TY - JOUR A1 - Malefioudaki, Mariella A1 - Misra, Archismita A1 - Sbeity, Nadja A1 - Zueco-Vincelle, Juan A1 - Laguna-Bercero, Miguel A. A1 - Koerdt, Andrea A1 - Martín-Rapún, Rafael A1 - Mitchell, Scott G. T1 - Multifunctional polyoxomolybdate ionic liquid coatings for mitigating microbiologically influenced corrosion N2 - Corrosion of metals and other materials in marine environments poses significant economic, operational, safety, and environmental challenges across the oil and gas industry, the renewable energy sector, and maritime infrastructure. Microbiologically influenced corrosion (MIC) accounts for a substantial portion of this corrosion, with sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) being key contributors. Conventional methods such as cathodic polarization have proven insufficient in mitigating the colonization of corrosive microbial communities in real marine environments, requiring the development of alternative, broad-spectrum antimicrobial strategies to prevent such biofilm formation. Recently, molybdate has emerged as a potential alternative to traditional biocides and nitrate. Our hypothesis is polyoxometalate-ionic liquids (POM-ILs), which exhibit antimicrobial and anticorrosion properties, could have a broader spectrum of antimicrobial activity than demonstrated until now and could be capable of shielding and protecting sensitive metal surfaces from the extreme acidic environments produced by MIC microorganisms. Here we show how two prototype polyoxomolybdate-based POM-ILs, [(CH3(CH2)6)4N]2[Mo6O19] and [(CH3(CH2)6)4N]4[Mo8O26], demonstrated antimicrobial activity at microgram per millilitre concentrations, prevented biofilm formation on metal surfaces, and provided resistance to corrosive acidic environments. Furthermore, impedance measurements were commensurate with electron microscopy studies showing that POM-IL-coated brass coupons withstood extremely corrosive environments. These proof-of-concept results demonstrate how multi-functional POM-IL coatings represent promising MIC mitigation solutions by providing a hydrophobic acid-resistant and biocidal protective layer that prevents biocolonisation and acidic corrosion by MIC microorganisms. KW - Polyoxometalates KW - Ionic liquid KW - Microbiologically influenced corrosion KW - Corrosion KW - Heritage preservation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-631951 DO - https://doi.org/10.1039/d5mh00373c SN - 2051-6347 VL - 12 IS - 13 SP - 4648 EP - 4661 PB - Royal Society of Chemistry (RSC) CY - Cambridge AN - OPUS4-63195 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Misra, Archismita T1 - Polyoxometalate Ionic Liquids as Protective Coatings for Industrial Infrastructure and Cultural Heritage against Microbiologically Influenced Corrosion (MIC) N2 - Corrosion of stone and metal due to acid rain and biodeterioration poses significant challenges for industrial and residential infrastructure, as well as cultural heritage, including statues and historical artefacts. A promising mitigation strategy involves thin, transparent films of polyoxometalate-based ionic liquids (POM-ILs) as chemical shields. Stone samples coated with acid-resistant, biocidal POM-ILs exhibited negligible corrosion when exposed to simulated acid rain, in stark contrast to the severe deterioration of unprotected samples. Additionally, their biocidal properties effectively prevent biofilm formation on coated surfaces. Following studies successfully explored the effectiveness of the coating against lampenflora growing in the Pommery Champagne cellar; and the long-term performance of POM-ILs under outdoor environmental conditions. So, POM-ILs have already demonstrated remarkable anticorrosion and antimicrobial properties against aerobic microorganisms and, being water-insoluble, do not leach into aquatic ecosystem. The current research project repurposes the POM-ILs, extending their application to metals, specifically targeting microbiologically influenced corrosion (MIC) in cultural heritage artefacts made of brass, carbon steel, cast iron, and bronze. This involves optimizing nanocoating adhesion to the metal surface and evaluating its protective efficacy against MIC caused by anaerobic microorganisms such as methanogenic archaea and sulfate reducing bacteria (SRB). This presentation will highlight POM-ILs as sustainable, high-performance nanocoatings for biocorrosion mitigation. It will showcase published success stories, discuss ongoing research and proof-of-concept results, and explore future prospects for these advanced materials in safeguarding metal infrastructure and artefacts across different industrial sectors as well as in the context of cultural heritage conservation. T2 - 10th International symposium on applied microbiology and molecular biology in oil systems (ISMOS10) CY - Nashville, Tennessee, USA DA - 11.08.2025 KW - Polyoxometalates KW - Corrosion KW - Microbiologically Influenced Corrosion KW - Ionic Liquid PY - 2025 AN - OPUS4-64548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Misra, Archismita T1 - Polyoxometalate Ionic Liquids as Protective Coatings for Industrial Infrastructure and Cultural Heritage against Microbiologically Influenced Corrosion (MIC) N2 - Corrosion of stone and metal due to acid rain and biodeterioration poses significant challenges for industrial and residential infrastructure, as well as cultural heritage, including statues and historical artefacts. A promising mitigation strategy involves thin, transparent films of polyoxometalate-based ionic liquids (POM-ILs) as chemical shields. Stone samples coated with acid-resistant, biocidal POM-ILs exhibited negligible corrosion when exposed to simulated acid rain, in stark contrast to the severe deterioration of unprotected samples. Additionally, their biocidal properties effectively prevent biofilm formation on coated surfaces. Following studies successfully explored the effectiveness of the coating against lampenflora growing in the Pommery Champagne cellar; and the long-term performance of POM-ILs under outdoor environmental conditions. So, POM-ILs have already demonstrated remarkable anticorrosion and antimicrobial properties against aerobic microorganisms and, being water-insoluble, do not leach into aquatic ecosystem. The current research project repurposes the POM-ILs, extending their application to metals, specifically targeting microbiologically influenced corrosion (MIC) in cultural heritage artefacts made of brass, carbon steel, cast iron, and bronze. This involves optimizing nanocoating adhesion to the metal surface and evaluating its protective efficacy against MIC caused by anaerobic microorganisms such as methanogenic archaea and sulfate reducing bacteria (SRB). This presentation will highlight POM-ILs as sustainable, high-performance nanocoatings for biocorrosion mitigation. It will showcase published success stories, discuss ongoing research and proof-of-concept results, and explore future prospects for these advanced materials in safeguarding metal infrastructure and artefacts across different industrial sectors as well as in the context of cultural heritage conservation. T2 - Euro-MIC COST Action - Closing Workshop Conference CY - Horsens, Denmark DA - 17.09.2025 KW - Polyoxometalates KW - Corrosion KW - Microbiologically Influenced Corrosion KW - Ionic Liquid PY - 2025 AN - OPUS4-64549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taghavi Kalajahi, Sara A1 - Misra, Archismita A1 - Koerdt, Andrea T1 - Nanotechnology to mitigate microbiologically influenced corrosion (MIC) N2 - Microbiologically influenced corrosion (MIC) is a crucial issue for industry and infrastructure. Biofilms are known to form on different kinds of surfaces such as metal, concrete, and medical equipment. However, in some cases the effect of microorganisms on the material can be negative for the consistency and integrity of the material. Thus, to overcome the issues raised by MIC on a system, different physical, chemical, and biological strategies have been considered; all having their own advantages, limitations, and sometimes even unwanted disadvantages. Among all the methods, biocide treatments and antifouling coatings are more common for controlling MIC, though they face some challenges. They lack specificity for MIC microorganisms, leading to cross-resistance and requiring higher concentrations. Moreover, they pose environmental risks and harm non-target organisms. Hence, the demand for eco-friendly, long-term solutions is increasing as regulations tighten. Recently, attentions have been directed to the application of nanomaterials to mitigate or control MIC due to their significant antimicrobial efficiency and their potential for lower environmental risk compared to the conventional biocides or coatings. Use of nanomaterials to inhibit MIC is very new and there is a lack of literature review on this topic. To address this issue, we present a review of the nanomaterials examined as a biocide or in a form of a coating on a surface to mitigate MIC. This review will help consolidate the existing knowledge and research on the use of nanomaterials for MIC mitigation. It will further contribute to a better understanding of the potential applications and challenges associated with using nanomaterials for MIC prevention and control. KW - Microbiologically influenced corrosion (MIC) KW - Biofilm KW - Biofouling KW - Nanobiocide KW - Nanocoating PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599335 DO - https://doi.org/10.3389/fnano.2024.1340352 SN - 2673-3013 VL - 6 SP - 1 EP - 25 PB - Frontiers Media CY - Lausanne AN - OPUS4-59933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Misra, Archismita T1 - Polyoxometalate Ionic Liquids (POM-ILs) as Protective Coatings for CulturalHeritage against Acid Corrosion and Biodeterioration N2 - Corrosion of stone by acid rain anddeterioration from microbial biofilmsare challenges pertinent worldwide forindustrial or residential buildings as wellas cultural heritage artefacts, like statuesor historic buildings. One mitigationoption might be the use of thintransparent films of polyoxometalate-based ionic liquids (POM-ILs). In thisregard, different limestone samples werecoated with hydrophobic, acid resistantPOM-ILs which also have biocidalproperties.1 Exposure of the samples tosimulated acid rain showed negligiblecorrosion compared to the significantdeterioration of unprotected samples(Fig 1. Left). In addition, the biocidalproperties of the POM-ILs suppress theformation of biofilms on coated stoneslabs. The coating is mechanically stableand is not removed even by harshmechanical and chemical treatment.Following studies successfully exploredthe effectiveness of the coating againstlampenflora growing in the PommeryChampagne cellar 2 (Fig 1. Right); andthe long-term performance of POM-ILsunder outdoor environmental conditions3. So, POM-ILs are already proven topossess remarkable anticorrosion andantimicrobial properties against aerobicmicroorganisms and being water-insoluble, they don’t get leached intoaquatic ecosystem, which is extremelybeneficial from an environmentalsustainability and toxicological point ofview. The current project aims tocontinue the journey on protecting thecultural heritage, shifting focus fromstones to metals and employ functionalPOM-IL nanocoatings to prevent MIC(Microbiologically Influenced Corrosion)of cultural heritage artefacts made ofmetal or metal alloy like carbon steel,brass, cast iron or bronze. Performanceof both the coating materials and coatingtechniques via optimization of theadhesion of the nanocoating on themetallic surface on the corrosion rateand corrosion products in the MICcaused by anaerobic microorganismslike methanogenic archaea or SulphateReducing Bacteria (SRB) would betested. The objective is to establishPOM-ILs as efficient environmentallysustainable nanocoating materialsagainst biocorrosion citing the already published success stories; and sketch theongoing endeavours and prospects ofthese very efficient candidates in thecontext of MIC mitigation. T2 - Mitigation of Microbiologically InfluencedCorrosion: Towards Scientific &Industrial Standardization (MIC-STAND) CY - Lisbon, Portugal DA - 24.07.2024 KW - Microbiologically influenced corrosion (MIC) KW - Polyoxometalate Ionic Liquid KW - Nanocoating KW - Cultural heritage PY - 2024 AN - OPUS4-64575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Misra, Archismita T1 - Polyoxometalate Ionic Liquids (POMILs) as Protective Coatings for Cultural Heritage Against Acid Corrosion and Biodeterioration N2 - Corrosion of stone by acid rain anddeterioration from microbial biofilms are challenges worldwide present forindustrial or residential buildings as wellas cultural heritage, like statues orhistoric buildings. One option is the useof thin transparent films ofpolyoxometalate-based ionic liquids(POM-ILs). Stone samples were coatedwith hydrophobic, acid resistant POM-ILs which also have biocidal properties.1Exposure of the samples to simulatedacid rain showed negligible corrosioncompared to the significant deteriorationof unprotected samples (Fig 1. Left). Inaddition, the biocidal properties of thePOM-ILs suppress the formation ofbiofilms on coated stone slabs. Thecoating is mechanically stable and is notremoved even by harsh mechanical andchemical treatment. Following studiessuccessfully explored the effectiveness ofthe coating against lampenflora growingin the Pommery Champagne cellar 2 (Fig1. Right); and the long-termperformance of POM-ILs under outdoorenvironmental conditions 3. So, POM-ILs are already proven to possessremarkable anticorrosion andantimicrobial properties against aerobicmicroorganisms and being water-insoluble, they don’t get leached intoaquatic ecosystem, which is extremelybeneficial from an environmentalsustainability and toxicological point ofview. The current project aims tocontinue the journey on protecting thecultural heritage, shifting focus fromstones to metals and employ functionalPOM-IL nanocoatings to prevent MIC(Microbiologically Influenced Corrosion)of cultural heritage artefacts made ofmetal or metal alloy like carbon steel,brass, cast iron or bronze. Performanceof both the coating materials and coatingtechniques via optimization of theadhesion of the nanocoating on themetallic surface on the corrosion rateand corrosion products in the MICcaused by anaerobic microorganismslike methanogenic archaea or SulphateReducing Bacteria (SRB) would betested. The objective would be toestablish POM-ILs as efficientenvironmentally sustainablenanocoating materials againstbiocorrosion citing the already publishedsuccess stories; and sketch the ongoingendeavours and prospects of these veryefficient candidates in the context ofbiocorrosion T2 - International Biodeterioration and Biodegradation Symposium CY - Berlin, Germany DA - 09.09.2024 KW - Microbiologically influenced corrosion (MIC) KW - Polyoxometalate Ionic Liquid KW - Nanocoating KW - Cultural heritage PY - 2024 AN - OPUS4-64576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -