TY - CONF A1 - Weber, Mike A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar A1 - Zencker, Uwe A1 - Völzke, Holger A1 - Schulze, Dietmar A1 - Probst, Ulrich T1 - Testing and Numerical Simulation of Elastomers - From Specimen Tests to Simulation of Seal Behavior under Assembly Conditions N2 - Due to delays in the siting procedure to establish a deep geological repository for spent nuclear fuel and high level radioactive waste as well as in construction of the already licensed Konrad repository for low and intermediate level radioactive waste, extended periods of interim storage become more relevant in Germany. BAM is involved in most of the cask licensing procedures and especially responsible for the evaluation of cask-related long-term safety issues. The long-term performance of elastomer seals for lid systems of transport and storage casks, whether used as auxiliary seals in spent fuel casks or as primary seals for low and intermediate level waste packages, is an important issue in this context. The polymeric structure of these seals causes a complex mechanical behavior with time-dependent sealing force reduction. The results of a comprehensive purpose-designed test program consisting of basic compression and tension tests as well as relaxation tests on unaged specimens of representative types of elastomers (fluorocarbon rubber (FKM) and ethylene propylene diene rubber (EPDM)) at different temperatures and strain rates are presented. They were used to identify the constitutive behavior and to obtain parameters for finite element material models provided by the computer code ABAQUS®. After estimating the influence of uncertainties such as Poisson’s ratio and friction coefficient by sensitivity analyses, the chosen parameters had to prove their suitability for the finite element simulation of the specimen tests themselves. Based on this preliminary work the simulation of a specific laboratory test configuration containing a typical elastomer seal with circular cross section is presented. The chosen finite element material model and the implemented parameters had to show that they are able to represent not only the specimen behavior under predominantly uniaxial load but also the more complex stress states in real components. Deviations between the measured and calculated results are pointed out and discussed. For the consideration of long-term effects in the simulation of elastomer behavior, test results of aged specimens are needed. First information about a new test program, started recently and planned to provide these data, are given. T2 - ASME 2017 Pressure Vessels & Piping Conference (PVP2017) CY - Waikoloa, Hawaii, USA DA - 16.07.2017 KW - Time dependent effects KW - Low temperature behavior KW - Elastomeric seals KW - Aging KW - Simulation KW - Testing PY - 2017 SN - 978-0-7918-5802-8 VL - 7 SP - Article UNSP V007T07A035, 1 EP - 8 AN - OPUS4-41841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar A1 - Zencker, Uwe A1 - Völzke, Holger A1 - Schulze, Dietmar T1 - Testing and numerical simulation of elastomeric seals under consideration of time dependent effects N2 - Due to delays in the siting procedure to establish a deep geological repository for spent nuclear fuel and high level waste and in construction of the already licensed Konrad repository for low and intermediate level waste, extended periods of interim storage will become more relevant in Germany. BAM is involved in most of the cask licensing procedures and is responsible for the evaluation of cask-related long-term safety issues. Elastomeric seals are widely used as barrier seals for containers for low and intermediate level radioactive waste. In addition they are also used as auxiliary seals in spent fuel storage and transportation casks (dual purpose casks (DPC)). To address the complex requirements resulting from the described applications, BAM has initiated several test programs for investigating the behavior of elastomeric seals. These include experiments concerning the hyperelastic and viscoelastic behavior at different temperatures and strain rates, the low temperature performance down to -40°C, the influence of gamma irradiation and the aging behavior. The first part of the paper gives an overview of these tests, their relevant results and their possible impact on BAM’s work as a consultant in the framework of approval and licensing procedures. The second part presents an approach of the development of a finite element model using the finite element code ABAQUS®. The long-term goal is to simulate the complex elastomeric behavior in a complete lid closure system under specific operation and accident conditions. T2 - ASME 2016 Pressure Vessels & Piping Conference (PVP2016) CY - Vancouver, BC, Canada DA - 17.07.2016 KW - Elastomeric seals KW - Testing KW - Low temperature behavior KW - Aging KW - Simulation KW - Time dependent effects PY - 2016 SN - 978-0-7918-5045-9 VL - 7 SP - Paper 63192, 1 EP - 10 AN - OPUS4-37046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Ageing of HNBR, EPDM and FKM O-rings N2 - HNBR, EPDM and FKM O-rings were aged uncompressed and compressed at 75 °C, 100 °C, 125 °C and 150 °C for up to 1 year. HNBR exhibited the strongest ageing effects with high increases of hardness and glass transition temperature. Furthermore, heterogeneous ageing caused by diffusion-limited oxidation effects had a significant influence for HNBR at ageing temperatures of 125 °C and 150 °C. EPDM showed similar property changes as HNBR, but less pronounced. FKM displayed only minor ageing effects. O-rings aged in compression exhibited considerable compression set (CS). CS data was used for a time-temperature shift and resulting master curve construction. Leakage rate measurements showed that O-rings can remain leak tight under static conditions even if material properties have already deteriorated strongly. N2 - HNBR-, EPDM- und FKM-O-Ringe wurden unverpresst und verpresst für bis zu 1 Jahr bei 75 °C, 100 °C, 125 °C und 150 °C gealtert. HNBR wies mit hohen Anstiegen von Härte und Glasübergangstemperatur die stärksten Alterungseffekte auf. Weiterhin hatte heterogene Alterung aufgrund von diffusionsbegrenzten Oxidationseffekten einen wesentlichen Einfluss auf HNBR bei Alterungstemperaturen von 125 °C und 150 °C. EPDM zeigte ähnliche Eigenschaftsänderungen wie HNBR, allerdings schwächer ausgeprägt. FKM wies nur geringfügige Alterungseffekte auf. O-Ringe, die verpresst gealtert wurden, hatten eine starke bleibende Verformung (DVR). Die gemessenen DVRWerte wurden für eine Zeit-Temperatur-Verschiebung und die Konstruktion einer Masterkurve genutzt. Leckageratenmessungen zeigten, dass O-Ringe unter statischen Bedingungen dicht bleiben können, auch wenn die Materialeigenschaften schon stark degradiert sind. KW - Aging KW - Degradation KW - Leakage KW - Compression KW - Seal PY - 2016 SN - 0022-9520 SN - 0948-3276 VL - 69 IS - 4 SP - 36 EP - 42 PB - Hüthig CY - Heidelberg, Germany AN - OPUS4-36336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -