TY - JOUR A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Erroneous or Arrhenius: A Degradation Rate-Based Model for EPDM during Homogeneous Ageing JF - Polymers N2 - To improve the predictive capability of long-term stress relaxation of elastomers during thermo-oxidative ageing, a method to separate reversible and irreversible processes was adopted. The separation is performed through the analysis of compression set after tempering. On the Basis of this separation, a numerical model for long-term stress relaxation during homogeneous ageing is proposed. The model consists of an additive contribution of physical and chemical relaxation. Computer simulations of compression stress relaxation were performed for long ageing times and the results were validated with the Arrhenius treatment, the kinetic study and the time-temperature superposition technique based on experimental data. For chemical relaxation, two decay functions are introduced each with an activation energy and a degradative process. The first process with the lower activation energy dominates at lower ageing times, while the second one with the higher activation energy at longer ageing times. A degradation-rate based model for the evolution of each process and ist contribution to the total system during homogeneous ageing is proposed. The main advantage of the model is the possibility to quickly validate the interpolation at lower temperatures within the range of slower chemical processes without forcing a straight-line extrapolation. KW - Kinetic study KW - Arrhenius KW - TTS KW - Modeling KW - Chemical processes KW - Stress relaxation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512931 DO - https://doi.org/10.3390/polym12092152 SN - 2073-4360 VL - 12 IS - 9 SP - 1 EP - 21 AN - OPUS4-51293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Comparison of different test methods for lifetime prediction of O-ring seals N2 - Elastomeric O-ring seals are used in a wide range of applications due to their excellent elasticity. However, like all polymers, elastomers degrade under the influence of e.g. time, temperature, oxygen, radiation and mechanical stress. Especially in applications where a replacement of seals after a certain time is hard or almost impossible, it is important to know the seal lifetime. Therefore, an extensive ageing programme with elastomers made of EPDM, HNBR and other materials was started with the aim of determining suitable methods for accelerated ageing and lifetime prediction. In order to determine the lifetime of polymeric parts, the time-temperature superposition principle is commonly used to shift property changes obtained by accelerated ageing at higher temperatures to lower temperatures. If the shift factors yield a straight line in an Arrhenius diagram, a corresponding activation energy can be determined. However, we have found that the shift factors and thus the predicted lifetime depends on the test method that yielded the shifted data. For example, the shift factor between 125 °C and 150 °C ageing temperature was roughly the same (5/5/4.5 respectively) for hardness, density and maximum of loss factor tan  measured on HNBR, but different for elongation at break (8) and compression set (2.2, excluding DLO-affected data). A possible explanation might be that while the different oxidation reactions proceed with a fixed activation energy, they have differing impact on the measured properties. For example, hardness is lowered by chain scission reactions, and increases by crosslinking reactions during ageing. As usually both chain scission and crosslinking reactions occur during ageing, the measured hardness increase reflects only the net effect of both reaction types. On the other hand, compression set is influenced additively by both reaction types: chain scission leads to an increase of the remaining deformation, as broken chains lose their recovery potential, and crosslinking reactions during ageing fix the compressed geometry, which also leads to less recovery. Thus, compression set reflects the total number of changes in the network and shows degradation effects much faster, which results in lower shift factors and lower activation energy. This phenomenon was observed for EPDM as well. In order to verify our hypotheses and to gain further insights, temperature-dependent oxygen consumption measurements are currently being performed and results will be presented at the conference. The shift factors and activation energy determined by oxygen consumption measurements are expected to be close to the values for compression set. T2 - Polymer Degradation Discussion Group Conference CY - Malta DA - 01.09.2019 KW - Compression set KW - Time-temperature superposition KW - Arrhenius KW - HNBR KW - EPDM KW - FKM KW - Activation energy PY - 2019 AN - OPUS4-48907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -