TY - JOUR A1 - Zaghdoudi, M. A1 - Kömmling, Anja A1 - Böhning, Martin A1 - Jaunich, Matthias T1 - Ageing of elastomers in air and in hydrogen environment: A comparative study N2 - EPDM, HNBR and FKM materials were exposed at 150 ◦C to air under atmospheric pressure and to hydrogen at 50 bar for different ageing times. All measurements after hydrogen exposure were conducted on samples in degassed condition to assess irreversible effects resulting from that exposure and to compare them to those after ageing in air. Density, hardness, tensile properties, compression set, and hydrogen permeability of all samples were analysed. In both ageing environments, HNBR exhibited the most significant changes of material properties. However, for both EPDM and HNBR, considerably less severe ageing effects were observed under hydrogen in comparison to ageing in air. On the other hand, FKM showed about the same low level of deterioration in both ageing environments but exhibited poor resistance against damage due to rapid gas decompression in hydrogen environment that can lead to seal failure. The obtained results may serve as a guidance toward a better understanding for design and utilisation of elastomeric materials in future hydrogen infrastructure components. KW - Rapid gas decompression KW - Condensed Matter Physics KW - Hydrogen KW - Sustainability and the Environment KW - Rubber sealing KW - Renewable Energy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597417 DO - https://doi.org/10.1016/j.ijhydene.2024.03.053 SN - 0360-3199 VL - 63 SP - 207 EP - 216 PB - Elsevier B.V. AN - OPUS4-59741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - A numerical approach to correlate compression stress relaxation and compression set of elastomer O-rings with tightness N2 - The excellent mechanical properties of elastomer seals at a wide range of temperatures as well as their high versatility and recovery potential under several load conditions make these materials well suitable for the application in containers designed for transport and disposal of negligible heat generating radioactive waste. While a seal exchange at defined intervals is typical in many conventional applications, it is impossible or at least hard to perform when principles of minimization of radiation exposure have to be considered which prohibit an avoidable cask handling. An extensive knowledge of the change of the elastomer properties during aging and the availability of reliable end-of-lifetime criteria to guarantee the safe enclosure of the radioactive material for the required time are mandatory. As BAM is involved in most of the national cask licensing procedures and in the evaluation of cask-related long-term safety issues, great efforts have already been made and are still ongoing to scientifically support this task. Among other representative types of elastomers, specimen made from ethylene propylene diene rubber (EPDM) were tested before, during and after aging to capture the with respect to application most important of their complex mechanical properties. Exemplary results of these investigations were used to calibrate material models implemented in the commercial finite element software ABAQUS/Standard®. The finite element model already presented in previous works uses a sequential temperature displacement coupling. The calculated compression stress relaxation (CSR) and compression set (CS) values do satisfactorily match the experimental results. In many investigations performed at BAM both values (CSR and CS) were identified as key indicators of elastomer’s long-term performance. However, the possibility to correlate these equivalent indicators with performance values such as tightness and leakage rate, measurable in the mounted state, is an important goal of our future work. In the presented study the ABAQUS® feature of “pressure penetration” is introduced in the suggested finite element model for this purpose. It provides the possibility to simulate the penetration of a gas into a possible gap between flange and O-ring causing an opening of a leakage path. Three dimensional and axis-symmetric finite element models were generated to represent flat and grooved flanges of different dimensions. The sensitivity of the feature to several input parameters is investigated and the observed behavior of the O-ring is correlated with the results of performed leakage tests. T2 - ASME 2021 Pressure Vessels & Piping Conference (PVP2021) CY - Online meeting DA - 13.07.2021 KW - Elastomer KW - Tightness KW - Leakage KW - Compression set KW - Compression stress relaxation PY - 2021 SN - 978-0-7918-8535-2 DO - https://doi.org/10.1115/PVP2021-61976 SP - 1 EP - 8 PB - American Society of Mechanical Engineers (ASME) CY - New York, NY, USA AN - OPUS4-54422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -