TY - CONF A1 - Elert, Anna Maria T1 - Application of NanoIR interdisciplinary research at BAM N2 - Atomic force microscopy based Infrared spectroscopy (AFM-IR) is a quickly evolving technique that provides chemical analysis and compositional mapping with spatial resolution far below conventional optical diffraction limits. This is possible since the detection method is based on a very sharp AFM tip which starts to oscillate when the sample starts to thermally expand (the changed is caused by the absorption of IR wavelength) where the thermal expansion is related to the IR absorption. This presentation briefly described the application of that new technique from polymer characterization and utilization of AFM-IR in material research, up to life science applications. T2 - AFM-IR Workshop: Nanoscale IR Spectroscopy CY - Dresden, Germany DA - 29.11.2017 KW - NanoIR KW - AFM KW - Composite KW - Polyurethane PY - 2017 AN - OPUS4-43221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Elert, Anna Maria A1 - Kanerva, M A1 - Puolakka, A A1 - Takala, T.M. A1 - Mylläri, V A1 - Jönkkäri, I A1 - Sarlin, E A1 - Seitsonen, J A1 - Ruokolainen, J A1 - Saris, P A1 - Vuorinen, J T1 - Antibacterial polymer fibres by rosin compounding and melt-spinning N2 - The antibacterial features of natural pine/spruce rosin are well established, yet the functionality in various thermoplastics has not been surveyed. This work focuses on the processing of industrial grade purified rosin mixed with polyethylene (PE), polypropylene (PP), polylactic acid (PLA), polyamide (PA) and corn starch based biopolymer (CS). Homopolymer masterbatches were extrusion-compounded and melt-spun to form fibres for a wide range of products, such as filters, reinforcements, clothing and medical textiles. Due to the versatile chemical structure of rosin, it was observed compatible with all the selected polymers. In general, the rosin-blended systems were shear-thinning in a molten condition. The doped fibres spun of PE and PP indicated adequate melt-spinning capability and proper mechanical properties in terms of ultimate strength and Young's modulus. The antibacterial response was found dependent on the selected polymer. Especially PE with a 10 wt% rosin content showed significant antibacterial effects against Escherichia coli DH5α and Staphylococcus aureus ATCC 12598 when analysed in the Ringer's solution for 24 h. KW - Rosin KW - Antibacterial KW - Thermoplastics PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481785 DO - https://doi.org/10.1016/j.mtcomm.2019.05.003 SN - 2352-4928 VL - 20 SP - 527 EP - 527 PB - Elsevier AN - OPUS4-48178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Wachtendorf, Volker A1 - Elert, Anna Maria A1 - Falkenhagen, Jana A1 - Becker, Roland A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Tschiche, Harald A1 - Reinsch, Stefan A1 - Weidner, Steffen ED - Scholz, Philipp T1 - Analytical toolset to characterize polyurethanes after exposure to artificial weathering under systematically varied moisture conditions N2 - Polyether and -ester urethanes (PU) were exposed to artificial weathering at 40 °C and artificial UV radiation in a weathering chamber. In 3 parallel exposures, humidity was varied between dry, humid, and wet conditions. Material alteration was investigated by various analytical techniques like size exclusion chromatography (SEC), liquid chromatography-infrared spectroscopy (LC-FTIR), thermal-desorption gas chromatography-mass spectrometry (TD-GC-MS), fluorescence mapping and dynamic mechanical analysis (DMA). Our results show that depending on the weathering conditions, different degradation effects can be observed. By means of SEC an initial strong decrease of the molar masses and a broadening of the mass distributions was found. After a material dependent time span this was followed by a plateau where molar mass changes were less significant. A minor moisture-dependent degradation effect was only found for polyester PU. Fluorescence measurements on two materials revealed an increase in the luminescence intensity upon weathering process reaching a saturation level after about 500 h. The changes in the optical properties observed after different exposure conditions and times were very similar. The TD-GC-MS data showed the fate of the stabilizers and antioxidant in the course of weathering. LC-FTIR measurements revealed a change in peak intensities and the ratio of urethane and carbonyl bands. KW - Polyurethane KW - Artificial weathering KW - Moisture KW - Crosslinking KW - Degradation PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S0142941819303708 DO - https://doi.org/10.1016/j.polymertesting.2019.105996 SN - 0142-9418 VL - 78 SP - 105996, 1 EP - 9 PB - Elsevier CY - Amsterdam AN - OPUS4-48625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Elert, Anna Maria A1 - Meyer, Lena A1 - Brunner, Nanine A1 - Melzer, Micheal A1 - Koch, Claudia T1 - Advancing Digital Quality Infrastructure: Transforming Laboratory Processes for Enhanced Efficiency and Reliability N2 - The digital Quality Infrastructure (QI) holds significant potential for ensuring and enhancing the accuracy, reliability, and efficiency of laboratory processes. Establishing digital QI tools and processes and the integration into the larger digital QI ecosystem however comes with many technical and organizational challenges at the laboratory but also larger system level. This paper presents solutions of a digital QI tool set that are being developed within the German initiative QI-Digital, our own experiences in the implementation of Digital Calibration Certificates (DCCs) as eAttestation in our laboratory, as well as the structured process we have been establishing to engage with the laboratory community to support adoption of the digital QI. T2 - 2025 IMEKO TC-6 International Conference of Metrology and Digital Transformation - M4DConf CY - Benevento, Italy DA - 03.09.2025 KW - Digital Calibration Certificate KW - Digitalization KW - Laboratories KW - Quality Inflastructure PY - 2025 VL - 2025 SP - 1 EP - 6 AN - OPUS4-64283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena A1 - Elert, Anna Maria A1 - Koch, Claudia T1 - A digital Quality Infrastructure for testing and calibration laboratories: from theory to practice N2 - The digital Quality Infrastructure (QI) offers significant potential to enhance the technical excellence and efficiency of laboratory operations. By leveraging tools and processes of a digital QI laboratories, their customers, authorities and other stakeholders can enhance efficiency foster trust and generate added value. This paper introduces the digital QI toolset and ecosystem as developed in the German initiative QI Digital, and explores concrete Scenarios for their implementation in laboratories Successful rollout not only requires technical development but also intense stakeholder engagement . Consequently, this paper shares insights and outcomes from a structured stakeholder dialogue with the laboratory community, and outlines the establishment of the digital LabHub' as a pivotal step to drive digital transformation and facilitate the widespread Adoption of digital QI within laboratories and their broader ecosystem. T2 - 2025 IMEKO Joint Conference TC8 -TC11 - TC24 CY - Turin, Italy DA - 14.09.2025 KW - Quality Infrastructure KW - Digitalization KW - Laboratories PY - 2025 SP - 1 EP - 6 AN - OPUS4-64282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -