TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Characterisation of degradation and determination of end-of-lifetime criterion for O-ring seals N2 - The ageing of polymers, including elastomers, is an undesirable but inevitable process leading to a limited lifetime of rubber products such as seals. Independent of the application, as e.g. in automotive, piping or container applications, a long lifetime or at least a timely exchange of a seal before occurrence of critical failure is desired. In order to investigate the degradation of material properties and to determine the lifetime of elastomers used as seals, an ageing programme was started with hydrogenated acrylonitrile butadiene rubber (HNBR), ethylene propylene diene rubber (EPDM) and fluorocarbon rubber (FKM) [1-3]. Both O-ring seals (uncompressed and compressed by 25 %) with a cord diameter of 10 mm as well as sheets with a thickness of 2 mm were aged at 75 °C, 100 °C, 125 °C and 150 °C for up to two years. The changes of material properties during ageing were characterised for each material using samples from the sheets by means of e.g. Dynamic Mechanical Analysis and tensile tests, while sealing properties such as leakage rate were determined on O-rings. The experimental results indicate that while material properties show considerable degradation effects, the static leakage rate stays constant or even decreases before failure occurs quite suddenly at advanced degradation levels. This reveals that static leakage rate has only limited sensitivity for the degradation of the seal material. Our approach to determine a suitable end of lifetime criterion, which involves a partial decompression of the seal during the leakage test, is presented and discussed. T2 - RubberCon 2017 CY - Prague, Czech Republic DA - 23.05.2017 KW - Life time prediction KW - Ageing KW - Rubber seal KW - Leakage PY - 2017 SN - 978-80-906662-0-7 SP - 65 EP - 72 AN - OPUS4-40391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Kömmling, Anja A1 - Wolff, Dietmar A1 - Jaunich, Matthias ED - van Breugel, K. ED - Koleva, D. ED - Beek, T. T1 - Investigation of long-term behaviour of elastomeric seals for transport and storage packages N2 - Elastomers are widely used as the main sealing materials in Containers for low- and intermediate-level radioactive waste and as an additional component fo metal seals in spent-fuel and high-level waste containers. According to appropriate guidelines and regulations, safe enclosure of the radioactive container contents has to be guaranteed for lengthy storage periods of at least 40 years. Therefore, the understanding of seal ageing behaviour is of high importance and has to be considered with regard to possible dynamic events taking place during transport after storage. An accelerated ageing approach for compressed seals is presented, as well as some first results. KW - O Ring KW - Ageing KW - Rubber seal PY - 2018 SN - 978-3-319-70192-9 DO - https://doi.org/10.1007/978-3-319-70194-3_2 SP - 17 EP - 25 PB - Springer AN - OPUS4-43248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar A1 - Zencker, Uwe A1 - Völzke, Holger A1 - Schulze, Dietmar A1 - Probst, Ulrich T1 - Testing and Numerical Simulation of Elastomers - From Specimen Tests to Simulation of Seal Behavior under Assembly Conditions N2 - Due to delays in the siting procedure to establish a deep geological repository for spent nuclear fuel and high level radioactive waste as well as in construction of the already licensed Konrad repository for low and intermediate level radioactive waste, extended periods of interim storage become more relevant in Germany. BAM is involved in most of the cask licensing procedures and especially responsible for the evaluation of cask-related long-term safety issues. The long-term performance of elastomer seals for lid systems of transport and storage casks, whether used as auxiliary seals in spent fuel casks or as primary seals for low and intermediate level waste packages, is an important issue in this context. The polymeric structure of these seals causes a complex mechanical behavior with time-dependent sealing force reduction. The results of a comprehensive purpose-designed test program consisting of basic compression and tension tests as well as relaxation tests on unaged specimens of representative types of elastomers (fluorocarbon rubber (FKM) and ethylene propylene diene rubber (EPDM)) at different temperatures and strain rates are presented. They were used to identify the constitutive behavior and to obtain parameters for finite element material models provided by the computer code ABAQUS®. After estimating the influence of uncertainties such as Poisson’s ratio and friction coefficient by sensitivity analyses, the chosen parameters had to prove their suitability for the finite element simulation of the specimen tests themselves. Based on this preliminary work the simulation of a specific laboratory test configuration containing a typical elastomer seal with circular cross section is presented. The chosen finite element material model and the implemented parameters had to show that they are able to represent not only the specimen behavior under predominantly uniaxial load but also the more complex stress states in real components. Deviations between the measured and calculated results are pointed out and discussed. For the consideration of long-term effects in the simulation of elastomer behavior, test results of aged specimens are needed. First information about a new test program, started recently and planned to provide these data, are given. T2 - ASME 2017 Pressure Vessels & Piping Conference (PVP2017) CY - Waikoloa, Hawaii, USA DA - 16.07.2017 KW - Time dependent effects KW - Low temperature behavior KW - Elastomeric seals KW - Aging KW - Simulation KW - Testing PY - 2017 SN - 978-0-7918-5802-8 VL - 7 SP - Article UNSP V007T07A035, 1 EP - 8 AN - OPUS4-41841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar A1 - Zencker, Uwe A1 - Völzke, Holger A1 - Schulze, Dietmar T1 - Testing and numerical simulation of elastomeric seals under consideration of time dependent effects N2 - Due to delays in the siting procedure to establish a deep geological repository for spent nuclear fuel and high level waste and in construction of the already licensed Konrad repository for low and intermediate level waste, extended periods of interim storage will become more relevant in Germany. BAM is involved in most of the cask licensing procedures and is responsible for the evaluation of cask-related long-term safety issues. Elastomeric seals are widely used as barrier seals for containers for low and intermediate level radioactive waste. In addition they are also used as auxiliary seals in spent fuel storage and transportation casks (dual purpose casks (DPC)). To address the complex requirements resulting from the described applications, BAM has initiated several test programs for investigating the behavior of elastomeric seals. These include experiments concerning the hyperelastic and viscoelastic behavior at different temperatures and strain rates, the low temperature performance down to -40°C, the influence of gamma irradiation and the aging behavior. The first part of the paper gives an overview of these tests, their relevant results and their possible impact on BAM’s work as a consultant in the framework of approval and licensing procedures. The second part presents an approach of the development of a finite element model using the finite element code ABAQUS®. The long-term goal is to simulate the complex elastomeric behavior in a complete lid closure system under specific operation and accident conditions. T2 - ASME 2016 Pressure Vessels & Piping Conference (PVP2016) CY - Vancouver, BC, Canada DA - 17.07.2016 KW - Elastomeric seals KW - Testing KW - Low temperature behavior KW - Aging KW - Simulation KW - Time dependent effects PY - 2016 SN - 978-0-7918-5045-9 VL - 7 SP - Paper 63192, 1 EP - 10 AN - OPUS4-37046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaghdoudi, M. A1 - Kömmling, Anja A1 - Böhning, Martin A1 - Jaunich, Matthias T1 - Ageing of elastomers in air and in hydrogen environment - A comparative study N2 - EPDM, HNBR and FKM materials were exposed at 150 ◦C to air under atmospheric pressure and to hydrogen at 50 bar for different ageing times. All measurements after hydrogen exposure were conducted on samples in degassed condition to assess irreversible effects resulting from that exposure and to compare them to those after ageing in air. Density, hardness, tensile properties, compression set, and hydrogen permeability of all samples were analysed. In both ageing environments, HNBR exhibited the most significant changes of material properties. However, for both EPDM and HNBR, considerably less severe ageing effects were observed under hydrogen in comparison to ageing in air. On the other hand, FKM showed about the same low level of deterioration in both ageing environments but exhibited poor resistance against damage due to rapid gas decompression in hydrogen environment that can lead to seal failure. The obtained results may serve as a guidance toward a better understanding for design and utilisation of elastomeric materials in future hydrogen infrastructure components. KW - Rapid gas decompression KW - Condensed matter physics KW - Hydrogen KW - Sustainability and the environment KW - Rubber sealing KW - Renewable energy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597417 DO - https://doi.org/10.1016/j.ijhydene.2024.03.053 SN - 0360-3199 SN - 1879-3487 VL - 63 SP - 207 EP - 216 PB - Elsevier CY - Oxford AN - OPUS4-59741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zaghdoudi, Maha A1 - Weber, Mike A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Numerical Modelling of Compression Stress Relaxation and Compression Set of Elastomer O-Ring During Aging N2 - Elastomer seals are used in many industrial applications due to their excellent mechanical properties at a wide range of temperatures. Their high versatility and recovery potential under several load conditions make them well suitable for the application in containers designed for transport, storage and/or disposal of radioactive materials. In containers for low and intermediate level radioactive waste, elastomer seals are used as barrier seals, and as auxiliary seals in storage and transportation casks (dual purpose casks) for heat generating radioactive waste, such as spent fuel and high-level waste. While a seal exchange at defined intervals is typical in many conventional applications, it is impossible or at least hard to perform when principles of minimization of radiation exposure have to be considered and prohibit an unnecessary cask handling. An extensive knowledge of the change of the elastomer’s properties during aging and the availability of reliable end-of-lifetime criteria to guarantee the permanent safe enclosure of the radioactive material is mandatory. As BAM is involved in most of the national cask licensing procedures and in the evaluation of cask-related long-term safety issues, great efforts have been already made and are still planned to scientifically support this task. Compression stress relaxation and compression set were identified as key indicators of elastomer long-term performance and quantitatively investigated in comprehensive test programs. Among other representative types of elastomers, specimens made from ethylene propylene diene rubber (EPDM) were tested before, during and after aging to capture the most important of their complex mechanical properties. In the presented study, exemplary results were used to simulate the compression stress relaxation and the compression set of elastomer O-rings during aging. Regarding the influence of temperature, the time-temperature superposition principle is applied in the relaxation analysis of elastomer O-rings. The proposed model is implemented in the commercial finite element software ABAQUS/Standard® [1] with a sequential temperature displacement coupling. Numerical results match the experimental compression stress relaxation measurements well. The prediction of compression set values after long-term aging shows a relatively good agreement with the experimental results. Nevertheless, all input parameters derived from the specimen tests, additional assumptions concerning boundary conditions and modeling strategy are discussed with regard to the identified slight discrepancies. The possibility to extend the finite element model to represent the O-ring seal’s ability to recover after a (fast) partial release is taken into account. T2 - ASME 2020 Pressure Vessels & Piping Conference (PVP2020) CY - Online meeting DA - 03.08.2020 KW - Compression Set KW - O-ring KW - Simulation KW - Sequential analysis KW - Ageing KW - stress relaxation PY - 2020 SN - 978-0-7918-8388-4 DO - https://doi.org/10.1115/PVP2020-21270 SP - PVP2020-21270 PB - ASME AN - OPUS4-51490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Zaghdoudi, M. A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar ED - Altenbach, H. ED - Hitzler, L. ED - Johlitz, M. ED - Merkel, M. ED - Öchsner, A. T1 - Analysis of Heterogeneous Ageing of HNBR O-Rings N2 - Abstract Hydrogenated nitrile butadiene rubber (HNBR) elastomer was thermo-oxidatively aged at different temperatures up to 150 °C. Fourier transform infrared spectroscopy (FTIR), compression stress relaxation (CSR) and international rubber hardness degree (IRHD) microhardness were used to characterise the chemo-mechanical changes of HNBR O-rings during thermo-oxidative ageing. FTIR shows the development of carbonyl, methyl and ester groups but the nitrile content was not affected by ageing. The effect of sample geometry during CSR was investigated. CSR data were converted through integrated kinetic laws. The conversion has proven its sensibility to detect heterogeneous ageing. This was confirmed by the IRHD measure-ments across the section of O-rings. The influence of compression during ageing was assessed through IRHD measurements across the section of compressed and uncom-pressed aged O-rings. The DLO effect was more pronounced in compressed O-rings. By applying the model of Wise et al., theoretical IRHD and oxidation profiles were determined on the basis of IRHD experimental data of compressed O-rings. Good agreements between the experimental and the theoretical IRHD profiles in the core region were obtained. However, near the edge, the theoretical IRHD values were overestimated. KW - Ageing KW - Rubber seals KW - Stress relaxation KW - Modelling PY - 2024 SN - 978-3-031-49042-2 DO - https://doi.org/10.1007/978-3-031-49043-9 SN - 1869-8433 SP - 331 EP - 348 PB - Springer Nature CY - Cham, Switzerland AN - OPUS4-59769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Weber, Mike A1 - Kömmling, Anja A1 - Zencker, Uwe A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Performance of elastomer seals in transport and storage casks N2 - Elastomer seals are widely used as barrier seals in containers for low and intermediate level radioactive waste and for spent fuel transportation casks. In addition, they are also used for spent fuel storage and transportation casks (dual purpose casks (DPC)) as auxiliary seals to allow leakage rate measurements of metal barrier seals for demonstration of their proper assembling conditions. Depending on the area of use, the rubber materials have to demonstrate proper sealing performance with regard to mechanical, thermal, and environmental conditions as well as irradiation during the entire operation period. Concerning DPC, degradation effects should be limited in a way that, for example, effects from potentially released decomposition elements may not harm e.g. metal barrier seals. Leakage rate measurements should be possible also after long interim storage periods prior to subsequent transportation. Because of the complex requirements resulting from the various applications of containers for radioactive waste and spent nuclear fuel, BAM has initiated several test programmes for investigating the behaviour of elastomer seals. In this contribution the current status is described and first results are discussed. T2 - International conference on management of spent fuel from nuclear power reactors: An integrated approach to the back end of the fuel cycle CY - Vienna, Austria DA - 15.06.2015 KW - Ageing KW - Elastomer KW - Glass-rubber transition KW - Irradiation KW - Material model PY - 2015 SP - 1 EP - 8 AN - OPUS4-33553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Ageing and lifetime prediction of O-ring seals made of HNBR, EPDM and FKM N2 - BAM is the federal institute for materials research and testing in Germany. One of our tasks is to evaluate the safety of casks designed for transport and/or storage of radioactive waste. As elastomeric seals are used in the containers as safety-relevant parts, it is our goal to be able to evaluate the service lifetime of the seals with regard to the requirements for long-term safety (40 years and more) of the containers. For this reason, an accelerated ageing programme with selected rubbers often used for seals (HNBR, EPDM and FKM) was started. Ageing was performed at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) for up to 2 years. For assessing properties related to the sealability, O-rings were aged in compression by 25 % (corresponding to the compression during service) between plates. For comparison, uncompressed O-rings were aged as well. The aged materials were characterized with conventional polymer analysis methods such as hardness and tensile tests, but also with more seal-specific methods such as compression stress relaxation (CSR, reflecting the loss of sealing force of a compressed seal over time), and compression set (CS, representing the recovery behaviour of a seal after release from compression). CS is chosen as the property for lifetime prediction as it is both sensitive to degradation and related to the seal performance. CS data is extrapolated to 60 °C, which yields lifetimes of approximately 5 years for HNBR and 64 years for EPDM for a criterion of 85 % CS respectively, and approx. 40 years for FKM for a criterion of 65 % CS (the highest value measured so far). T2 - 12. Kautschuk Herbst Kolloquium CY - Hanover, Germany DA - 22.11.2016 KW - Rubber KW - Compression set KW - Extrapolation KW - Degradation PY - 2016 SN - 9783981407648 VL - 2016 AN - OPUS4-38483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Understanding the recovery behaviour and the degradative processes of EPDM during ageing N2 - Recovery is an important measure for seal applications representing to which extent the elastomer regains its initial shape after deformation and release of an applied force. Compression set (CS) indicates the degree of recovery. Ethylene propylene diene rubber (EPDM) was aged at 75 ◦C, 100 ◦C, 125 ◦C and 150 ◦C for different ageing times up to five years and compression set measurements were performed at different times after disassembly and after additional tempering. Short- and long-term recovery up to one year after release for samples aged at 125 ◦C and 150 ◦C was also studied. To assess the curvature in the Arrhenius diagram that may occur due to non-sufficiently aged specimens, a degradation-rate based model was fitted to the CS data after tempering. For each ageing temperature, two decay fit functions were proposed, each with an activation energy and a corresponding degradative process. The influence of ageing on the leak-tightness after fast small partial release is investigated and estimated through the analysis of the shift factors from time temperature superposition (TTS) of CS measurements at different times after disassembly. Shift factors of CS measurement after 1 s and after additional tempering are in good agreement. KW - Compression set KW - Ageing KW - Recovery KW - Degradative processes KW - Leakage rate PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573699 DO - https://doi.org/10.1016/j.polymertesting.2023.107987 SN - 0142-9418 VL - 121 SP - 107987 PB - Elsevier Ltd. AN - OPUS4-57369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -