TY - JOUR A1 - Erhard, Anton A1 - Völzke, Holger A1 - Probst, Ulrich A1 - Wolff, Dietmar T1 - Aging management for long-term interim storage casks JF - Packaging, transport, storage & security of radioactive materials (RAMTRANS) N2 - The aging management system for the mechanical components of nuclear power plants (NPPs) must be established and used by the licensee in such a way that the quality of safety relevant components is guaranteed for the completely designed lifetime of the NPP. This demands an extensive plant life management with special emphases on the knowledge of the degradation in material properties. The basic safety concept in Germany observes this circumstance. Lifetime extension of the German NPPs is an aim of the current valid coalition agreement of the German government. Operational extension of interim storage facilities requires, in comparison to the aging management system for NPP, an aging management system adapted to the Special circumstances of spent fuel storage casks. Extension of interim storage periods for spent fuel casks beyond the designed lifetime requires, in comparison to the components of an NPP, an increasing knowledge of material degradation with potential impact on cask integrity, e.g. leak tightness. Dry interim storage in Germany has been approved for 40 years. After that time, according to the present strategy, a final repository should be available. However, until now, such a final facility still does not exist, and the German exploration and licensing process is heavily delayed. Currently, discussions are continuing regarding further exploration of the Gorleben salt mine. There is willingness to overcome this situation that is clearly described in the available coalition agreement of the federal government. Anyway, however, the prediction is viewed; a repository for heat generating radioactive waste in Germany will not be available in the near future and may not be available when first storage facilities and casks reach their 40 years of approved lifetime, which will occur in ~25 years starting from now. Therefore, the question must be asked: what has to be done with the existing storage casks in the interim facilities? May these casks be fit for continued use, with an extension of the storage period? One option is to have an aging management system, which creates enough information about the technical condition of safety relevant cask properties. This is the basis for safety evaluation for extended storage periods. In the present paper, possible aging mechanisms for high level waste storage casks are discussed, as well as the influence of the time dependent changes of the component properties. KW - Long term interim storage KW - Storage casks KW - Aging mechanisms KW - Degradation mechanisms KW - Metal seals KW - Larson-Miller parameter PY - 2011 DO - https://doi.org/10.1179/1746510910Y.0000000013 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 22 IS - 1 SP - 46 EP - 53 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-23890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erhard, Anton A1 - Goedecke, Thomas A1 - Menrad, Andreas A1 - Bethke, John T1 - Application of nondestructive testing - Methods for packaging examination T2 - DGZfP-Berichtsband N2 - Nondestructive testing (NDT) methods are applicable in many ways for defect detection as well as optimization of packaging production processes. The visual inspection method is the technique which is mostly used, although neither the customer nor a skilled inspector may be aware of this. Techniques like ultrasound for wall thickness measurement, the application of x-ray techniques or the use of dye penetrant techniques for crack detection are rather well known to the NDT family. However, acoustic emission techniques can also be helpful for the characterization of packaging materials. In this paper the employment of x-ray computer tomography (CT) for measurement of wall thickness in plastic jerrycans, especially on the edges, and its possible optimization of production processes will be discussed. A comparison of the CT and ultrasonic examinations of wall thickness and the reliability of this measured data are also important points for the discussion, especially if some safety factors can be derived from the results. The leakage test is also good for jerrycans, IBCs or other kinds of drums for the transportation and storage of dangerous goods. The disadvantage of this kind of test is that a lack of quality, e.g. wall thickness deterioration, cannot be detected if the wall thickness withstands the internal pressure. Therefore, especially for Quality assurance, the other, previously mentioned techniques are better for a statistical assessment of a batch. This paper is focused on the comparison of different NDT results with special emphasis on the large range of material mechanical properties. T2 - 25th IAPRI Symposium on Packaging CY - Berlin, Germany DA - 16.05.2011 KW - Materialeigenschaft KW - Zerstörungsfreie Prüfung KW - Computertomographie KW - Kunststoffbehälter PY - 2011 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-239191 SN - 978-3-940283-31-3 VL - 126 SP - 1 EP - 7 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-23919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ono, K. A1 - Erhard, Anton T1 - Nondestructive testing, 3. Ultrasonics T2 - Ullmann's encyclopedia of industrial chemistry N2 - The field of acoustics deals with sound Propagation in solids, liquids, and gases, whereby the frequencies may lie above or below the Audio band, that is, infrasound (<16 Hz) and ultrasound (>16 kHz), respectively. The speed of sound depends on mechanical properties of the material like elastic constants and compressibility. Interaction of imperfections such as grains, cracks, pores, and inclusions with sound waves results in reflection, refraction, scattering, and attenuation due to discontinuities in elastic moduli and density. By sending a pulse and receiving its reflection, the presence and Location of defects can be determined (pulse-echo technique). Ultrasound was applied in nondestructive testing (NDT) earlier than in medicine, but visualization of the data in a unicolor-scale image was first used in medical ultrasound diagnostics. The principle of ultrasonic testing, for example, the wave types that are suitable for different applications, the frequency ränge employed, reflectivity behavior, mode conversions, probe types, and so on are described in various publications, and a newer ultrasonic method, namely, the phased array technique, is treated in. KW - Ultrasonic waves KW - Piezocomposite materials for ultrasound generation KW - Phased array technique PY - 2011 SN - 978-3-52730-673-2 DO - https://doi.org/10.1002/14356007.o17_o02 SP - 1 EP - 17 PB - Wiley-VCH AN - OPUS4-24090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erhard, Anton A1 - Noack, Volker A1 - Völzke, Holger T1 - Storage facilities at Sayda Bay T2 - 52nd INMM Annual meeting (Proceedings) N2 - Within the framework of the G8 partnership, the German Ministry of Economics and Technology has been realizing a 300 EUR million project of the storage of decommissioned Russian nuclear submarines based on a German-Russian agreement. The main parts of the project are the construction of the long-term storage facility as well as a radioactive waste storage facility at Sayda Bay. Long-term interim storage facility for this particular case has a period of about 70 years. The Energiewerke Nord GmbH (EWN) under the technical controlling of BAM carried out the project management. Foremost in this presentation is the finalization of the long-term storage facility for nuclear submarine compartments and the planning and realization of the radioactive waste storage building with special emphases of the parts carried out by BAM. Because BAM staff cannot stay permanently on site, a random inspection of different topics was the bases for the activities of BAM. The key aspects of activities are the long-term storage of the nuclear compartments, maintenance building, the decommissioning of the compartments and the transportation of the very heavy weight compartments (1600 metric tons). Details relating of the progress of the construction work as well as information about technical recommendations will also be briefly illustrated. Within this scope, problems and difficulties during the construction of the storage facility as well as logistical challenges including transportation of the reactor compartments will also be discussed. T2 - 52nd INMM Annual meeting CY - Palm Desert, CA, USA DA - 17.07.2011 KW - Storage facility KW - Nuclear reactor compartments PY - 2011 SP - 1 EP - 7 AN - OPUS4-26197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -