TY - JOUR A1 - Nordholt, Niclas A1 - Sobisch, Lydia-Yasmin A1 - Gödt, Annett A1 - Lewerenz, Dominique A1 - Schreiber, Frank T1 - Heterogeneous survival upon disinfection underlies evolution of increased tolerance N2 - Disinfection is important to limit the spread of infections, but failure of disinfection may foster the evolution of antimicrobial resistance in bacteria. Persisters are phenotypically tolerant subpopulations that survive toxic stress longer than susceptible cells, leading to failure in treatments with antimicrobials and facilitating resistance evolution. To date, little is known about persistence in the context of disinfectants. The aim of this study was to investigate the influence of persisters on disinfection and to determine the consequences of disinfectant persistence for the evolution of increased tolerance to disinfectants. Disinfection kinetics with high temporal resolution were recorded for Escherichia coli exposed to the following six disinfectants: hydrogen peroxide (H2O2), glutaraldehyde (GTA), chlorhexidine (CHX), benzalkonium chloride (BAC), didecyldimethylammonium chloride (DDAC), and isopropanol (ISO). A mathematical model was used to infer the presence of persisters from the time–kill data. Time–kill kinetics for BAC, DDAC, and ISO were indicative of persisters, whereas no or weak evidence was found for H2O2, GTA, and CHX. When subjected to comparative experimental evolution under recurring disinfection, E. coli evolved increased tolerance to substances for which persisters were predicted (BAC and ISO), whereas adaptation failed for substances in which no persisters were predicted (GTA and CHX), causing extinction of exposed populations. Our findings have implications for the risk of disinfection failure, highlighting a potential link between persistence to disinfectants and the ability to evolve disinfectant survival mechanisms. IMPORTANCE: Disinfection is key to control the spread of infections. But the application of disinfectants bears the risk to promote the evolution of reduced susceptibility to antimicrobials if bacteria survive the treatment. The ability of individual bacteria to survive disinfection can display considerable heterogeneity within isogenic populations and may be facilitated by tolerant persister subpopulations. Using time–kill kinetics and interpreting the data within a mathematical framework, we quantify heterogeneity and persistence in Escherichia coli when exposed to six different disinfectants. We find that the level of persistence, and with this the risk for disinfection failure, depends on the disinfectant. Importantly, evolution experiments under recurrent disinfection provide evidence that links the presence of persisters to the ability to evolve reduced susceptibility to disinfectants. This study emphasizes the impact of heterogeneity within bacterial populations on disinfection outcomes and the potential consequences for the evolution of antimicrobial resistances. KW - Antimicrobial resistance KW - Bacteria KW - Standardization KW - Biocides PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-615566 DO - https://doi.org/10.1128/spectrum.03276-22 SN - 2165-0497 VL - 12 IS - 12 SP - 1 EP - 11 PB - American Society for Microbiology CY - Birmingham, Ala. AN - OPUS4-61556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Lewerenz, Dominique A1 - Gödt, Annett A1 - Schreiber, Frank T1 - Evolutionary implications of heterogeneous disinfectant tolerance N2 - Introduction: Effective disinfection is crucial to maintain hygiene and to prevent the spread of infections. Phenotypic heterogeneity in disinfection survival (i.e. tolerance) may result in failure of disinfection, which in turn may foster the evolution of resistance to both disinfectants and antibiotics. However, the consequences of phenotypic heterogeneity for disinfection outcome and resistance evolution are not well understood. Goal: This study investigates the impact of phenotypic heterogeneity on the survival and evolution of Escherichia coli during disinfection with six commonly used substances. Furthermore, the consequences of evolved disinfectant tolerance for antibiotic resistance evolution are studied. Materials & Methods: The extent of population heterogeneity during disinfection is derived by determining time-kill kinetics and analysis with mathematical modelling. The link between population heterogeneity and evolvability of disinfectant tolerance was assessed by laboratory evolution experiments under periodic disinfection. The ability of disinfectant tolerant strains to evolve antibiotic resistance is assessed by serial transfer experiments with increasing concentrations of different antibiotics and by whole genome sequencing. Results: Multi-modal time-kill kinetics in three of the six disinfectants suggest the presence of disinfectant-tolerant subpopulations (i.e. persister cells). Importantly, the ability and extent to evolve population-wide tolerance under periodic disinfection is related with the presence of persister cells and the level of phenotypic heterogeneity during disinfection. Interestingly, the probability of high-level resistance evolution to certain antibiotics is attenuated in disinfectant tolerant strains as compared to the sensitive ancestor. Whole-genome sequencing reveals epistatic interactions between disinfectant tolerance and antibiotic resistance mutations, preventing access to canonical evolutionary paths to resistance. Summary: Our findings suggest that phenotypic heterogeneity can facilitate disinfection survival and the evolution of population wide tolerance, which can impact future antibiotic resistance evolution. T2 - Vereinigung Allgemeiner und Angewandter Mikrobiobiologie Jahreskongress 2023 CY - Würzburg, Germany DA - 02.06.2024 KW - Biocide KW - Resistance KW - Persistence KW - Evolution KW - Herteogeneous phenotypes PY - 2024 AN - OPUS4-60244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kanaris, Orestis A1 - Sobisch, Lydia-Yasmin A1 - Gödt, Annett A1 - Schreiber, Frank A1 - Nordholt, Niclas T1 - Consequences of benzalkonium chloride tolerance for selection dynamics and de novo resistance evolution driven by antibiotics N2 - Biocides are used in large amounts in industrial, medical, and domestic settings. Benzalkonium chloride (BAC) is a commonly used biocide, for which previous research revealed that Escherichia coli can rapidly adapt to tolerate BAC-disinfection, with consequences for antibiotic susceptibility. However, the consequences of BAC tolerance for selection dynamics and resistance evolution to antibiotics remain unknown. Here, we investigated the effect of BAC tolerance in E. coli on its response upon challenge with different antibiotics. Competition assays showed that subinhibitory concentrations of ciprofloxacin—but not ampicillin, colistin and gentamicin—select for the BAC-tolerant strain over the BAC-sensitive ancestor at a minimal selective concentration of 0.0013–0.0022 µg/mL. In contrast, the BAC-sensitive ancestor was more likely to evolve resistance to ciprofloxacin, colistin and gentamicin than the BAC-tolerant strain when adapted to higher concentrations of antibiotics in a serial transfer laboratory evolution experiment. The observed difference in the evolvability of resistance to ciprofloxacin was partly explained by an epistatic interaction between the mutations conferring BAC tolerance and a knockout mutation in ompF encoding for the outer membrane porin F. Taken together, these findings suggest that BAC tolerance can be stabilized in environments containing low concentrations of ciprofloxacin, while it also constrains evolutionary pathways towards antibiotic resistance. KW - AMR KW - Resistance evolution KW - Resistance selection PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653842 DO - https://doi.org/10.1038/s44259-025-00170-8 SN - 2731-8745 VL - 4 IS - 1 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-65384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -