TY - CONF A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Gojani, Ardian B. A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan A1 - Hülagü, Deniz T1 - Towards automated scanning electron microscopy image analysis of core-shell microparticles for quasi-3D determination of the surface roughness N2 - Core-shell (CS) particles have been increasingly used for a wide range of applications due to their unique properties by merging individual characteristics of the core and the shell materials. The functionality of the designed particles is strongly influenced by their surface roughness. Quantitative evaluation of the roughness of CS microparticles is, however, a challenging task for Scanning Electron Microscopy (SEM). The SEM images contain two-dimensional (2D) information providing contour roughness data only from the projection of the particle in the horizontal plane. This study presents a practical procedure to achieve more information by tilting the sample holder, hence allowing images of different areas of a single particle to be recorded at different orientations under the same view angle. From the analysis of these images, quasi three-dimensional (3D) information is obtained. Three types of home-made particles were investigated: i) bare polystyrene (PS) particles, ii) PS particles decorated with a first magnetic iron oxide (Fe3O4) nanoparticle shell forming CS microbeads, iii) PS/Fe3O4 particles closed with a second silica (SiO2) shell forming core-shell-shell (CSS) microbeads. A series images of a single particle were taken with stepwise tilted sample holder up to 10° by an SEM with high-resolution and surface sensitive SE-InLens® mode. A reliable analysis tool has been developed by a script in Python to analyze SEM images automatically and to evaluate profile roughness quantitatively, for individual core-shell microparticles. Image analysis consists of segmentation of the images, identifying contour and the centre of the particle, and extracting the root mean squared roughness value (RMS-RQ) of the contour profile from the particle projection within a few seconds. The variation in roughness from batch-to-batch was determined with the purpose to set the method as a routine quality check procedure. Flow cytometry measurements provided complementary data. Measurement uncertainties associated to various particle orientations were also estimated. T2 - ICASS 5th International Conference on Applied Surface Science CY - Palma, Mallorca, Spain DA - 25.04.2022 KW - Core-shell particles KW - Image analysis KW - Roughness KW - Scanning electron microscopy PY - 2022 AN - OPUS4-54774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Climent Terol, Estela A1 - Gojani, Ardian A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Generalized Analysis Approach of the Profile Roughness by Electron Microscopy with the Example of Hierarchically Grown Polystyrene–Iron Oxide–Silica Core–Shell–Shell Particles N2 - The roughness as a property of core–shell (CS) microparticles plays a key role in their functionality. Quantitative evaluation of the roughness of CS microparticles is, however, a challenging task with approaches using electron microscopy images being scarce and showing pronounced differences in terms of methodology and results. This work presents a generalized method for the reliable roughness determination of nonplanar specimens such as CS particles from electron microscopic images, the method being robust and reproducible with a high accuracy. It involves a self-written software package (Python) that analyzes the recorded images, extracts corresponding data, and calculates the roughness based on the deviation of the identified contour. Images of single particles are taken by a dual mode scanning electron microscopy (SEM) setup which permits imaging of the same field-of-view of the sample with high resolution and surface sensitive in SE InLens mode as well as in transmission mode (TSEM). Herein, a new type of polystyrene core–iron oxide shell–silica shell particles is developed to serve as a set of lower micrometer-sized study objects with different surface roughness; the analysis of their images by the semiautomatic workflow is demonstrating that the particles’ profile roughness can be quantitatively obtained. KW - Core–shell particles KW - Image analysis KW - Nanoparticles KW - Roughness KW - SEM KW - transmission mode PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-542576 SP - 1 EP - 9 PB - Wiley-VCH AN - OPUS4-54257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gojani, Ardian T1 - Motion of an ensemble of magnetic microbeads in a microfluidic system N2 - This study describes the motion of magnetizable particles of spherical shape with radius at most of 1 μm, also referred to as microbeads, immersed in a liquid under laminar flow conditions in a microfluidic channel. An external magnetic field is applied in part of the system such that it permeates the channel and is characterized by a spatially varying magnetic field, i.e., the gradient of the magnetic field is nonzero. The beads are superparamagnetic; hence they can reach high level of magnetization in the presence of a magnetic field, and this magnetization disappears when the field is zero. Therein lies the attractiveness of these microbeads and the potential for applications because their motion can be controlled using an external magnetic field. The motion is governed by several factors, including the magnetic force acting on microbeads (particles), the drag force due to viscosity, the interaction between particles and the fluid, as well as the interaction between particles themselves. For a single particle case, the trajectory of the motion is determined by balancing the drag and magnetic forces acting on the particle, a calculation that in general requires numerical integration. For a system consisting of an ensemble of interacting particles, several regimes of motion dominated by one of the factors are identified. Of particular interest are the systems dominated by the large number of particles in the ensemble, i.e., high particle concentration, in which cases the wake influences the flow downstream. This effect is qualitatively investigated by considering the Navier-Stokes equation with and without the magnetic force contribution. T2 - 1st NIP Conference National Institute of Physics (IKF), the Albanian Academy of Sciences CY - Tirana, Albania DA - 10.02.2022 KW - MamaLoCA KW - Microfluidics KW - Magnetophoresis PY - 2022 AN - OPUS4-54366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gojani, Ardian A1 - Tobias, Charlie A1 - Hülagü, Deniz A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Toward Determination of the Surface Roughness of Particles from a SEM Image N2 - Welcome to the poster Towards Determination of Surface Roughness from a SEM Image, a contribution from BAM in Berlin, Germany. This work is part of the MamaLoCA project, which aims to develop a biosensor for the detection of mycotoxins in cereals. Biosensors come in a great variety, one of which makes use of microscopic beads produced by homogenous coating of polystyrene microspheres. The beads are functionalized by decorating them with bioreceptors – in our case antibodies – which then specifically react with the analyte – in our case mycotoxins – and emit an electrical or optical signal. The functionalization of the beads depends on the surface roughness because this determines the amount and orientation of binders. In other words, the surface roughness affects the accessibility to the binding sites and influences device sensitivity, hence its quantitative determination is an important step in evaluating the quality of the biosensor in general. The presented solution to the problem of the estimation of surface roughness relies in the repetitive characteristics on the surface of the beads. A SEM image of the bead shows a raspberry like microparticle with a variation of grayscale values, which arise from the secondary electron yield. The principle of the measurement measures the variation of grayscale values along a circumference of a circle centred in the centre of the particle and with an arbitrary radius. The grayscale value variation along the given circumference gives the so-called z-modulation or the lateral profile. By performing Fast Fourier Transform on this profile we obtain the power spectrum as a function of the spatial frequencies through which the grayscales vary. The maximal value for spatial frequency then reveals the most common feature along one given circumference. Surface roughness then is the feature frequency in the spatial domain. This calculation is repeated for several concentric circles with different radii over the particle. The results for the same particle but recorded at two different accelerating voltages show that the applied method has a potential to reveal the roughness. Interpretation of results from an SE InLens SEM image obtained using 3 kV shows that surface roughness is about 21 nm, which is in a good agreement with an alternative method given in a different presentation. The results from the 10 kV are underestimated due to the loss of surface sensitivity on the SE InLens detection at high voltages. In conclusion, this method shows promise in determining quantitatively the surface roughness from a single SEM image and its validation is being sought using 3D SEM images and AFM methods. T2 - Microscopy and Microanalysis 2021 CY - Online Meeting DA - 01.08.2021 KW - MamaLoCA KW - Core-shell particles KW - Electron microscopy KW - Image processing KW - Particle characterisation KW - Roughness KW - Fast Fourier Transform PY - 2021 AN - OPUS4-53089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Gojani, Ardian A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Analysis of the profile roughness of core-shell microparticles by electron microscopy N2 - A particle roughness analysis tool, based on electron microscopy images (SEM and TEM). The influence of various parameters on the calculated roughness was also investigated: the setting of the proper threshold, accelerating voltage, etc. The samples were gradually tilted to extend imaging information of more than only one projection. Furthermore, the measurement uncertainty of the profile roughness of particles associated to various orientations was estimated. KW - Core-shell particles KW - Electron microscopy KW - Image processing KW - MamaLoCa KW - Particle Characterization KW - Roughness PY - 2021 U6 - https://doi.org/10.1017/S1431927621007285 VL - 27 IS - Suppl. 1 SP - 2002 EP - 2004 PB - Cambridge University Press AN - OPUS4-53123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maher, C. A1 - Schazmann, B. A1 - Gornushkin, Igor B. A1 - Rurack, Knut A1 - Gojani, Ardian T1 - Exploring an Application of Principal Component Analysis to LaserInduced Breakdown Spectroscopy of Stainless-Steel Standard Samples as a Research Project N2 - Laser-induced breakdown spectroscopy (LIBS) and principal component analysis (PCA) are frequently used for analytical purposes in research and industry, but they seldom are part of the chemistry Curriculum or laboratory exercises. This case study paper describes the combined application of LIBS and PCA during a research internship for an undergraduate student. The instructional method applied was based on a one-on-one mentorship, in which case the learner was engaged in a Research work. The learning activities included theoretical introductions to the LIBS and PCA methods, numerical simulation, experiments, and data analysis. The study covered three main topics: analysis of LIBS spectra, application of PCA for clustering, and use of PCA for experimental design. The realization of the study was instructive for all parties involved: from the mentorship point of view, it is concluded that the topics can be covered during an internship or developed into a one semester long research-based module of a chemistry program or a final year project. The student, on the other hand, developed profound technical skills in performing experiments and using PCA software for data analysis. KW - LIBS KW - PCA PY - 2021 U6 - https://doi.org/10.1021/acs.jchemed.1c00563 VL - 98 SP - 3237 EP - 3244 PB - American Chemical Society Publications CY - USA AN - OPUS4-53515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gojani, Ardian A1 - Tobias, Charlie A1 - Hülagü, Deniz A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Toward determination of the surface roughness of particles from a SEM image N2 - In this communication, we address the issue of roughness measurement by investigating if the grayscale values from SEM images can be used for surface roughness determination of spherical particles. KW - MamaLoCA KW - Core-shell particles KW - Electron microscopy KW - Image processing KW - Particle characterisation KW - Roughness PY - 2021 U6 - https://doi.org/10.1017/S1431927621011375 SN - 1431-9276 SN - 1435-8115 VL - 27 IS - Suplement S1 SP - 3302 EP - 3305 PB - Cambridge University Press CY - New York, NY AN - OPUS4-53283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Gojani, Ardian B. A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - From 2D and Single Particle to 3D and Batch Analysis as a Routine Quality Check Procedure for the Morphological Characterization of Core-Shell Microparticles N2 - CS particles show unique properties by merging individual characteristics of the core and the shell materials. An alteration particularly in their surface roughness affects the final performance of the particles in the targeted application. Quantitative evaluation of the roughness of CS microparticles is, however, a challenging task employing microscopic techniques being scarce and showing large differences in terms of methodology and results. In our previous work, we have reported a systematic study with a reliable analysis tool, which evaluates profile roughness quantitatively, for individual core-shell microparticles using electron microscopy (EM) images of both types, Scanning Electron Microscopy (SEM) and transmission mode SEM (or TSEM). The SEM images contain two-dimensional (2D) information, therefore, provide profile roughness data only from the projection in the horizontal plane (in other words, from the “belly”) of a spherical particle. The present study offers a practical procedure to give access to more information by tilting the sample holder and hence allowing images of a single particle to be recorded at different orientations under the same view angle. From the analysis of these images, extended information on surface roughness of the particle can be extracted. Thus, instead of obtaining 2D information from a single SEM image, three-dimensional (3D) information is obtained from 2D projections recorded at different particle orientations. T2 - Microscopy and Microanalysis 2022 CY - Oregon, Portland, USA DA - 31.07.2022 KW - Core-shell particles KW - Image processing KW - Roughness KW - Scanning electron microscopy KW - Tilting PY - 2022 U6 - https://doi.org/10.1017/S1431927622002094 SN - 1431-9276 VL - 28 IS - S1 SP - 332 EP - 334 PB - Cambridge University Press AN - OPUS4-55373 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yuan, Huan A1 - Gornushkin, Igor B. A1 - Gojani, Ardian A1 - Wang, X. H. A1 - Rong, Ming Zhe T1 - Laser-induced plasma imaging for low-pressure detection N2 - A novel technique based on laser induced plasma imaging is proposed to measure residual pressure in sealed containers with transparent walls, e.g. high voltage vacuum interrupter in this paper. The images of plasma plumes induced on a copper target at pressure of ambient air between 10−2Pa and 105Pa were acquired at delay times of 200ns, 400ns, 600ns and 800ns. All the plasma images at specific pressures and delay times showed a good repeatability. It was found that ambient gas pressure significantly affects plasma shape, plasma integral intensities and expansion dynamics. A subsection characteristic method was proposed to extract pressure values from plasma images. The method employed three metrics for identification of high, intermediate and low pressures: the distance between the target and plume center, the integral intensity of the plume, and the lateral size of the plume, correspondingly. The accuracy of the method was estimated to be within 15% of nominal values in the entire pressure range between 10−2Pa and 105Pa. The pressure values can be easily extracted from plasma images in the whole pressure range, thus making laser induced plasma imaging a promising technique for gauge-free pressure detection. KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2018 U6 - https://doi.org/10.1364/OE.26.015962 SN - 1094-4087 VL - 26 IS - 12 SP - 15962 EP - 15971 PB - Optical Society of America under the terms of the OSA Open Access Publishing Agreement AN - OPUS4-45219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gojani, Ardian A1 - Palásti, David J. A1 - Paul, Andrea A1 - Galbacs, G. A1 - Gornushkin, Igor B. T1 - Application of spatial heterodyne spectroscopy for chemical analysis based on Raman and laser-induced breakdown spectroscopy N2 - Spatial Heterodyne Spectroscopy (SHS) is a spectrometric technique that combines both dispersive and interferometric features into a customizable instrument. The Basis of SHS is a Michelson interferometer with its mirrors replaced by diffraction gratings and with no moving parts. The output signal from SHS is the interferogram, which is recorded with a 1D or 2D pixel array detector. The spatial periodicity of the fringes on the interferogram is a function of the wavelength of the diffracted light. Using the Fast Fourier Transform, the original optical spectrum that enters SHS is retrieved. The light that is analyzed by SHS can come from a variety of sources. In our work, we used Raman scattering and Laser-Induced Plasma to perform quantitative and qualitative analyses. Figure 1 compares the performance of the SHS with that of high Resolution echelle and portable low-resolution asymmetrically crossed Czerny-Turner spectrometers (OO in Fig.1). The analyzed light came from the plasma induced on a stainless-steel reference material. The SHS exhibits the resolution comparable to that of the echelle spectrometer used, about 8000. Due to a high throughput of the SHS (theoretically, ~200 times higher than that of grating instruments), the number of spectra needed to be accumulated for comparable signal-to-noise ratios is much smaller than in the case of the echelle and comparable to OO spectrometers. Examples of Raman SHS applied to several pure liquids are given in Fig. 2. Raman SHS was used in three different settings: (i) for classification of six types of oils, (ii) for univariate/multivariate analysis of binary mixture cyclohexane-isopropanol, and (iii) for multivariate analysis of glycerol solution in water. For the last two settings, chemometric analysis of the spectra yielded linear calibration plots over the range 1-90% of concentrations of isopropanol in cyclohexane, and 0.5-10% of glycerol in water. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - Spatial heterodyne spectroscopy KW - Raman spectroscopy KW - Laser-Induced Background Spectroscopy PY - 2019 AN - OPUS4-49176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zettner, Alina A1 - Gojani, Ardian A1 - Schmid, Thomas A1 - Gornushkin, Igor B. T1 - Evaluation of a Spatial Heterodyne Spectrometer for Raman Spectroscopy of Minerals N2 - Spatial heterodyne spectroscopy (SHS) is a novel spectral analysis technique that is being applied for Raman spectroscopy of minerals. This paper presents the theoretical basis of SHS and its application for Raman measurements of calcite, quartz and forsterite in marble, copper ore and nickel ore, respectively. The SHS measurements are done using a broadband (518–686 nm) and resolving power R ≈ 3000 instrument. The spectra obtained using SHS are compared to those obtained by benchtop and modular dispersive spectrometers. It is found that SHRS performance in terms of resolution is comparable to that of the benchtop spectrometer and better than the modular dispersive spectrometer, while the sensitivity of SHRS is worse than that of a benchtop spectrometer, but better than that of a modular dispersive spectrometer. When considered that SHS components are small and can be packaged into a handheld device, there is interest in developing an SHS-based Instrument for mobile Raman spectroscopy. This paper evaluates the possibility of such an application. KW - Forsterite KW - Spatial heterodyne spectrometer KW - Interferometric spectroscopy KW - Fourier transform spectroscopy KW - Raman spectroscopy KW - Calcite KW - Quartz PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-504624 VL - 10 IS - 2 SP - 202 PB - MDPI CY - Basel, Switzerland AN - OPUS4-50462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gojani, Ardian A1 - Gornushkin, Igor B. T1 - Combined Raman and LIBS using Spatial Heterodyne Spectrometer with High Repetition Rate Laser N2 - Spatial heterodyne spectroscopy is used for Raman and laser-induced breakdown spectroscopy of six rocks with various mineral content, using high repetition rate diode-pumped solid state lasers. While LIBS data are obtained for all samples, Raman signal was determined only for half of those. This work shows that it is possible to combine LIBS and Raman spectrometry into a single instrument consisting of a DPSS laser for excitation and SHS for spectral recording. For better results and gain from complementary spectrochemical information that the system provides, it is necessary to optimize light collection. T2 - 2020 Winter Conference on Plasma Spectrochemistry CY - Tucson, Arizona, USA DA - 13.01.2020 KW - Laser-Induced Background Spectroscopy KW - Spatial heterodyne spectroscopy KW - Raman spectroscopy PY - 2020 AN - OPUS4-50265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huan, Y. A1 - Gojani, Ardian A1 - Gornushkin, Igor B. A1 - Wang, X. A1 - Liu, D. A1 - Rong, M. T1 - Dynamics of laser-induced plasma splitting N2 - The dynamics of laser-induced plasma plume splitting is investigated using spatiotemporal plasma imaging and spectrometry in this paper. Plasma plume splitting into fast and slow components is clearly observed using plasma optical emission as time evolves. The spatial resolved plasma spectra are used to investigate the plasma species distribution, which reveals that the charged copper ions, which radiate at wavelength range 485 nm - 504 nm, are merely present in the fast component. In order to further interpret the mechanism, the pressure-dependent and laser energy-dependent plume splitting are analyzed. Based on the results, the charge separation field is proposed to explain this phenomenon. This work can be of importance for such areas as laser induced breakdown spectroscopy, laser-induced ion source formation, pulse laser deposition, film growth, and nanoscale synthesis. KW - Spectroscopy KW - Laser induced plasma KW - Splitting KW - Imaging PY - 2020 U6 - https://doi.org/10.1016/j.optlaseng.2019.105832 SN - 0143-8166 VL - 124 SP - 1 EP - 5 PB - Elsevier CY - Amsterdam AN - OPUS4-48746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gojani, Ardian A1 - Palásti, David J. A1 - Paul, Andrea A1 - Galbács, G. A1 - Gornushkin, Igor B. T1 - Analysis and classification of liquid samples by spatial heterodyne spectroscopy N2 - Spatial heterodyne spectroscopy (SHS) is used for quantitative analysis and classification of liquid samples. SHS is a version of a Michelson interferometer with no moving parts and with diffraction gratings in place of mirrors. The instrument converts frequency-resolved information into spatially resolved one and records it in the form of interferograms. The back-extraction of spectral information is done by the Fast Fourier transform. A SHS instrument is constructed with the resolving power 5000 and spectral range 522 - 593 nm. Two original technical solutions are used as compared to previous SHS instruments: the use of a high frequency diode pumped solid state (DPSS) laser for excitation of Raman spectra and a microscope-based collection system. Raman spectra are excited at 532 nm at the repetition rate 80 kHz. Raman shifts between 330 cm-1 and 1600 cm-1 are measured. A new application of SHS is demonstrated: for the first time it is used for quantitative Raman analysis to determine concentrations of cyclohexane in isopropanol and glycerol in water. Two calibration strategies are employed: univariate based on the construction of a calibration plot and multivariate based on partial least square regression (PLSR). The detection limits for both cyclohexane in isopropanol and glycerol in water are at a 0.5 mass% level. In addition to the Raman-SHS chemical analysis, classification of industrial oils (biodiesel, poly(1-decene), gasoline, heavy oil IFO380, polybutenes, and lubricant) is performed using their Raman-fluorescence spectra and principal component analysis (PCA). The oils are easily discriminated as they show distinct non-overlapping patterns in the space of principal components. KW - Spectroscopy KW - Atomic KW - Laser induced breakdown KW - Lasers PY - 2019 U6 - https://doi.org/10.1177/0003702819863847 SN - 1943-3530 VL - 73 IS - 12 SP - 1409 EP - 1419 PB - Sage AN - OPUS4-48599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gojani, Ardian A1 - Bell, Jérémy A1 - Rurack, Knut A1 - Schneider, Rudolf T1 - Examples of embedded & microfluidic-based sensors N2 - Sensors are the scientific and technological extension of human senses and enormously expand human capabilities. Despite the fact that scientific and technological advances are usually seen in a positive light, the name of this conference, Sensors for Good, put me in a bit of a trouble, because in general science does not operate in ethical categories, but instead it just tells how far from the truth one is. In this respect, sensors help us in recognizing states and events beyond our immediate reach. Fortunately, sensors are used for many applications, such as environmental monitoring, food control, and alike, which unequivocally benefit society. I will focus on a particular type of sensors, those that rely on microfluidics for operation and which are typically realized in lab-on-a-chip (LOC) devices. In this domain, where at least one of the dimensions through which a fluid flows is submillimetric, our natural senses fail, because the phenomena are too small to be detected either by eye, smell, touch, and even the common sense explanation that we learn for many years in school is not applicable, because the phenomena are dominated by different parameters. To give one simple example, in general the direction of flow in microfluidic channels does not depend on the up-down direction of the channel, because gravitational force or the weight of the fluid is negligible compared to the viscous forces present on the chip. This presentation consists of three parts: initially, two sensors produced in our lab are presented, followed by a simulation oriented discussion on microfluidics and biosensors, and finally a project in progress that we are involved in is presented, concluding with a list of open issues raised during the presentation. T2 - Software Freedom Kosova Conference CY - Online meeting DA - 26.09.2020 KW - Sensors KW - Cocaine detection KW - Fuel adulteration KW - MamaLoCA PY - 2020 AN - OPUS4-51396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gojani, Ardian A1 - Gornushkin, Igor B. T1 - Räumlich aufgelöste Heterodyne-Spektroskopie N2 - Die räumlich aufgelöste Heterodyn-Spektroskopie (SHS) kombiniert dispersive und interferometrische Techniken zur Gewinnung spektroskopischer Informationen und kann in einem anpassbaren Instrument realisiert werden. SHS wird für die chemische Analyse von verschiedenen Materialien mit Hilfe der Laser-induzierten Plasmaspektroskopie (LIBS) und der Raman-Spektroskopie eingesetzt. KW - Raman spectroscopy KW - Spatial heterodyne spectroscopy KW - Laser-induced breakdown spectroscopy PY - 2020 UR - https://analyticalscience.wiley.com/do/10.1002/was.00080118/full VL - 5 SP - 2 EP - 4 PB - Wiley CY - Weinheim AN - OPUS4-51397 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottlieb, Cassian A1 - Gojani, Ardian A1 - Völker, Tobias A1 - Günther, Tobias A1 - Gornushkin, Igor B. A1 - Wilsch, Gerd A1 - Günster, Jens T1 - Investigation of grain sizes in cement-based materials and their influence on laser-induced plasmas by shadowgraphy and plasma imaging N2 - The effect of particle grain sizes in different cement-based mixtures on the laser-induced plasma evolution is studied using two experimental methods: (i) temporal and spatial evolution of the laser-induced shock wave is investigated using shadowgraphy and two-dimensional plasma imaging, and (ii) temporal and spatial distribution of elements in the plasma is investigated using two-dimensional spectral imaging. This study is motivated by the interest in applying laser-induced breakdown spectroscopy (LIBS) for chemical analysis of concrete, and subsequently obtain information related to damage assessment of structures like bridges and parking decks. The distribution of grain sizes is of major interest in civil engineering as for making concrete different aggregate grain sizes defined by a sieving curve (64mm to 0.125 mm) are needed. Aggregates up to a size of 180 μm can be excluded from the data set, therefore only the amount of small aggregates with a grain size below 180 μm must be considered with LIBS. All components of the concrete with a grain size smaller than 0.125mm are related to the flour grain content. Tested samples consisted of dry and hardened cement paste (water-cement ratio w/z=0.5), which served as a reference. Aggregate mixtures were made by adding flour grains (size 40 μm) and silica fume (size 0.1 μm) in different ratios to cement: 10%, 30%, 50% and 60%, all combined to the remaining percentage of dry or hydrated cement. The visualization results show that a dependance in the evolution of the plasma as a function of sample grain size can be detected only in the initial stages of the plasma formation, that is, at the initial 3 μs of the plasma life. Spectral information reveals the elemental distribution of the silicon and calcium in plasma, in both neutral and ionized form. Here also, a significant effect is observed in the first 1 μs of the plasma lifetime. KW - LIBS KW - Cement-based materials KW - Particle size KW - Shadowgraphy KW - Plasma imaging PY - 2020 U6 - https://doi.org/10.1016/j.sab.2020.105772 VL - 165 SP - 105772 PB - Elsevier B.V. AN - OPUS4-50319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yuan, Huan A1 - Gojani, Ardian A1 - Gornushkin, Igor B. A1 - Wang, X. T1 - Investigation of laser-induced plasma at varying pressure and laser focusing N2 - Expansion dynamics of laser-induced plasma is studied for different focal positions of the ablation laser in the pressure range 10-2 - 105 Pa of the ambient air. The experimental results indicate that both the parameters significantly affect the plasma size, shape, intensity, reproducibility, and distance from the target surface. At pressures above 10 Pa, the plasma plume is confined by the ambient gas; the plumes are more compact and travel shorter distances from the target as compared to the analogous plume characteristics at pressures below 10 Pa. The pulse-to-pulse reproducibility of the integral emission intensity of the plasma is also different for different focal positions and pressures. It is found that the focal positions -1 cm and -2 cm below the target surface yield the most reproducible and intense emission signals as measured at the 600 ns delay time with the 100 ns gate. The information obtained can be of importance for pulsed laser deposition, laser welding, and analytical spectroscopy at reduced pressures. In general, a correct choice of the focal position and pressure of an ambient gas is very important for obtaining the strongest plasma emission, good reproducibility, and desired plasma plume shape. KW - Laser-induced plasma KW - Plasma expansion KW - Imaging PY - 2018 U6 - https://doi.org/10.1016/j.sab.2018.10.005 SN - 0584-8547 VL - 150 SP - 33 EP - 37 PB - Elsevier AN - OPUS4-46207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gojani, Ardian A1 - Gornushkin, Igor B. A1 - Palásti, David J. A1 - Galbacs, G. T1 - Quantitative and qualitative analysis of liquid samples N2 - Spatial heterodyne spectroscopy (SHS) is an optical setup that combines both dispersive and interference based methods to obtain spectroscopic information. It has the high light throughput characteristic for interference based methods, but at the same time it has the high resolution typical of grated spectrometers. The basic SHS optical setup is similar to that of the Michelson interferometer, with the mirrors replaced by diffraction gratings positioned at fixed, equal distances from the beamsplitter and are slightly tilted. The resulting interference pattern is recorded by a digital camera and the spectrum is recovered by using Fourier Transformation. Although initially SHS was developed for astronomical and satellite-based atmospheric measurements, where spectroscopy of faint but large light sources are investigated, but in recent years the application of SHS spectroscopy is gaining popularity. Our research group is active both in Raman-SHS and LIBS-SHS, due to the fact that there are many overlapping challenges for the two spectroscopies in terms of optical and optoelectronic optimization. In the present study, we investigated the possibility of using SH detection for the qualitative and quantitative Raman spectroscopy of liquid samples. We constructed our own compact spatial heterodyne spectrometer using 300 mm-1 gratings (Newport), a 50:50 cube beamsplitter (Thorlabs), dischroic mirrors, bandpass and notch filters (Semrock), a Tamron telelens and a Retiga R1 CCD camera. A DPSS laser (532 nm, 20 ns) with variable energy and repetition rate (up to 100 µJ and 80 kHz) was used for excitation, with its beam driven through a 10x microscope objective (Thorlabs) to focus the laser light inside the liquid samples. The evaluation of the recorded interference patterns was carried out by self-developed software written in Octave. In the qualitative experiments, we investigated several oils and additives and employed principal component analysis (PCA) for their classification. It was found that the recorded spectra could be separated well in the subspace of just two principal components. The quantitative experiments were conducted with two sets of binary solvent mixtures (isopropanol-cyclohexane, glycerol-water). The simple univariate method based on the net intensity of one spectral peak did not give good results, but principal component regression (PCR) gave rise to fairly good and robust calibrations. Our results therefore show that a relatively simple and robust SHS setup can be advantageously used for both quantitative and qualitative Raman spectroscopy. T2 - European Winter Conference on Plasma Spectrochemistry (EWSPS-2019) CY - Pau, France DA - 03.02.2019 KW - SHS KW - Raman spectroscopy KW - Spatial Heterodyne Spectrometer PY - 2019 AN - OPUS4-47542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -