TY - GEN A1 - Schwarz, I. A1 - Rieck, Arielle A1 - Fellinger, Tim-Patrick A1 - Weuster-Botz, Dirk T1 - Bio-electrochemical CO2 conversion into organic products using precious-metal free electrocatalysts N2 - For the realization of a sustainable economy, it is of great importance to make use of CO2 for the production of multi-carbon organic chemicals used as feedstock in the chemical industry as well as carbon-neutral fuels (Varela et al. 2019). A promising approach is the electrochemical CO2 reduction followed by microbial conversion of the reduced products. KW - Bio-electrochemical KW - Organic products KW - Electrocatalysts PY - 2024 SP - 1 EP - 2 AN - OPUS4-59572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwarz, I. A1 - Rieck, Arielle A1 - Mehmood, Asad A1 - Bublitz, R. A1 - Bongers, L. A1 - Weuster-Botz, D. A1 - Fellinger, Tim-Patrick T1 - PEM Electrolysis in a Stirred-Tank Bioreactor Enables Autotrophic Growth of Clostridium ragsdalei with CO2 and Electrons N2 - Acetogenic bacteria produce CO2-based chemicals in aqueous media by hydrogenotrophic conversion of CO2, but CO is the preferred carbon and electron source. Consequently, coupling CO2 electrolysis with bacterial fermentation within an integrated bio-electrocatalytical system (BES) is promising, if CO2 reduction catalysts are available for the generation of CO in the complex biotic electrolyte. A standard stirred-tank bioreactor was coupled to a zero-gap PEM electrolysis cell for CO2 conversion, allowing voltage control and separation of the anode in one single cell. The cathodic CO2 reduction and the competing hydrogen evolution enabled in-situ feeding of C. ragsdalei with CO and H2. Proof-of-concept was demonstrated in first batch processes with continuous CO2 gassing, as autotrophic growth and acetate formation was observed in the stirred BES in a voltage range of −2.4 to −3.0 V. The setup is suitable also for other bioelectrocatalytic reactions. Increased currents and lower overvoltages are however required. Atomically-dispersed M−N−C catalysts show promise, if degradation throughout autoclaving can be omitted. The development of selective and autoclavable catalysts resistant to contamination and electrode design for the complex electrolyte will enable efficient bioelectrocatalytic power-to-X systems based on the introduced BES. KW - Energy Conversion PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594766 DO - https://doi.org/10.1002/celc.202300344 SN - 2196-0216 SP - 1 EP - 10 PB - Wiley VHC-Verlag AN - OPUS4-59476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leonhardt, Robert A1 - Böttcher, Nils A1 - Dayani, Shahab A1 - Rieck, Arielle A1 - Markötter, Henning A1 - Schmidt, Anita A1 - Kowal, Julia A1 - Tichter, Tim A1 - Krug von Nidda, Jonas T1 - Exploring the electrochemical and physical stability of lithium-ion cells exposed to liquid nitrogen N2 - The transport and storage of lithium-ion (Li-ion) batteries — damaged or in an undefined state — is a major safety concern for regulatory institutions, transportation companies, and manufacturers. Since (electro)chemical reactivity is exponentially temperature-dependent, cooling such batteries is an obvious measure for increasing their safety. The present study explores the effect of cryogenic freezing on the electrochemical and physical stability of Li-ion cells. For this purpose, three different types of cells were repeatedly exposed to liquid nitrogen (LN2). Before and after each cooling cycle, electrical and electrochemical measurements were conducted to assess the impact of the individual freezing steps. While the electrochemical behavior of the cells did not change significantly upon exposure to LN2 , it became apparent that a non-negligible number of cells suffered from physical changes (swelling) and functional failures. The latter defect was found to be caused by the current interrupt device of the cylindrical cells. This safety mechanism is triggered by the overpressure of expanding nitrogen which enters the cells at cryogenic temperatures. This study underlines that the widely accepted reversibility of LN2 -cooling on a material scale does not allow for a direct extrapolation toward the physical integrity of full cells. Since nitrogen enters the cell at cryogenic temperatures and expands upon rethermalization, it can cause an internal overpressure. This can, in turn, lead to mechanical damage to the cell. Consequently, a more appropriate temperature condition — less extreme than direct LN2 exposure — needs to be found KW - Lithium-ion battery KW - LN2 cooling KW - Battery characterization PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599248 DO - https://doi.org/10.1016/j.est.2024.111650 VL - 89 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-59924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rieck, Arielle A1 - Schwarz, Irina T1 - Electrochemical CO2 reduction (CO2RR) coupled to gas fermentation with acetogenic bacteria N2 - For the realization of a sustainable energy economy, it is of great importance to develop CO2 -neutral methods producing multi-carbon organic chemicals used as feedstock in the chemical industry as well as carbon-neutral fuels. A promising method to alleviate the greenhouse effect and thereby forming value-added chemicals or syngas as an energy carrier, is through the electrochemical CO2 reduction reaction (CO2RR). In this work, a bioelectrotechnological approach is developed, in which the CO2RR reaction products (CO and H2) are directly fed to bacteria (acetogens), who use them as “reduction equivalents” to further metabolize CO2 to valuable carbon compounds. Therefore, a bio-electrochemical system consisting of a bioreactor coupled to a CO2 electrolysis cell will be established. Currently, scarce catalysts such as Ag and Au are used as for the CO2RR which may hamper the use of decentral CO2 conversion technology for cost reasons. The technological viability of the bacteria-assisted electrolysis depends on the usage of efficient, biocompatible, and selective electrocatalysts prepared from inexpensive precursors. Porous transition metal and nitrogen co-doped carbons (M-N-Cs) have emerged as precious-metal free electrocatalysts for the direct electrochemical reduction of CO2 into CO and are excellent candidates for scale-up and deployment in technological applications. Furthermore, Co/Ni/Zn functioning as the catalytically active sites will be used, as they are expected to depict non-bactericidal properties in contrast to Cu and Ag catalysts. The non-bactericidal property could e.g., allow for application within the hybrid device (bio-electrochemical system), without the need to separate bacteria and cathode catalyst. The MNCs with the most promising electrocatalytic activity and selectivity will be evaluated in abiotic conditions in the hybrid bio-electrochemical reactor system. T2 - DFG Summer School Workshop CY - Hamburg, Germany DA - 01.09.2022 KW - Katalysator KW - CO2 Reduktion KW - Bioelectrochemical CO2 reduction PY - 2022 AN - OPUS4-56618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rieck, Arielle A1 - Schwarz, Irina T1 - Valorization of CO2 by electrocatalytic reduction coupled to acetogens via multiple electron carriers (Ecat-acetogens) N2 - For the realization of a sustainable energy economy, it is of great importance to develop CO2 -neutral methods producing multi-carbon organic chemicals used as feedstock in the chemical industry as well as carbon-neutral fuels. A promising method to alleviate the greenhouse effect and thereby forming value-added chemicals or syngas as an energy carrier, is through the electrochemical CO2 reduction reaction (CO2RR). In this work, a bioelectrotechnological approach is developed, in which the CO2RR reaction products (CO and H2) are directly fed to bacteria (acetogens), who use them as “reduction equivalents” to further metabolize CO2 to valuable carbon compounds. Therefore, a bio-electrochemical system consisting of a bioreactor coupled to a CO2 electrolysis cell will be established. Currently, scarce catalysts such as Ag and Au are used as for the CO2RR which may hamper the use of decentral CO2 conversion technology for cost reasons. The technological viability of the bacteria-assisted electrolysis depends on the usage of efficient, biocompatible, and selective electrocatalysts prepared from inexpensive precursors. Porous transition metal and nitrogen co-doped carbons (M-N-Cs) have emerged as precious-metal free electrocatalysts for the direct electrochemical reduction of CO2 into CO and are excellent candidates for scale-up and deployment in technological applications. Furthermore, Co/Ni/Zn functioning as the catalytically active sites will be used, as they are expected to depict non-bactericidal properties in contrast to Cu and Ag catalysts. The non-bactericidal property could e.g., allow for application within the hybrid device (bio-electrochemical system), without the need to separate bacteria and cathode catalyst. The MNCs with the most promising electrocatalytic activity and selectivity will be evaluated in abiotic conditions in the hybrid bio-electrochemical reactor system. T2 - DFG Summer School Workshop CY - Hamburg, Germany DA - 01.09.2022 KW - CO2 Reduktion KW - MNC catalyst KW - Clostridium ragsdalei PY - 2022 AN - OPUS4-56619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -