kluge, Martin: Beckmann-Kluge, M. SP - 70 EP - 72 PB - BAM Bundesanstalt für Materialforschung und -prüfung CY - Berlin AN - OPUS4-21488 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Askar, Enis A1 - Baumeier, Andreas A1 - Holtappels, Kai A1 - Schröder, Volkmar A1 - Franzen, S. A1 - Büttgen, F. T1 - Explosionskenngrößen von Ethylenoxid und Ethylenoxid/Propylenoxid-Gemischen N2 - In Gasphasen aus Ethylenoxid (EO) und Propylenoxid (PO), die bei technischen Alkoxylierungsreaktionen vorkommen, können auch ohne den Zutritt von Luft Zerfallsreaktionen stattfinden, die explosionsartig mit einer vielfachen Temperatur- und Drucksteigerung verlaufen. Zur Abschätzung der Auswirkungen solcher Explosionen wurden die Explosionsdrücke und die zeitlichen Druckanstiege von reinem EO und EO/PO-Gemischen bei Temperaturen von 100°C bis 200°C und Drücken von 1 - 10 bar in einem 3-dm³-Behälter und punktuell in einem 100-dm³-Behälter experimentell bestimmt. KW - Explosionsdruck KW - Explosionsgrenzen KW - Explosionsschutz KW - Gase KW - Sicherheitstechnik KW - Explosion control KW - Explosion limits KW - Explosion pressure KW - Gases KW - Saftey engineering PY - 2011 U6 - https://doi.org/10.1002/cite.201000099 SN - 0009-286X SN - 1522-2640 VL - 83 IS - 3 SP - 365 EP - 370 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-23354 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Askar, Enis A1 - Schröder, Volkmar A1 - Acikalin, Hatice Aydan A1 - Steinbach, J. A1 - Flemming, F. A1 - Redeker, T. T1 - Safety characteristics of ethylene oxide/inert gas/air-mixtures in sterilization processes T2 - XVIII. Rocníku mezinárodní konference CY - Ostrava, Czech Republic DA - 2009-09-09 KW - Explosionsschutz KW - Sterilisation KW - Explosionsgrenzen KW - Normspaltweiten PY - 2009 SN - 978-80-7385-067-8 SN - 1803-1803 SP - 503 EP - 515 AN - OPUS4-20270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abdelkhalik, A. A1 - Askar, Enis A1 - Markus, D. A1 - Brandes, E. A1 - El-Sayed, I. A1 - Hassan, M. A1 - Nour, M. A1 - Stolz, T. T1 - Explosion regions of propane, isopropanol, acetone, and methyl acetate/inert gas/air mixtures N2 - The explosion regions for propane, isopropanol, acetone, and methyl acetate with air in the presence of nitrogen, argon, helium, and carbon dioxide were determined experimentally according to EN 14756/EN1839, method T. Except for propane, all the measurements were executed at 323 K and 1 bar. Propane experiments were carried out at 293 K and 1 bar. The results show that for the same type of inert gas, propane, isopropanol, and acetone have great closeness concerning the concentration of the inert gas at the apex of the explosion envelope in a ternary diagram with air as oxidizer. This leads to consistency in the limiting oxygen concentration (LOC) and minimum required amount of inert gas (MAI) values. Concerning methyl acetate, the apex was always reached at higher percentages of inert gases compared with the other fuels. This can be attributed to the presence of two oxygen atoms inside the chemical structure. Calculation of the explosion regions was carried out based on calculated adiabatic flame temperature (CAFT) method. The flame temperatures for the experimentally determined fuel/air/N2 mixtures were calculated. Then, these temperatures were used to predict the explosion limits of similar mixtures with other inert gases than nitrogen. The modeling results show reasonable agreement with the experimental results. KW - Flammability limits KW - Model of constant adiabatic flame temperatures (CAFT) KW - Inertisation KW - Explosion protection PY - 2016 U6 - https://doi.org/10.1016/j.jlp.2016.04.001 SN - 0950-4230 VL - 2016/43 SP - 669 EP - 675 PB - Elsevier Ltd. CY - Oxford, UK AN - OPUS4-37996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis T1 - Gasgemische mit geringen Anteilen an Brenngasen in Distickstoffoxid / Sicherheitstechnische Beurteilung von Gasgemischen mit brennbaren und oxidierenden Bestandteilen N2 - Im Vortrag werden zum einen sicherheitstechnische Aspekte bei der Herstellung von Gasgemischen aus geringen Anteilen an Lachgas und brennbaren Gasen diskutiert. Zum anderen werden allgemein Vorgehensweisen und Berechnungsmethoden zur sicherheitstechnischen Beurteilung der Herstellung von Gasgemischen mit brennbaren und oxidierenden Komponenten vorgestellt. T2 - 17. Sitzung der Expertengruppe Spezialgase des IGV CY - Berlin, Germany DA - 11.02.2016 KW - Explosionsschutz KW - Herstellung von Gasgemischen KW - Chemisch instabile Gase KW - Spezialgase PY - 2016 AN - OPUS4-38008 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Schröder, Volkmar A1 - Tashqin, Temir A1 - Habib, Abdel Karim A1 - Schütz, S. A1 - Seemann, A. T1 - Explosion protection for mixtures of hydrogen and natural gas N2 - Safety characteristics for explosion protection for mixtures of hydrogen and natural gas were studied in laboratory tests. Also calculations on the explosion zones for mixtures of hydrogen and natural gas were conducted. Moreover calculation methods for the safety characteristics of such mixtures were tested aiming to reduce the high effort for the experimental determination of safety characteristics prospectively. Admixture of up to 10 mole% hydrogen to natural gas has very low influence on safety characteristics for explosion protection. With increasing hydrogen fraction the mixtures become mainly more „critical“ considering explosion protection, an substantial influence on explosion protection occurs for hydrogen fractions of more than 25 mole%. T2 - 21st World Hydrogen Energy Conference 2016 (WHEC) CY - Saragossa, Spain DA - 13.06.2016 KW - Power-to-gas KW - Explosion regions KW - Safety of hydrogen KW - Hydrogen energy KW - Explosion groups PY - 2016 SP - 818 EP - 819 AN - OPUS4-37998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Schröder, Volkmar T1 - Flamox-Gas Mixtures - Herstellbarkeit und Füllung N2 - Im Vortrag wird auf die sicherheitstechnische Beurteilung in Hinblick auf den Explosionsschutz bei der Herstellung und Füllung von Gasgemischen mit brennbaren und mit oxidierenden Komponenten eingegangen. Anhand von Beispielen werden u.a. Vorgehensweisen und Berechnungsmethoden beschrieben, anhand derer beurteilt werden kann, ob Gasgemische überhaupt sicher hergestellt werden können und in welcher Reihenfolge die Komponenten zur sicheren Herstellung der Gemische gefüllt werden sollten. T2 - Workshop der Linde AG CY - Unterschleißheim, Germany DA - 14.04.2016 KW - Explosionsschutz KW - Herstellung von Gasgemischen KW - Spezialgase KW - Sicherheit KW - Gefahrstoffe PY - 2016 AN - OPUS4-38004 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Schröder, Volkmar A1 - Tashqin, Temir T1 - Sicherheitstechnische Kenngrößen von Erdgas/Wasserstoff-Gemischen bei der Power-to-Gas-Technologie T2 - Forschungsbeirat "Sicherheitstechnische Kenngrößen von Wasserstoff-Erdgas-Gemischen" CY - BG ETEM, Köln DA - 2015-09-02 PY - 2015 AN - OPUS4-33928 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis T1 - Wasserstoffsicherheitsfragen - Sicherheitstechnische Kenngrößen von Wasserstoff und Gemischen von Wasserstoff mit Erdgas N2 - Wasserstoff unterscheidet sich hinsichtlich der sicherheitstechnischen Eigenschaften von anderen brennbaren Gassen, v.a. durch die sehr niedrige Mindestzündenergie und die sehr hohe Flammengeschwindigkeit. Durch Beimischung von Wasserstoff zum Erdgas ändern sich die sicherheitstechnischen Eigenschaften zum Teil in kritischer Richtung. Bis zu einem Wasserstoffanteil von 10 Mol-% im Erdgas ist aber keine wesentliche Anpassung der Maßnahmen für den Explosionsschutz erforderlich. Synthesgas ist ein weiteres Wasserstoffgemisch das in Zukunft vermutlich zunehmend relevant sein wird. Die beiden Komponenten Wasserstoff und Kohlenmonoxid haben zwar in mancher Hinsicht ähnliche sicherheitstechnische Eigenschaften unterscheiden sich aber auch sehr stark bzgl. der Mindestzündenergie und der Flammengeschwindigkeit. T2 - 9. HYPOS-Dialog: Grüner Wasserstoff, aber sicher! - Sicherheitsaspekte im Umgang mit Wasserstoff CY - Magdeburg, Germany DA - 11.09.2020 KW - Explosionsschutz KW - Zündenergie KW - Explosionsgrenzen KW - Zündquellen KW - Synthesegas PY - 2020 AN - OPUS4-51264 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abdelkhalik, A. A1 - Askar, Enis A1 - Markus, D. A1 - Brandes, E. A1 - Stolz, T. T1 - Explosion regions of acetone and alcohol/inert gas/air mixtures at high temperatures and atmospheric pressure N2 - The explosion regions of 1-propanol, 2-propanol, acetone and 1-butanol in air were measured in the presence of CO2, He, N2 and Ar in accordance with EN1839 method T at high temperatures and at atmospheric pressure. The experimental results show that 1-propanol, 2-propanol and acetone have very similar lower explosion limits (LELs). 1-Butanol shows a slightly wider explosion area near the LEL line. In addition, the explosion regions of all combustible/inert gas/air mixtures were calculated with the method of constant adiabatic flame temperature profiles (CAFTP), using the flame temperature profile along the explosion region boundary curve of each combustible/N2/air mixture as a reference to determine the explosion regions of combustible/inert gas/air mixtures with inert gases other than N2 at different initial temperatures. To calculate the explosion regions for systems containing He, the calculation method was modified to include the very different physical transport properties of He. Moreover, the procedure for calculating the apexes in the ternary explosion diagrams was modified. The calculation results show good agreement with the experimental results. KW - Explosion limits KW - Elevated temperatures KW - Alcohols KW - CAFTP KW - Acetone PY - 2019 U6 - https://doi.org/10.1016/j.jlp.2019.103958 SN - 0950-4230 VL - 62 SP - 103958, 1 EP - 8 PB - Elsevier AN - OPUS4-49030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Askar, Enis A1 - Aksam, A. A1 - Brandes, E. A1 - Markus, D. A1 - Stolz, T. T1 - Berechnung der Explosionsbereiche von Alkoholen, Ketonen und halogenierten Kohlenwasserstoffen im Gemisch mit Inertgasen N2 - Die Explosionsbereiche für Dreistoffsysteme aus Brennstoff Inertgas und Luft wurden nach dem Modell der konstanten adiabatischen Flammentemperaturprofile berechnet. Für die Parametrisierung des halbempirischen Modells muss der Explosionsbereich für ein bestimmtes Dreistoffsystem aus Brennstoff, Inertgas und Luft bekannt sein. Dann lassen sich Explosionsbereiche desselben Brennstoffs mit einem beliebigen Inertgas und bei einer beliebigen Temperatur berechnen. Ergänzend zu früheren Arbeiten, in denen die Explosionsbereiche für Brenngase aus der homologen Reihe der Alkane und Alkene berechnet worden sind, wurden nun die Berechnungen für 1-Propanol, Aceton und Difluormethan durchgeführt. Als Inertgase wurden neben Stickstoff und Kohlendioxid auch die Edelgase Argon und Helium berücksichtigt. Für die Berechnung der Explosionsbereiche in Systemen mit Helium, ist das Modell erweitert worden, so dass auch die Transporteigenschaften (d.h. Wärmeleitfähigkeit, Diffusionskoeffizient) der Komponenten berücksichtigt werden. Weiterhin ist eine Möglichkeit zur praxisnahen Berechnung der Spitze des Explosionsbereichs implementiert worden. Die Ergebnisse zeigen insgesamt, dass die Berechnung der Explosionsbereiche für Alkohole, Ketone und halogenierte Kohlenwasserstoffe mit ähnlicher Genauigkeit wie für Alkane und Alkene möglich ist. Die vorgenommenen Modifikationen sind geeignet, um auch eine Berechnung für Gasgemische mit Helium durchzuführen, dessen starke inertisierende Wirkung im Vergleich zu den Inertgasen Argon oder Stickstoff vor allem auf den stark unterschiedlichen Transporteigenschaften beruht. KW - Explosionsgrenzen KW - Inertisierung KW - Modell der konstanten Flammentemperaturen KW - Explosionsschutz PY - 2020 U6 - https://doi.org/10.7795/310.20200199 SN - 0030-834X VL - 130 IS - 1 SP - 25 EP - 29 AN - OPUS4-50945 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Askar, Enis A1 - Kauffeld, M. A1 - Maurath, T. A1 - Germanus, J. T1 - N2O/CO2-mixtures as refrigerants for temperatures below -50 °C N2 - The EU F-Gas Regulation grants exceptions from the GWP-related placing on the market prohibition for stationary refrigeration equipment for applications below -50 °C. Nonetheless, non-flammable refrigerants, which can be used for that temperature range, become increasingly expensive and rare inside the EU due to the phase down of HFCs under the regulation. Flammable alternatives based on methane, ethane and ethylene are available, but are not viable for all applications due to their flammability. Carbon dioxide cannot be used for applications below -50 °C due to CO 2 ’s triple point at -56 °C. Nitrous oxide with a triple point at -92 °C seems to be an alternative. However, possible exothermal decomposition of N 2 O calls for additional measures in order to be able to operate such systems safely. Two low-temperature systems have been developed, built and successfully operated at evaporation temperatures down to - 80 °C with mixtures of N 2 O and CO 2 and different lubricants at ILK and Karlsruhe University of Applied Sciences. The units achieved similar energy efficiency as the standard HFC-equipment used for freeze drying. Possible decomposition of N 2 O could successfully be supressed by various measures. KW - Carbon dioxide KW - Freeze-dryer KW - Low temperature KW - Nitrous oxide KW - Safety measures PY - 2020 U6 - https://doi.org/10.1016/j.ijrefrig.2020.04.026 SN - 0140-7007 VL - 117 SP - 316 EP - 327 PB - Elsevier Ltd. AN - OPUS4-50946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Schröder, Volkmar A1 - Göpfert, T. A1 - Winterleitner, E. A1 - Schwarze, M. T1 - Safety related properties of low-GWP refrigerants N2 - Most fluorinated hydrocarbons that shall replace refrigerants with high GWP, like R134a, are flammable. For evaluating inertization measures for explosion protection, flammability of low-GWP refrigerants R1234yf, R32 and R1132a blended with carbon dioxide, nitrogen and argon were studied experimentally in a closed autoclave at atmospheric conditions. Furthermore, a calculation method was adapted to reduce the experimental costs for flammability studies on these gas mixtures. For igniting R1234yf in the closed autoclave a newly developed ignition system was used that allows generating electric arcs with high ignition energy. Gas mixtures containing the mildly flammable R1234yf and R32 could be inerted by adding much less inert gas than mixtures containing R1132a, which is more similar to unfluorinated hydrocarbons regarding the explosion regions. By using the adapted model of constant adiabatic flame temperature profiles estimating the explosion limits of fluorinated hydrocarbons was possible with similar accuracy as for unfluorinated hydrocarbons. Keywords: Explosion Protection, Inertization, Flammability, HFOs, HFC., R1234yf, R32, R1132a T2 - 25th IIR Internationa Congress of Refrigeration CY - Montreal, Canada DA - 24.08.2019 KW - Explosion Protection KW - Inertization KW - Flammability KW - HFOs KW - R1234yf KW - R1132a KW - R32 KW - HFC PY - 2019 SN - 978-2-36215-035-7 U6 - https://doi.org/10.18462/iir.icr.2019.0767 SN - 1025-9031 SP - 1 EP - 9 AN - OPUS4-49546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Aksam, A. A1 - Brandes, E. A1 - Markus, D. A1 - Stolz, T. T1 - Berechnung der Explosionsbereiche von Alkoholen, Ketonen und halogenierten Kohlenwasserstoffen im Gemisch mit Inertgasen N2 - Die Explosionsbereiche für Dreistoffsysteme aus Brennstoff, Inertgas und Luft wurden nach dem Modell der konstanten adiabatischen Flammentemperaturprofile berechnet. Für die Parametrisierung des halbempirischen Modells muss der Explosionsbereich für ein bestimmtes Dreistoffsystem aus Brennstoff, Inertgas und Luft bekannt sein. Dann lassen sich Explosionsbereiche desselben Brennstoffs mit einem beliebigen Inertgas und bei einer beliebigen Temperatur berechnen. Ergänzend zu früheren Arbeiten, in denen die Explosionsbereiche für Brenngase aus der homologen Reihe der Alkane und Alkene berechnet worden sind, wurden nun die Berechnungen für 1-Propanol, Aceton und Difluormethan durchgeführt. Als Inertgase wurden neben Stickstoff und Kohlendioxid auch die Edelgase Argon und Helium berücksichtigt. Für die Berechnung der Explosionsbereiche in Systemen mit Helium, ist das Modell erweitert worden, so dass auch die Transporteigenschaften (d.h. Wärmeleitfähigkeit, Diffusionskoeffizient) der Komponenten berücksichtigt werden. Weiterhin ist eine Möglichkeit zur praxisnahen Berechnung der Spitze des Explosionsbereichs implementiert worden. Die Ergebnisse zeigen insgesamt, dass die Berechnung der Explosionsbereiche für Alkohole, Ketone und halogenierte Kohlenwasserstoffe mit ähnlicher Genauigkeit wie für Alkane und Alkene möglich ist. Die vorgenommenen Modifikationen sind geeignet, um auch eine Berechnung für Gasgemische mit Helium durchzuführen, dessen starke inertisierende Wirkung im Vergleich zu den Inertgasen Argon oder Stickstoff vor allem auf den stark unterschiedlichen Transporteigenschaften beruht. Für die Analyse der physikalischen Vorgänge, die zur Zündung führen, ist eine spezielle Kontaktvorrichtung entwickelt worden. Damit können die Entladungen > 200 µm Länge und mit einer Dauer von > 500 µs an einer bestimmbaren Position erzeugt und untersucht werden. Für die Entladungen an der Zündgrenze bei niedrigen Spannungs- und Stromwerten (max. 30 V, 30 bis 100 mA Konstantstrombegrenzung) sind die Bedingung für die Erzeugung ermittelt worden. Das sind die Rauheit auf der Kontaktoberfläche, die langsame Kontaktöffnungsbewegung und eine geeignet regelnde Spannungsquelle mit Konstantstrombegrenzung. Damit sind für diese Entladungen an der Zündgrenze die Strom-Spannungs-Kennlinie, das Spektrum mit dominierenden Linien von Cadmium-Metalldampf sowie die Temperaturverläufe ermittelt worden. T2 - 15. BAM-PTB-Kolloquium zur chemischen und physikalischen Sicherheitstechnik CY - Brunswick, Germany DA - 21.05.2019 KW - Explosionsgrenzen KW - Inertisierung KW - Modell der konstanten Flammentemperaturen KW - Explosionsschutz PY - 2019 U6 - https://doi.org/10.7795/210.20190521J SP - 1 EP - 9 AN - OPUS4-48947 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Schröder, Volkmar T1 - The influence of strong ignition sources on the explosion and decomposition limits of gases N2 - Explosion and decomposition limits of flammable and chemically unstable gases were determined experimentally in a dosed autoclave with varying ignition energy up to 1000 J. The ignition source was a lightning arc caused by an exploding wire igniter as described in EN 1839 B .. In case of methane only the upper explosion limit was influenced significantly by the ignition energy, whereas the lower explosion limit was constant. In case of R32 however. it was the lower explosion limit that was influenced significantly by the ignition energy and not the upper explosion limit. A particularly strong dependency from the ignition energy was found for the decomposition limits of the chemically unstable gases in nitrogen. T2 - 16th International Symposium on Loss Prevention and Safety Promotion in the Process Industries CY - Delft, The Netherlands DA - 16.06.2019 KW - Explosionsgrenzen KW - Zündenergie KW - Chemisch instabile Gase KW - Kältemittel KW - Zündquellen PY - 2019 AN - OPUS4-48993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Schröder, Volkmar A1 - Göpfert, T. A1 - Winterleitner, E. A1 - Schwarze, M. T1 - Safety related properties of low-GWP refrigerants N2 - Most fluorinated hydrocarbons that shall replace refrigerants with high GWP. like R134a. are flammable. For evaluating inertization measures for explosion protection. flammability of low-GWP refrigerants R1234yf, R32 and R1132a blended with carbon dioxide. Nitrogen and argon were studied experimentally in a closed autoclave at atmospheric conditions. Furthermore, a calculation method was adapted to reduce the experimental costs for flammability studies on these gas mixtures. For igniting R1234yf in the closed autoclave a newly developed ignition system was used that allows generating electric arcs with high ignition energy. Gas mixtures containing the mildly flammable R1234yf and R32 could be inerted by adding much less inert gas than mixtures containing R1132a, which is more similar to unfluorinated hydrocarbons regarding the explosion regions. By using the adapted model of constant adiabatic flame temperature profiles estimating the explosion limits of fluorinated hydrocarbons was possible with similar accuracy as for unf luorinated hydrocarbons. T2 - 25th IIR International Congress of refrigeration CY - Montreal, Canada DA - 24.08.2019 KW - Explosionsgrenzen KW - Inertisierung KW - Entzündbarkeit KW - Kältemittel KW - R1234f, R32, R1132a PY - 2019 AN - OPUS4-48994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis T1 - Untersuchungen zum Zündverhalten von N2O/CO2/Öl-Gemischen in Kältemaschinen N2 - Lachgas kann als Medium in Kälteanwendungen unter -50 °C eingesetzt werden. Da ein explosionsartiger Zerfall von Lachgas bei erhöhtem Druck möglich ist, sind bei entsprechenden Anwendungen Explosionsgefahren zu beachten. Im Vortrag wurden die Voraussetzungen und die Einflussgrößen für den explosionsartigen Zerfall von Lachgas, wie Temperatur, Druck, Geometrie und Zündenergie vorgestellt und diskutiert. Weiterhin wurden Versuchsergebnisse zur Untersuchung des Einflusses geringer Mengen an brennbaren Komponenten (Propan und Öl-Nebel) auf die Explosionseigenschaften vorgestellt und die Stabilisierung der Gemische durch Beimischung von Kohlendioxid diskutiert. T2 - Informations-Treffen Kälteanwendungen unter -50 °C CY - Karlsruhe, Germany DA - 05.02.2019 KW - Lachgas KW - Kältemaschinen KW - Explosionsschutz PY - 2019 AN - OPUS4-48558 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Abdelkhalik, A. A1 - Brandes, E. A1 - Markus, D. A1 - Stolz, Th. T1 - Berechnung der Explosionsbereiche von Alkoholen, Ketonen und halogenierten Kohlenwasserstoffen im Gemisch mit Inertgasen N2 - Ergänzend zu früheren Arbeiten. in denen die Explosionsbereiche für Brenngase aus der homologen Reihe der Alkane und Alkene berechnet worden sind, wurden Ergebnisse der Berechnungen für 1-Propanol, Aceton und Difluormethan vorgestellt. Für die Berechnung ist das Modell erweitert worden. so dass auch die Transporteigenschaften der Gasgemische berücksichtigt werden. Weiterhin ist eine neue Methode zur Berechnung der Spitze des Explosionsbereichs implementiert worden. Die Ergebnisse zeigen. dass die Berechnung der Explosionsbereiche für Alkohole. Ketone und halogenierte Kohlenwasserstoffe mit ähnlicher Genauigkeit wie für Alkane und Alkene möglich ist. T2 - 15. BAM-PTB-Kolloquium 2019 CY - Braunschweig, Germany DA - 21.05.2019 KW - Explosionsgrenzen KW - Inertisierung KW - Modell der konstanten Flammentemperaturen KW - Explosionsschutz PY - 2019 AN - OPUS4-48542 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kauffeld, M. A1 - Maurath, T. A1 - Germanus, J. A1 - Askar, Enis T1 - N2O/CO2-Gemische als Kältemittel für Temperaturen unter -50 °C N2 - Die F-Gas-Verordnung der EU gewährt Ausnahmen vom GWPbezogenen Verbot des Inverkehrbringens für stationäre Kühlgeräte für Anwendungen unter -50 °C. Brennbare Alternativen auf der Basis von Methan, Ethan und Ethylen stehen zur Verfügung, sind aber aufgrund ihrer Entzündbarkeit nicht für alle Anwendungen einsetzbar. Distickstoffmonoxid (N2O) mit einem Tripelpunkt bei -92 °C scheint aber eine Alternative zu sein. Die mögliche exotherme Zersetzung von N2O erfordert jedoch zusätzliche Maßnahmen, um solche Systeme sicher betreiben zu können. Am ILK und an der Hochschule Karlsruhe wurden zwei Tieftemperatursysteme mit Gemischen aus N2O und CO2 und verschiedenen Schmierstoffen entwickelt, gebaut und bei Verdampfungstemperaturen bis -80 °C erfolgreich betrieben. VORSICHT: Reines N2O sowie Mischungen von N2O und CO2 mit Schmiermitteln auf Kohlenwasserstoffbasis können explosionsartig reagieren. KW - Kohlendioxid KW - Gefriertrocknung KW - Distickstoffmonoxid KW - Sicherheitsmaßnahmen PY - 2020 VL - 56 IS - 11 SP - 41 EP - 46 PB - Hüthig GmbH CY - Heidelberg AN - OPUS4-51748 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spitzer, Stefan A1 - Askar, Enis A1 - Krietsch, Arne A1 - Schröder, Volkmar T1 - Entwicklungen zu Bestimmungsverfahren für sicherheitstechnische Kenngrössen hybrider Gemische N2 - Zur Bestimmung sicherheitstechnischer Kenngrößen (STK) von hybriden Gemischen (Gemisch aus mindestens zwei brennbaren Phasen, wie z.B. Staub/Gas- oder Gas/Dampf-Gemisch) existieren bislang keine einheitlichen, genormten Prüfmethoden. Die Normen und Regelwerke zur Bestimmung der STK von einphasigen brennbaren Systemen (Staub, Gas, Dampf) unterscheiden sich teilweise erheblich. Beispielsweise sind in den jeweiligen Normen für Stäube, Gase und Dämpfe unterschiedliche Zündquellen und Zündenergien definiert. Des Weiteren unterscheiden sich die in den Normen definierten Prüfabläufe bei der Gemischherstellung. Bei der Entwicklung einer einheitlichen Norm für hybride Gemische muss der Einfluss dieser beiden Parameter ermittelt werden, um die Vergleichbarkeit mit den STK der einzelnen Komponenten Gas, Staub und Dampf gewährleisten zu können und bisherige Erkenntnisse zu hybriden Gemischen interpretieren und bewerten zu können. T2 - VDI-Fachtagung "Sichere Handhabung brennbarer Stäube" CY - Online meeting DA - 04.11.2020 KW - Explodierender Draht KW - Sicherheitstechnische Kenngrößen KW - Hybride Gemische PY - 2020 SN - 978-3-18-092376-5 SN - 0083-5560 VL - 2376 SP - 3 EP - 15 PB - VDI Verlag GmbH CY - Düsseldorf AN - OPUS4-51789 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spitzer, Stefan A1 - Askar, Enis A1 - Krietsch, Arne A1 - Schröder, Volkmar T1 - Comparative study on standardized ignition sources used for explosion testing N2 - For the determination of safety characteristics of gases, vapors and dusts different types of ignition sources are used in international standards and guidelines. Table 1 compares technical relevant ignition sources with their main features. The paper presents test results of a comparative calorimetric and visual study between four different types of ignition sources. The ignition procedures were analyzed visually with a high-speed camera and electric recordings. In addition to that, the influence of the electrode-orientation, -distance as well as ignition energy on the reproducibility of the exploding wire igniter was tested. The exploding wire is already in use for standardized determination of safety characteristics of gases, first tests on the suitability of the exploding wire igniter for dust testing have been carried out by Scheid et al. Using the exploding wire, the ignition energy can be varied from 2 to 10 000 J (2 x 5 000 J) and thus it could be used for gases, vapors, dusts and hybrid mixtures. Moreover it can be used at high initial pressures and it is the only ignition source with an easily measurable ignition energy release. Furthermore, it does not introduce another chemical reaction into the system. Finally, a proposal for a standard ignition source for explosion tests on hybrid mixtures is derived from the test results. T2 - 13th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions CY - Online meeting DA - 27.07.2020 KW - Ignition source KW - Exploding Wire KW - Hybrid mixtures KW - Safety characteristics determination PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-517908 UR - https://oar.ptb.de/files/download/5f3e662f4c93901010006dbf VL - 13 SP - 864 EP - 875 PB - PTB Physikalisch-Technische Bundesanstalt Braunschweig AN - OPUS4-51790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis T1 - Explosion Protection for Hydrogen Applications N2 - In the this lecture the safety related properties of hydrogen compared to other fuel gases and the explosion protection measures of avoiding flammable mixtures, avoiding ignition sources and mitigating the consequences of explosions are presented. T2 - Guest Lecture at the University of Birmingham CY - Online meeting DA - 19.10.2020 KW - New energy carriers KW - Explosion limits KW - Ignition energy KW - Ignition source KW - Renewable energy PY - 2020 AN - OPUS4-51531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis T1 - Safety Related Properties of Hydrogen Mixtures - Laboratory Tests N2 - Wasserstoff unterscheidet sich hinsichtlich der sicherheitstechnischen Eigenschaften von anderen brennbaren Gassen, v.a. durch die sehr niedrige Mindestzündenergie und die sehr hohe Flammengeschwindigkeit. In der Praxis treten Wasserstoffgemische z.B. durch Einspeisung von Wasserstoff in das Erdgasnetz, bei der Herstellung von Synthesegas (CO, H2) und in Biogasanlagen auf. Die sicherheitstechnischen Eigenschaften von Wasserstoffgemischen wurden experimentell untersucht und werden vorgestellt. Darüber hinaus wurde die Genauigkeit von Berechnungsmethoden für sicherheitstechnische Eigenschaften von Wasserstoffgemischen untersucht. N2 - Hydrogen differs from most other flammable gases regarding the safety related properties. Mainly the minimum ignition energy (MIE) is particularly low and the burning velocity is particularly high. Hydrogen mixtures are formed in different hydrogen applications, for example if hydrogen is added to the existing natural gas grid, if synthetic gas (mixture of CO and H2) is produced or in biogas plants. Safety related properties of hydrogen mixtures were determined experimentally and are presented in this presentation. Moreover the accuracy of estimation methods for safety related properties of hydrogen mixtures is evaluated.” T2 - Center for Hydrogen Safety 2020 European Conference CY - Online meeting DA - 20.10.2020 KW - Explosion Protection KW - Explosion Limits KW - Minimum Ignition Energy KW - Ignition Source KW - Synthetic Gas PY - 2020 AN - OPUS4-51530 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zakel, S. A1 - Schröder, Volkmar A1 - Askar, Enis A1 - Gabel, D. A1 - Hirsch, W. A1 - Kleinert, J. A1 - Krause, U. A1 - Krietsch, Arne A1 - Meistes, J. A1 - Sachtleben, A. A1 - Schmidt, Martin T1 - Sicherheitstechnische Kenngrößen des Explosionsschutzes von hybriden Stoffgemischen - Normungsfähige Bestimmungsverfahren N2 - In diesem Verbundvorhaben werden standardisierte Messverfahren für hybride Gemische erarbeitet, die der Bestimmung sicherheitstechnischer Kenngrößen des Explosionsschutzes dienen. Unter einem hybriden Gemisch wird dabei ein mehrphasiges System aus Brenngas oder brennbarem Dampf, sowie Luft und brennbarem Staub verstanden. Die Veröffentlichung der Ergebnisse erfolgt in einem Abschlussbericht und als DIN-Spezifikation (DIN SPEC). Diese DIN SPEC versetzt Prüfinstitute und Industrie in die Lage, Explosionsgefahren beim Betrieb technischer Anlagen mit hybriden Gemischen einzuschätzen und damit Prozesse sowohl sicherer als auch effizienter zu steuern. Dieses Projekt wird im Rahmen des WIPANOProgramms (Wissens- und Technologietransfer durch Patente und Normen) vom BMWi gefördert. T2 - 14. Fachtagung Anlagen-, Arbeits- und Umweltsicherheit CY - Köthen, Germany DA - 07.11.2019 KW - Explosionsschutz KW - Sicherheitstechnische Kenngrößen KW - Hybride Gemische KW - Normung PY - 2019 SN - 978-3-89746-220-5 SP - 73 CY - Frankfurt am Main AN - OPUS4-49954 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Askar, Enis A1 - Schröder, Volkmar T1 - The influence of strong ignition sources on the explosion and decomposition limits of gases N2 - Explosion and decomposition limits of flammable and chemically unstable gases were determined experimentally in a closed autoclave with an ignition energy higher than the standard 10 J a 20 J. The ignition source was a lightning arc caused by an exploding wire igniter as described in EN 1839 B. With a newly developed ignition system a graded ignition energy between 3 J and 1000 J was generated. Different types of gases were studied with this ignition system: methane as a typical fuel gas and reference gas for some standards for explosion limit determination, the refrigerant R32 (difluoromethane) as a mildly flammable gas with low burning velocity and high minimum ignition energy compared with methane as well as the chemical unstable gases acetylene, nitrous oxide and ethylene oxide, which can decompose explosively in the absence of air or other oxidizers. It was found that the influence of strong ignition sources on explosion and decomposition limits can be very different for different systems. In case of methane only the upper explosion limit was influenced significantly by the ignition energy, whereas the lower explosion limit was constant. In a standard test vessel with an inner volume of 14 dm3 it was difficult to quantify the upper explosion limit of methane exactly with the strong ignition source, because the explosion pressure did not increase abruptly near the explosion limit, but steadily over a large concentration range. Probably a larger explosion vessel is more appropriate in this case. In case of R32 however, it was the lower explosion limit that was influenced significantly by the ignition energy and not the upper explosion limit. A particularly strong dependency from the ignition energy was found for the decomposition limits of the chemically unstable gases in nitrogen. Here special regard is necessary in practical applications, if uncommonly strong ignition sources cannot be excluded. KW - Explosionsgrenzen KW - Zündenergie KW - Zündquellen KW - Chemisch instabile Gase KW - Kältemittel PY - 2019 SN - 978-88-95608-74-7 U6 - https://doi.org/10.3303/CET1977022 SN - 2283-9216 VL - 77 SP - 127 EP - 132 PB - AIDIC - The Italian Association of Chemical Engineering CY - Milano, Italy AN - OPUS4-49936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tschirschwitz, Rico A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Rudolpf, Michael A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz T1 - Propangasbehälter im Feuer: Auswirkungen des Versagens N2 - In einer Großversuchsserie wurden auf dem BAM-TTS 15 11-kg-Propangasflaschen ohne Sicherheitseinrichtung mit drei verschiedenen Methoden (Holz, Benzinpool, Gas) unterfeuert. Der Beitrag beschreibt die dokumentierten Auswirkungen (z. B. Fragmentierung, Überdruck), die Art des Versagens sowie den Behälterzustand zum Zeitpunkt des Versagens. T2 - 13. Fachtagung Anlagen-, Arbeits- und Umweltsicherheit CY - Köthen, Germany DA - 16.11.2017 KW - Behälterversagen KW - Gassicherheit KW - Feuerwehr KW - Propan KW - Auswirkungsbetrachtung PY - 2017 SN - 978-3-96057-032-5 SP - 1 EP - 2 AN - OPUS4-42954 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tschirschwitz, Rico A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Storm, Sven-Uwe A1 - Rudolph, Michael A1 - Schoppa, André A1 - Szczepaniak, Mariusz T1 - Mobile gas cylinders in fire: Consequences in case of failure N2 - Commercial, off-the shelf propane cylinders are subjected to high safety regulations. Furthermore, those cylinders are equipped with safety devices like pressure relief valves (PRV). Despite these regulations and safety measures, a failure of the Container is possible if exposed to an intense fire. The result of this is severe hazard for users, rescue forces and infrastructure. Within the framework of a destructive test series, 15 identical propane cylinders, without pressure relief devices, were exposed to an intensive fire in horizontal Position until failure. Each cylinder was filled with a mass of m =11 kg of liquid propane. Three different fire sources were used (wood, petrol, propane). The experiments revealed the failure of all cylinders in a time period t < 155 s. The failure lead to a fragmentation into several major parts with throwing distances of up to l =262 m. In all trials, the temperature of the cylinder wall (top, side, bottom), of the liquid phase inside and of the surrounding fire (top, side, bottom) was recorded. In addition, the inner cylinder pressure and the induced overpressure of the blast wave after the failure were recorded. Overpressures of up to p=0.27 bar were recorded close to the cylinder (l =5 m). AM tests were documented hy video from several positions (general view, close-up, high-speed 5000 fps). This test series creates the basis for further experimental studies in the field of alternative fuels for vehicles. The aim of this test series is to assess and analyse the consequences of the failure of gas vessels (for LPG, CNG, CGH2) in the aftermath of severe incidents. T2 - 12th International Symposium on Fire Safety Science CY - Lund, Sweden DA - 12.06.2017 KW - Explosion KW - Gas cylinders KW - Consequences PY - 2017 U6 - https://doi.org/X0.1016/j.firesaf.2017.05.006 SN - 0379-7112 VL - 91 SP - 989 EP - 996 PB - Elsevier Ltd. AN - OPUS4-43028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tschirschwitz, Rico A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Rudolph, Michael A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz T1 - Auswirkungen von Behälterversagen bei alternativen PKW-Antrieben - Teil 3: Auswirkungen des Versagens von 11-kg-Propangasbehältern im Feuer N2 - In Deutschland gibt es eine große Anzahl von Kraftfahrzeugen, die mit alternativen Antrieben (z. B. LPG (Liquefied Petroleum Gas), CNG (Compressed Natural Gas)) ausgerüstet sind. In zahlreichen Großversuchsserien untersucht die Bundesanstalt für Materialforschung und -prüfung (BAM) im Rahmen des internen Forschungsprojekts CoFi-ABV (Complex Fires – Auswirkungen von Behälterversagen) die Auswirkungen beim Versagen der Treibstoffbehälter dieser alternativen Antriebe. Ziel dieser Untersuchungen ist eine ganzheitliche Auswirkungsbetrachtung, um die Risiken für Feuerwehren und Rettungskräfte besser abschätzen zu können. Im Vorfeld zu den Versuchen für LPG- und CNG-Tanks wurden in einer weiteren Versuchsserie 15handelsübliche 11-kg-Propangasflaschen ohne Sicherheitseinrichtung unterfeuert. Alle 15 Behälter haben – wie zu erwarten war – versagt. Neben den Zustandsdaten des Behälters zum Versagenszeitpunkt (Temperatur des Behältermantels, Innendruck und -temperatur) wurden die Auswirkungen auf die Umgebung hinsichtlich Druckwirkung und Fragmentierung (Anzahl, Masse, Distanz, Richtung) dokumentiert. KW - Behälterversagen KW - Gassicherheit KW - Feuerwehr KW - Propan KW - Auswirkungsbetrachtung PY - 2017 SN - 2191-0073 VL - 7 IS - 11/12 SP - 25 EP - 32 PB - Springer-VDI-Verlag GmbH & Co. KG CY - Düsseldorf AN - OPUS4-43270 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tschirschwitz, Rico A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Storm, Sven-Uwe A1 - Rudolph, Michael A1 - Schoppa, André A1 - Sczepaniak, Mariusz T1 - Mobile gas cylinders in fire: Consequences in case of failure N2 - Commercial, off-the shelf propane cylinders are subjected to high safety regulations. Furthermore, those cylinders are equipped with safety devices like pressure relief valves (PRV). Despite these regulations and safety measures, a failure of the container is possible if exposed to an intense fire. The result of this is severe hazard for users, rescue forces and infrastructure. Within the framework of a destructive test series, 15 identical propane cylinders, without pressure relief devices, were exposed to an intensive fire in horizontal position until failure. Each cylinder was filled with a mass of m =11 kg of liquid propane. Three different fire sources were used (wood, petrol, propane). The experiments revealed the failure of all cylinders in a time period t < 155 s. The failure lead to a fragmentation into several major parts with throwing distances of up to l =262 m. In all trials, the temperature of the cylinder wall (top, side, bottom), of the liquid phase inside and of the surrounding fire (top, side, bottom) was recorded. In addition, the inner cylinder pressure and the induced overpressure of the blast wave after the failure were recorded. Overpressures of up to p=0.27 bar were recorded close to the cylinder (l =5 m). All tests were documented by video from several positions (general view, close-up, high-speed 5000 fps). This test series creates the basis for further experimental studies in the field of alternative fuels for vehicles. The aim of this test series is to assess and analyse the consequences of the failure of gas vessels (for LPG, CNG, CGH2) in the aftermath of severe incidents. KW - Explosion KW - Gas cylinders KW - Consequences PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S037971121730098X U6 - https://doi.org/10.1016/j.firesaf.2017.05.006 SN - 0379-7112 SN - 1873-7226 VL - 91 SP - 989 EP - 996 PB - Elsevier AN - OPUS4-40550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tschirschwitz, Rico A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Krüger, Simone A1 - Neumann, Patrick P. A1 - Rudolph, Miachael A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz ED - Aga, Diana ED - Daugulis, Andrew ED - Li Puma, Gianluca ED - Lyberatos, Gerasimos ED - Tay, Joo Hwa ED - Lima, Éder Claudio T1 - Hazards from failure of CNG automotive cylinders in fire N2 - Compressed natural gas (CNG) is a widely used automotive fuel in a variety of countries. In case of a vehicle fire where the safety device also malfunctions, a failure of the CNG automotive cylinder could occur. Such a cylinder failure is associated with severe hazards for the surrounding environment. Firstly, a comprehensive analysis is given below, summarizing various accidents involving CNG automotive cylinders and their consequences. In an extensive experimental program, 21 CNG automotive cylinders with no safety device were tested. Of the 21, burst tests were carried out on 5 Type III and 5 Type IV cylinders. Furthermore, fire tests with 8 Type III and 3 Type IV cylinders were conducted. Apart from cylinder pressure, inner temperature and cylinder mantle temperature, the periphery consequences, such as nearfield blast pressure and fragmentation are documented. The maximum measured overpressure due to a Type III cylinder failure was p = 0.41 bar. Each traceable fragment was georeferenced. All-in-all, fragment throw distances of d > 300 m could be observed. As one key result, it can be stated that the tested Type IV CNG cylinders showed less critical failure behavior then the Type III cylinders under fire impingement. KW - CNG KW - Composite cylinder KW - Gas cylinder KW - Tank failure KW - Fragments PY - 2019 U6 - https://doi.org/10.1016/j.jhazmat.2018.12.026 SN - 0304-3894 SN - 1873-3336 VL - 367 SP - 1 EP - 7 PB - Elsevier CY - New York City, New York, USA AN - OPUS4-47135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krentel, Daniel A1 - Rudolph, Michael A1 - Tschirschwitz, Rico A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Schalau, Bernd A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz A1 - Mair, Georg T1 - Infrared radiation measurement at failure of mobile gas vessels N2 - 15 identical off-the-shelf propane cylinders (m = 11 kg liquid propane) were underfired. The infrared Radiation of the Explosion, that occurred in the aftermath of the vessel failure, was recorded using four bolometers. These measurements are compared with an estimation of the Maximum intensity gained by an Analysis of the Video data, an Extended Version of the Stefan-Boltzmann law and a BLEVE model. T2 - 26th International Colloquium on the Dynamics of Explosions and Reactive Systems CY - Boston, USA DA - 30.07.2017 KW - Failure of gas vessels KW - Propane cylinder KW - Gas explosion KW - Consequences KW - Infrared radiation PY - 2017 SP - 1 EP - 6 PB - FM Global CY - Seattle, USA AN - OPUS4-41993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Askar, Enis A1 - Schröder, Volkmar A1 - Schmid, T. A1 - Schwarze, M. T1 - Explosion characteristics of mildly flammable refrigerants ignited with high-energy ignition sources in closed systems N2 - For evaluation of explosion scenarios in closed systems involving the mildly flammable refrigerants R1234yf, R1234ze and R32 dependent on the ignition energy, ignitions were carried out in a closed autoclave. A newly developed ignition system was used, which allows generating electric arcs with defined energies in a range between 3 J and 1000 J. The lower explosion limit of R32 decreases with increasing ignition energy. R32-explosions can be more severe than explosions involving highly flammable substances. However, in case of R1234yf and R1234ze, the ignition energy had to be increased to more than 100 J and more than 500 J to detect explosions in the closed system at all, although flame Propagation phenomena can already be observed if these substances are ignited with much weaker ignition sources in open glass tubes. The explosions were very mild with these substances. KW - Flammability limits KW - Explosion severity KW - R1234yf KW - R1234ze KW - R32 KW - Hydrofluoroolefin (HFO) PY - 2018 U6 - https://doi.org/10.1016/j.ijrefrig.2018.04.009 SN - 0140-7007 SN - 1879-2081 VL - 90 SP - 249 EP - 256 PB - Elsevier Ltd and IIR AN - OPUS4-45879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tschirschwitz, Rico A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Krüger, Simone A1 - Neumann, Patrick P. A1 - Rudolph, Michael A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz T1 - Experimental investigation of consequences of LPG vehicle tank failure under fire conditions N2 - In case of a vehicle fire, an installed LPG (liquefied petroleum gas) tank with a malfunctioning safety device poses severe hazards. To investigate the consequences in case of tank failure, we conducted 16 tests with toroidal shaped LPG vehicle tanks. Three tanks were used for a Hydraulic Burst Test under standard conditions. Another three tanks were equipped with a statutory safety device and were subjected to a gasoline pool fire. The safety device prevented tank failure, as intended. To generate a statistically valid dataset on tank failure, ten tanks without safety devices were exposed to a gasoline pool fire. Five tanks were filled to a level of 20 %; the re-maining five were filled to a level of 100 %. In order to gain information on the heating process, three tem-perature readings at the tank surface, and three nearby flame temperatures were recorded. At distances of l = (7; 9; 11) m to the tank, the overpressure of the shock wave induced by the tank failure and the unsteady tem-peratures were measured. All ten tanks failed within a time of t < 5 min in a BLEVE (boiling liquid expanding vapor explosion). Seven of these resulted directly in a catastrophic failure. The other three resulted in partial failure followed by catastrophic failure. A near field overpressure at a distance of l = 7 m of up to p = 0.27 bar was measured. All ten tests showed massive fragmentation of the tank mantle. In total, 50 fragments were found. These 50 fragments make-up 88.6 % of the original tank mass. Each fragment was georeferenced and weighed. Fragment throwing distances of l > 250 m occurred. For the tanks with a fill level of 20 %, the average number of fragments was twice as high as it was for the tanks that were filled completely. KW - Blast wave KW - BLEVE KW - Consequences KW - Explosion KW - LPG PY - 2018 UR - https://authors.elsevier.com/a/1XnFv_Ld32ewKu U6 - https://doi.org/10.1016/j.jlp.2018.09.006 SN - 0950-4230 VL - 56 SP - 278 EP - 288 PB - Elsevier CY - Kidlington - Oxford AN - OPUS4-46238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krentel, Daniel A1 - Tschirschwitz, Rico A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Rudolph, Michael A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz T1 - Experimental investigation of failure of LPG gas tanks in passenger cars during full fire development N2 - In continuation of a preceding test series involving sole LPG vehicle tanks, three passenger cars equipped with identical toroidal steel LPG tanks were set on fire. The tanks were installed in the space normally reserved for the spare tyre, in the car boot. No safety device was installed on the tank, in order to force critical failure of the cylinder. Two of the cars were equipped with a tank filled with liquefied propane to a level of 20 % (5.3 kg), the third one was filled completely (25.5 kg). The partially filled tanks failed critically within a time period of more than 20 min after the initiation of the fire. The fully-filled tank did not rupture; the propane was released continuously through a small leak that appeared during the fire. Comprehensive equipment was used to procure measurement data, enabling an analysis of potential consequences and hazards to humans and infrastructure within the vehicle surroundings. The inner status of the tank (pressure, temperature of the liquid phase and the steel casing), the development of the fire (temperature inside and around the vehicle) and the pressure induced in the near-field in case of tank rupture were recorded. The results were analysed in detail and compared against the data gained in tests involving sole, but identical LPG tanks. T2 - FIVE 2018 CY - Boras, Sweden DA - 03.10.2018 KW - Behälterversagen KW - LPG KW - Alternative Antriebe KW - Fahrzeugbrand KW - Auswirkungsbetrachtung PY - 2018 SN - 978-91-88695-95-6 VL - 51 SP - 123 EP - 131 PB - RISE Safety CY - Boras AN - OPUS4-46310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Grunewald, Thomas T1 - Experimental Study on the ignition of hydrogen containing atmospheres by mechanical impacts N2 - In this presentation the results of the Project HySpark are shown. Mechanical impacts are among the important possible ignition sources to be considered in explosion protection. Hydrogen is particularly prone to be ignited by mechanical impacts compared to natural gas. The effectivity of mechanical impacts as ignition source is dependent from different parameters. In this work the effectivity of impacts as an ignition source for hydrogen containing atmospheres was studied experimentally depending on the inhomogeneous material pairing of the impact. Moreover it was studied, how the effectivity of mechanical impacts as ignition source changes when hydrogen is added to natural gas. T2 - International Conference on Hydrogen Safety (ICHS) 2023 CY - Quebec City, Canada DA - 19.09.2023 KW - Explosion protection KW - Ignition sources KW - Natural gas KW - Safety KW - Mechanical sparks PY - 2023 AN - OPUS4-58514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Grunewald, Thomas T1 - Experimental Study on the ignition of hydrogen containing atmospheres by mechanical impacts N2 - Mechanical friction, impact or abrasion is one of the ignition sources that must be avoided in hazardous zones with explosive atmospheres. The effectiveness of mechanical impacts as ignition source is dependent from several parameters including the minimum ignition energy of the explosive atmosphere, the properties of the material pairing, the kinetic impact energy or the impact velocity. By now there is no standard procedure to determine the effectiveness of mechanical impacts as ignition source. In this work the effectiveness of mechanical impacts with defined and reproducible kinetic impact energy as ignition source for hydrogen containing atmospheres was studied systematically in dependence from the inhomogeneous material pairing considering materials with practical relevance like stainless steel, low alloy steel, concrete, and non-iron-metals. It was found that ignition can be avoided, if non-iron metals are used in combination with different metallic materials, but in combination with concrete even the impact of non-iron-metals can be an effective ignition source if the kinetic impact energy is not further limited. Moreover, the consequence of hydrogen admixture to natural gas on the effectiveness of mechanical impacts as ignition source was studied. In many cases ignition of atmospheres containing natural gas by mechanical impacts is rather unlikely. No influence could be observed for admixtures up to 25% hydrogen and even more. The results are mainly relevant in the context of repurposing the natural gas grid or adding hydrogen to the natural gas grid. T2 - International Conference on Hydrogen Safety (ICHS) 2023 CY - Quebec City, Canada DA - 19.09.2023 KW - Explosion protection KW - Hydrogen transport in pipelines KW - ATEX KW - Hazardous areas KW - Mechanical sparks KW - Ignition source PY - 2023 SN - 979-12-210-4274-0 SP - 82 EP - 93 AN - OPUS4-58515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spitzer, Stefan A1 - Askar, Enis A1 - Hecht, Kristin A1 - Gabel, Dieter A1 - Geoerg, Paul A1 - Krause, Ulrich A1 - Dufaud, Olivier A1 - Krietsch, Arne ED - Amyotte, Paul T1 - The maximum rate of pressure rise of hybrid mixtures N2 - The maximum rate of pressure rise (dp/dt)𝑚𝑎𝑥 and the corresponding K-value of hybrid mixtures containing flammable gases and dusts are important for constructive explosion protection measures. Since the safety characteristics of dusts and gases are determined under different conditions, there has been considerable confusion about the influence of flammable gas on the (dp/dt) of dusts and vice versa. While some investigations showed comparably higher values for hybrid mixtures, others stated that the highest value for the gas component alone is the worst case. The first part of this paper focuses on the confusion around the different statements about (dp/dt)𝑚𝑎𝑥 of hybrid mixtures and where they come from. In the second part of this paper experimental results are presented that illustrate how to clarify the different findings of past research and show what to expect as a real worst-case-value for hybrid mixtures. KW - Hybrid Mixtures KW - 20L-sphere KW - Turbulent combustion KW - Maximum rate of pressure rise PY - 2023 U6 - https://doi.org/10.1016/j.jlp.2023.105178 SN - 0950-4230 SN - 1873-3352 VL - 86 SP - 1 EP - 9 PB - Elsevier CY - Amsterdam AN - OPUS4-58435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Holtappels, Kai T1 - Competence centre h2safety@bam N2 - In this presentation the current focus areas of the competence centre H2Safety@BAM are shown. The fields of competence include “Material properties and compatibility”, “Process and plant safety”, “Component testing, component safety and approval” as well as “Sensors, analytics and certified reference Materials. Moreover, the cross-cutting activities regarding “Education and training” and the testing possibilities and planed test facilities at the Test Site for Technical Safety (BAM TTS) are presented. T2 - VDMA P2X4A: P2X Technik-Treffen CY - Online meeting DA - 14.09.2023 KW - Hydrogen KW - Test area hydrogen safety KW - ModuH2Pipe PY - 2023 AN - OPUS4-58333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis T1 - KIC Start 2022 H2 Safety - Explosion Protection N2 - This is a digital lecture on Explosion Protection for Hydrogen Applications. It was designed in context with the project "KICstartH2 Accelerating Sustainable Hydrogen Uptake Through Innovation and Education" and integrated in a teaching module of the University of Birmingham. It is divided in five parts: Introduction, Avoiding Explosive Mixtures, Avoiding Ignition Sources, Mitigation of Consequences and Summary & Comparison. T2 - KICStartH2 Lecture at the University of Birmingham CY - Online meeting DA - 31.10.2022 KW - Safety Related Properties KW - Ignition KW - Hydrogen Safety KW - Explosive Mixtures KW - Fuel Gases PY - 2022 AN - OPUS4-57278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Askar, Enis A1 - Grunewald, Thomas T1 - Entzündung von wasserstoffhaltigen Atmosphären durch mechanisch erzeugte Funken („HySpark“) N2 - Im Zuge der Energiewende finden Wasserstofftechnologien in der industriellen Praxis und im öffentlichen Raum immer mehr Anwendung. Beim Einsatz von Wasserstoff als Ersatz für andere fossile Energieträger wie Erdgas müssen u.a. Explosionsschutzmaßnahmen überprüft und angepasst werden. Eine Art von Explosionsschutzmaßnahmen ist die Vermeidung von Zündquellen. Gemäß den einschlägigen Regelwerken ist die Bildung von Funken oder heißen Aufschlagstellen beim mechanischen Schlag eine mögliche Zündquelle, die vor allem beim Wasserstoff berücksichtigt werden muss. Die Zündwirksamkeit ist dabei u.a. stark von der Werkstoffpaarung und der kinetischen Schlagenergie abhängig. Der Einsatz von funkenarmen Werkzeugen aus schwer oxidierbaren Nicht-Eisen-Metallen in explosionsgefährdeten Bereichen kann z.B. eine Maßnahme sein, um diese Zündquelle zu vermeiden und wird als solche in den Regelwerken benannt. Es gibt aber kaum Quellen, die dabei helfen die Zündwirksamkeit bei Schlägen mit heterogenen Materialpaarungen einzuschätzen. In dieser Arbeit wurde zu diesem Zweck die Zündwirksamkeit von mechanischen Schlägen mit unterschiedlichen, auch nicht-metallischen Schlagpartnern in wasserstoffhaltigen Atmosphären systematisch untersucht. KW - Explosionsschutz KW - Zündquelle KW - ATEX KW - Erdgas KW - Mechanischer Schlag PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-579869 SP - 1 EP - 28 AN - OPUS4-57986 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Grunewald, Thomas T1 - Entzündung von wasserstoffhaltigen Atmosphären durch mechanische Schlagvorgänge N2 - In dem hier vorgestellten Projekt wurde die Wirksamkeit mechanischer Schläge als Zündquelle für wasserstoffhaltige Atmosphären in Abhängigkeit von der inhomogenen Materialpaarung systematisch untersucht. Dabei wurden praxisrelevante Materialien wie Edelstahl, niedrig legierter Stahl, Beton und Nichteisenmetalle betrachtet. Es wurde festgestellt, dass eine Zündung vermieden werden kann, wenn Nichteisenmetalle in Kombination mit verschiedenen metallischen Werkstoffen verwendet werden. In Kombination mit Beton muss die kinetische Schlagenergie auch mit Nichteisenmetallen weiter begrenzt werden, um eine wirksame Entzündung zu vermeiden. Außerdem wurde untersucht, wie sich die Beimischung von Wasserstoff zu Erdgas auf die Wirksamkeit mechanischer Stöße als Zündquelle auswirkt. Bei Beimischungen von bis zu 25 % Wasserstoff und sogar mehr konnte kein Einfluss festgestellt werden. Die Ergebnisse sind vor allem relevant im Zusammenhang mit der Umwidmung des Erdgasnetzes oder der Beimischung von Wasserstoff im Erdgasnetzes. T2 - Energy Saxony Arbeitskreistreffen "Wasserstoff in Industrie und Gewerbe" CY - Glaubitz, Germany DA - 30.11.2023 KW - Explosionsschutz KW - Explosionszonen KW - Wasserstofftransport in Pipelines KW - Zündquellen KW - Schlagfunken KW - Erdgas PY - 2023 AN - OPUS4-58981 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jordan, T. A1 - Askar, Enis A1 - Holtappels, Kai A1 - Deeg, S. A1 - Jopen, M. A1 - Stoll, U. A1 - Reinecke, E.-A. A1 - Krause, U. A1 - Beyer, M. A1 - Markus, D. T1 - Stand der Kenntnisse und Technik bezüglich Wasserstoffsicherheit N2 - Die Einführung von Wasserstoff als sicherer Energieträger braucht eine robuste Wissensbasis, darauf aufgebaute Werkzeuge zur Auslegung und Sicherheitsbewertung von Wasserstofftechnologien und ein international harmonisiertes Regelwerk. Viele der innovativen Technologien implizieren Wasserstoff bei hohen Drücken und/oder kryogenen Temperaturen, mit denen in verteilten Anwendungen erstmalig private Nutzer in Kontakt kommen. Um überkonservative, teure Sicherheitslösungen zu vermeiden, gleichzeitig aber die Einsetzbarkeit und Sicherheit von Wasserstoffanwendungen zu demonstrieren und die Akzeptanz für die Technologie aufrecht zu halten, muss auch die Sicherheitsforschung mit den Trends der technologischen Entwicklung Schritt halten, oder sie besser noch antizipieren. So beschreibt dieser Überblicksartikel nicht nur den gegenwärtigen Stand der Kenntnisse und Technik bezüglich Wasserstoffsicherheit, sondern auch ihre Weiterentwicklung. KW - Alternative Energieträger KW - Explosionsschutz KW - Flüssigwasserstoff KW - Unfallszenarien KW - Wasserstoffspeicherung KW - Sicherheitsbewertung KW - Regelsetzung KW - Gefährdungs- und Risikobeurteilung PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-593629 SN - 0009-286X VL - 96 IS - 1-2 SP - 1 EP - 20 PB - Wiley-VCH AN - OPUS4-59362 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krentel, Daniel A1 - Tschirschwitz, Rico A1 - Kluge, Martin A1 - Askar, Enis A1 - Kohlhoff, Harald A1 - Mair, Georg A1 - Rudolph, Michael A1 - Schoppa, Andre A1 - Storm, Sven-Uwe A1 - Szcepaniak, Mariusz T1 - Consequences of the failure of mobile gas vessels N2 - Small, mobile propane gas vessels are widely spread and comprise additional hazards in case of a surrounding, intensive fire. The aim of the presented work is to holistically investigate the potential consequences of failure of these off-the-shelf propane gas vessels in case of an absence or malfunction of safety devices. In order to generate a statistically valid dataset, a total of 15 identical propane gas bottles without pressure relief device, each containing m = 11 kg of liquid propane, were underfired in horizontal position. For each selected fire type (wood fire, petrol pool fire, propane gas fire), five vessels were tested under identical conditions. Next to extensive camera equipment including a high-speed camera, systems to record the internal pressure of the gas cylinder, the resulting shock wave overpressure (three positions) and the flame and vessel temperature (three + three positions) during the underfiring were used. Also the unsteady, highly dynamical thermal radiation caused by the explosion of the expanding gas cloud was logged. The fragments were georeferenced and weighed after each test. The experiments prove the failure of all the gas cylinders at a burst pressure of pb = [71 … 98 bar] with a fragmentation into up to seven parts (average: four objects) and a subsequent explosion of the expanding vapour after mixing with the surrounding air. The overpressure measured in the close-up range (distance to the cylinder d = 5 m) resulting from the shockwave caused by the cylinder burst was up to pmax = 0.27 bar, which can potentially lead to significant injuries to humans and damage to building structures and infrastructure, especially in connection with the explosion and the resultant thermal radiation. The distance covered by the fragments after the failure was up to r = 260 m; 47% of the fragments hit the ground more than r = 50 m away from the position of failure. T2 - Hazards 27 CY - Birmingham, UK DA - 10.05.2017 KW - Failure of gas vessels KW - Propane cylinder KW - Gas explosion KW - Consequences KW - Fragmentation PY - 2017 SN - 978-1-911446-57-6 SP - 1 EP - 12 PB - Instiution of Chemical Engineers CY - Rugby, UK AN - OPUS4-41160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Günzel, Stephan A1 - Holtappels, Kai A1 - Kluge, Martin A1 - Mair, Georg A1 - Maiwald, Michael A1 - Orellana Pérez, Teresa A1 - Sobol, Oded A1 - Tiebe, Carlo A1 - Woitzek, Andreas T1 - H2Safety@BAM - Overview of hydrogen research activities N2 - In this presentation the capabilities and different research activities at BAM in the field of hydrogen safety are outlined. A deep dive focussing the transport of hydrogen in pipelines adressing issues on material compatibility, gas quality and test methods is presented. Another deep dive is presented focussing on safety aspects of liquid hydrogen adressing issues of rapid phase transition (RPT) and Boiling liquid expanding vapour explosion (BLEVE). Finally a brief overview on other safety related research activities is given. T2 - Research priorities workshop of IA HySafe 2022 CY - Quebec, Canada DA - 21.11.2022 KW - Hydrogen safety KW - Hydrogen transport in pipelines KW - Liquid hydrogen (LH2) KW - Hydrogen quality KW - Explosion protection PY - 2022 AN - OPUS4-57067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Krentel, Daniel A1 - Tschirschwitz, Rico A1 - Kluge, Martin A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Mair, Georg A1 - Neumann, Patrick P. A1 - Rudolph, Michael A1 - Schoppa, Andre A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz T1 - Consequences of the failure of mobile gas vessels N2 - Small, mobile propane gas vessels are widely spread and comprise additional hazards in case of a surrounding, intensive fire. The aim of the presented work is to holistically investigate the potential consequences of failure of these off-the-shelf propane gas vessels in case of an absence or malfunction of safety devices. In order to generate a statistically valid dataset, a total of 15 identical propane gas bottles without pressure relief device, each containing m = 11 kg of liquid propane, were underfired in horizontal position. For each selected fire type (wood fire, petrol pool fire, propane gas fire), five vessels were tested under identical conditions. Next to extensive camera equipment including a high-speed camera, systems to record the internal pressure of the gas cylinder, the resulting shock wave overpressure (three positions) and the flame and vessel temperature (three + three positions) during the underfiring were used. Also the unsteady, highly dynamical thermal radiation caused by the explosion of the expanding gas cloud was logged. The fragments were georeferenced and weighed after each test. The experiments prove the failure of all the gas cylinders at a burst pressure of pb = [71 … 98 bar] with a fragmentation into up to seven parts (average: four objects) and a subsequent explosion of the expanding vapour after mixing with the surrounding air. The overpressure measured in the close-up range (distance to the cylinder d = 5 m) resulting from the shockwave caused by the cylinder burst was up to pmax = 0.27 bar, which can potentially lead to significant injuries to humans and damage to building structures and infrastructure, especially in connection with the explosion and the resultant thermal radiation. The distance covered by the fragments after the failure was up to r = 260 m; 47% of the fragments hit the ground more than r = 50 m away from the position of failure. T2 - Hazards27 CY - Birmingham, UK DA - 10.05.2017 KW - Failure of gas vessels KW - Propane cylinder KW - Gas explosion KW - Consequences KW - Fragmentation PY - 2017 AN - OPUS4-40272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Hüllmann, Dino A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Krentel, Daniel A1 - Mair, Georg A1 - Rudolph, Michael A1 - Schoppa, André A1 - Szczepaniak, Mariusz A1 - Storm, Sven-Uwe A1 - Tschirschwitz, Rico T1 - Auswirkungen von Behälterversagen bei alternativen PKW-Antrieben - Teil 2: UAV-basierte Fernerkundung von Gaswolken N2 - Verkehrsunfälle unter Beteiligung von Fahrzeugen mit alternativen Kraftstoffen wie LPG („Autogas“, Liquefied Petroleum Gas), CNG (Compressed Natural Gas, komprimiertes Erdgas) oder CGH2 (Compressed Gas Hydrogen, komprimierter Wasserstoff), bergen neue, komplexe Risiken für Passagiere, Einsatzkräfte und deren Umfeld. Im Rahmen des Projektes „CoFi-ABV“ beschäftigt sich die Bundesanstalt für Materialforschung und -prüfung (BAM) unter Berücksichtigung komplexer Brand- und Explosionsszenarien mit einer ganzheitlichen Betrachtung der Auswirkungen des unfallbedingten Versagens von Gasbehältern für alternative Kraftstoffe. Ein wichtiger Teil des Forschungsvorhabens umfasst Entwicklung, Aufbau und Validierung einer unbemannten Flugplattform (Unmanned Aerial Vehicle, UAV) zur Ferndetektion von Gaswolken. Für das sogenannte gassensitive Mini-UAV wird ein robuster Open-Path-Gasdetektor auf einer Sensorbewegungsplattform in Form eines modifizierten Kamera-Gimbals, integriert. Ziel ist es, ein leistungsfähiges und robustes Werkzeug zu entwickeln, welches Einsatzkräften im Falle eines Unfalls als Hilfe zur Abschätzung der Gefahr durch Gaswolken, ihrer Ausbreitung und der notwendigen Absperrbereiche zur Verfügung steht. Dieser Artikel ist der zweite der Reihe und legt, nach Projektvorstellung im ersten Teil, nun den Schwerpunkt auf das gassensitive Mini-UAV. KW - UAV KW - Fernerkundung KW - Open-Path-Gasdetektor KW - Alternative Antriebe/Kraftstoffe KW - Behälterversagen PY - 2016 SN - 2191-0073 VL - 6 IS - 11/12 SP - 23 EP - 28 PB - Springer-VDI-Verlag CY - Düsseldorf AN - OPUS4-38517 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Günzel, Stephan A1 - Holtappels, Kai A1 - Mair, Georg A1 - Maiwald, Michael A1 - Orellana Pérez, Teresa A1 - Sobol, Oded A1 - Tiebe, Carlo T1 - Challenges for hydrogen technologies - Activities of H2Safety@BAM N2 - In this presentation the drivers for the rise of hydrogen technologies are outlined and main challenges for the market ramp-up are shown. Finally, the activities and capabilities of the competence center H2Safety@BAM are characterized and some of the current projects at BAM adressing the main challenges for hydrogen technologies are presented focussing on the hydrogen transport and infrastructure. T2 - Wasserstoff-Dialog - Stakeholder-Konferenz des Wasserstoff-Kompass CY - Berlin, Germany DA - 10.10.2022 KW - Hydrogen strategy KW - ModuH2Pipe KW - Hydrogen transport KW - Hydrogen infrastructure KW - Liquid hydrogen (LH2) PY - 2022 AN - OPUS4-57065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krentel, Daniel A1 - Tschirschwitz, Rico A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Mair, Georg A1 - Neumann, Patrick P. A1 - Rudolph, Michael A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz T1 - Auswirkungen von unfallbedingtem Behälterversagen bei alternativen Pkw-Antrieben - Teil 1: Problemstellung, Stand der Technik und Voruntersuchungen N2 - Flüssige und komprimierte Gase sind in Deutschland, Europa und der Welt vielfältig als alternative Kraftstoffe im Einsatz. Diese werden unter teilweise hohem Druck in robusten Behältern an Bord gespeichert. Ein Versagen des Treibstoffbehälters im Schadensfall sollen verschiedene Sicherheitseinrichtungen, auch bei einem eventuell unfallbedingt auftretenden Fahrzeugbrand, verhindern. Sind diese Sicherheitseinrichtungen unfallbedingt beschädigt oder liegen die Belastungen dieser Einrichtung außerhalb ihres Auslegungsbereichs, ist ein Versagen des Behälters dennoch möglich. Dadurch kann es zur Bildung eines explosionsfähigen Brennstoff-Luft-Gemischs mit den entsprechenden Folgen für Fahrgäste, Einsatzkräfte und Umfeld kommen. Die Bundesanstalt für Materialforschung und -prüfung (BAM) untersucht im Forschungsprojekt "CoFi-ABV" mit umfangreichen zerstörenden Versuchsreihen im Realmaßstab die Folgen des unfallbedingten Versagens von Behältern für alternative Kraftstoffe und Maßnahmen zur Reduktion dieser Folgen im Rahmen einer ganzheitlichen Auswirkungsbetrachtung. Dieser Beitrag ist der Start einer Reihe und soll die Problemstellung sowie die Projektinhalte umfassend erläutern. KW - Alternative Antriebe KW - Alternative Kraftstoffe KW - Behälterversagen KW - Fahrzeugbrand PY - 2016 SN - 2191-0073 VL - 6 IS - 9 SP - 39 EP - 46 PB - Springer-VDI-Verlag CY - Düsseldorf AN - OPUS4-37360 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jacobasch, Stefan A1 - Duffner, Eric A1 - Goedecke, Thomas A1 - Portella, Pedro Dolabella A1 - Mair, Georg A1 - Schendler, Thomas A1 - Gradt, Thomas A1 - Askar, Enis A1 - Bartholmai, Matthias A1 - Schröder, Volkmar A1 - Maiwald, Michael A1 - Holtappels, Kai A1 - Tschirschwitz, Rico A1 - Neumann, Patrick P. T1 - Unser Beitrag zum Thema Wasserstoff N2 - Die BAM ist nahezu über die gesamte Wertschöpfungskette hinweg wissenschaftlich tätig. Von der sicheren und effizienten Wasserstofferzeugung (POWER-to-GAS), über die (Zwischen-)Speicherung von Wasserstoff in Druckgasspeichern bis hin zum Transport bspw. mittels Trailerfahrzeug zum Endverbraucher. Komplettiert werden die Aktivitäten der BAM durch die sicherheitstechnische Beurteilung von wasserstoffhaltigen Gasgemischen, die Verträglichkeitsbewertung von Werkstoffen bis hin zur Detektion von Wasserstoffkonzentrationen über geeignete Sensorik, auch mittels ferngesteuerter Messdrohnen (sog. UAV-Drohnen). Zudem untersucht die BAM proaktiv Schadensrisiken und Unfallszenarien für die Sicherheitsbetrachtung, um mögliche Schwachstellen aufzeigen und potenzielle Gefährdungen erkennen zu können. KW - Wasserstoff KW - Wasserstofferzeugung KW - Energiespeicherung KW - Gasdetektion KW - Risikoanalyse KW - Power-to-Gas KW - Explosionsschutz KW - Tribologie KW - Druckgasspeicher KW - Glasspeicher KW - Gassensorik KW - Mini-UAV PY - 2019 SP - 1 CY - Berlin AN - OPUS4-47960 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -