TY - JOUR A1 - Gook, Sergej A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Hybrid laser arc welding of X80 and X120 steel grade N2 - The aim of the present work was to investigate the possibilities of hybrid laser arc welding regarding reliable production of longitudinal welds of high strength pipe steels X80 and X120 and to evaluate achievable mechanical properties of laser hybrid welds. The study focused on weld toughness examination in low temperature range up to –60°C. Suitable filler materials were identified in the context of this task. It could be shown that metal cored electrodes guaranteed sufficient Charpy impact toughness at low temperature for both investigated materials. Modern arc welding technologies such as modified pulsed spray arc were used to promote deeper penetration of the filler material into the narrow laser welding gap. Edge preparation with a 14 mm deep root face was considered as optimum, because no penetration of the filler material could be detected beyond this depth limit, and therefore, any metallurgical influences on the weld metal properties through the welding wire could be excluded. KW - High strength steel KW - Laser hybrid welding KW - Modified spray arc KW - Longitudinal weld KW - Pipeline PY - 2014 UR - http://www.maneyonline.com/doi/full/10.1179/1362171813Y.0000000154 U6 - https://doi.org/10.1179/1362171813Y.0000000154 SN - 1362-1718 SN - 1743-2936 VL - 19 IS - 1 SP - 15 EP - 24 PB - Maney CY - London AN - OPUS4-29593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Experimental and numerical investigation of an electromagnetic weld pool support system for high power laser beam wleidng of austenitic stainless steel N2 - A three-dimensional turbulent steady state numerical model was used to investigate the influence of an alternating current (AC) magnetic field during high power laser beam keyhole welding of 20 mm thick stainless steel AISI 304 being modeled as an ideal non-ferromagnetic material. Three-dimensional heat transfer and fluid dynamics as well as the electromagnetic field equations were solved with the finite element package COMSOL Multiphysics 4.2 taking into account the most important physical effects of the process. Namely, the thermo-capillary (Marangoni) convection at the weld pool boundaries, natural convection due to gravity and density differences in the melt volume as well as latent heat of solid–liquid phase transitions at the phase boundaries were included in the model. It is shown that the gravity drop-out associated with the welding of thick plates due to the hydrostatic pressure can be prevented by the application of AC magnetic field between 80 mT and 135 mT for corresponding oscillation frequencies between 1 kHz and 10 kHz below the weld specimen. Experimentally, a value of the magnetic flux density of around 230 mT was found to be necessary to allow for single-pass laser beam welding without sagging or drop-out of melt for a 20 mm thick combination of austenitic stainless steel AISI 304 and ferritic construction steel S235JRC at an oscillation frequency of around 2.6 kHz. KW - Electromagnetic weld pool control KW - Laser beam welding KW - Lorentz force KW - Marangoni flow KW - Natural convection PY - 2014 U6 - https://doi.org/10.1016/j.jmatprotec.2013.11.013 SN - 0924-0136 SN - 1873-4774 VL - 214 IS - 3 SP - 578 EP - 591 PB - Elsevier CY - Amsterdam AN - OPUS4-29709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, L. J. A1 - Zhang, J. X. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Na, S.J. T1 - Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser N2 - Full penetration laser welding was carried out on a 10 mm steel plate using a 16 kW maximum power continuous wave thin disk laser. Upper surface and lower surface of molten pool were observed synchronously with two high speed CCD cameras during the welding process. The lower surface was much longer and more unstable than the upper one. A three dimensional laser deep penetration welding model in which volume of fluid (VOF) method was combined with a ray-tracing algorithm was used to simulate the dynamic coupling between keyhole and molten pool in laser full penetration welding. The calculated weld cross-section morphology and molten pool length on both upper side and lower side agree well with experimental results. Evolution of molten pool in lower side during full penetration laser welding was analyzed, periodical features of energy coupling, molten pool behavior and keyhole dynamics in laser full penetration welding were identified and discussed. KW - Full penetration laser welding KW - Molten pool KW - Keyhole KW - Thick plate PY - 2014 U6 - https://doi.org/10.1016/j.jmatprotec.2014.03.016 SN - 0924-0136 SN - 1873-4774 VL - 214 IS - 8 SP - 1710 EP - 1720 PB - Elsevier CY - Amsterdam AN - OPUS4-30549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Magnets improve quality of high-power laser beam welding N2 - Welding is one of the most critical operations for the construction of reliable metal structures in everything from ships to reactor vessels. When welds fail, often the entire structure fails, and expectations on weld quality have never been higher. Any process that uses a localized heat source, such as welding, is likely to result in some distortion. The welding process of very thick metal components is not inherently stable and is barely controllable without external forces. KW - Electromagnetic weld pool control KW - Laser beam weliding KW - Marangoni effect PY - 2014 VL - 2013-2014 SP - 30 EP - 32 AN - OPUS4-30338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sohail, M. A1 - Han, S.-W. A1 - Na, S.-J. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Characteristics of weld pool behavior in laser welding with various power inputs N2 - This paper investigates the numerical simulations of multi-kilowatt disk laser and fiber laser welding, ranging from 6 to 18 kW to study the behavior of molten pool in 20-mm-thick steel plate by using Volume-Of-Fluid (VOF) method and several mathematical models like Gaussian heat source, recoil pressure, Marangoni flow, buoyancy force, and additional shear stress and heat source due to the metallic vapor. Vortex flow pattern is observed for higher laser power except for 6-kW case, and the higher the laser power, the bigger the vortex flow pattern. Welding speed has an influence on molten pool in terms of depth of penetration and size of molten pool, but overall shape of molten pool remains the same. The reasons for the vortex flow pattern in high-power laser welding are the absorption of more energy at the bottom of keyhole, which promotes more liquid metal at the bottom, while for lower power with lower speed, the melt formation is more uniform in the thickness direction and most of the molten metal in the lower part of keyhole reaches the top of molten pool, and consequently, no vortex flow pattern is observed in the keyhole bottom. KW - Laser welding KW - Mathematical models KW - Simulating KW - Molten pool KW - Flow PY - 2014 U6 - https://doi.org/10.1007/s40194-014-0112-4 SN - 0043-2288 SN - 1878-6669 VL - 58 IS - 3 SP - 269 EP - 277 PB - Springer CY - Oxford AN - OPUS4-30644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Avilov, Vjaceslav A1 - Graf, J. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Anwendung von AC-Magnetfeldern zur Verbesserung der Nahtqualität laserstrahlgeschweißter Aluminiumverbindungen N2 - Im Rahmen eines AiF-Forschungsvorhabens wurde die Beeinflussung des Schweißprozesses mittels generierter Wechselstrom-Magnetfelder (ACMagnetfelder) beim Laserstrahlschweißen von Aluminiumlegierungen untersucht. Das vorrangige Augenmerk galt hierbei der Entfernung von Poren sowie der Stabilisierung der Schweißnahtoberfläche zur Vermeidung von rauen Schweißnähten. Das Schweißen mit Einsatz des AC-Magneten erzeugte im Vergleich zu den Referenznähten deutlich flachere Schweißnähte mit reduzierter Porenanzahl, die typische Schuppenstruktur wurde unterdrückt. Das Magnetfeld bewirkte bei entsprechenden Parametern der magnetischen Flussdichte und der Frequenz eine Halbierung der Rauigkeit der Schweißnahtoberfläche. Neben der Oberflächenberuhigung wurde auch die Verteilung von Poren in der Schmelze beeinflusst. Es konnte nachgewiesen werden, dass bei einer geeigneten Auswahl der Parameter von AC-Magnetfeldern die Porositätsanteile in der Schweißnaht auf ein Zehntel gegenüber den Referenzschweißnähten reduziert werden können.----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Within the framework of an AiF research project, investigations were conducted into the influences exerted on the welding process using generated alternating current (AC) magnetic fields during the laser beam welding of aluminium alloys. In this respect, attention was principally paid to removing pores and to stabilising the weld surface in order to avoid rough welds. In comparison with the reference welds, welding utilising the AC magnet produced considerably flatter welds with a reduced number of pores and the typical ripple structure was suppressed. With corresponding parameters for the magnetic flux density and the frequency, the roughness of the weld surface was halved using the magnetic field. In addition to the surface stabilisation, influences were also exerted on the distribution of pores in the molten metal. It was possible to prove that, by selecting suitable parameters for AC magnetic fields, the porosity proportions in the weld can be reduced to one tenth of those in the reference welds. KW - Aluminium KW - Laserstrahlschweißen KW - Magnetfelder KW - Poren KW - Schweißnahtimperfektionen KW - Werkstofffragen PY - 2014 SN - 0036-7184 VL - 66 IS - 9 SP - 524 EP - 529 PB - Verl. für Schweißen u. Verwandte Verfahren, DVS-Verl. CY - Düsseldorf AN - OPUS4-31441 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, André A1 - Gumenyuk, Andrey A1 - Lammers, Marco A1 - Malletschek, A. A1 - Rethmeier, Michael T1 - Laser beam welding of thick titanium sheets in the field of marine technology N2 - The ever larger requirements of the material selection in the range of maritime industry necessitate the application of high-tech materials. Titanium because of its excellent mechanical properties at low weight is an attractive alternative for the construction of ships. The goal of this investigation was to design a welding method for joining samples of 16 mm thick Ti3Al2.5 V. The welding experiments with a 20 kW Yb-fiber laser source and varying combinations of parameters were intended to qualify the laser beam welding process. The welding results were analyzed by non-destructive and destructive testing. In addition, the welding tests were recorded with two high-speed cameras to observe the weld pool and the vapor plume. The evaluation of the high-speed images in correlation with the results of non-destructive testing shows, that a significant improvement of process stability and weld quality can be achieved by the suppression of the vapor plume. KW - Titanium alloy KW - Maritime industry KW - Vapor plume KW - Laser beam welding KW - Ti3Al2.5V PY - 2014 U6 - https://doi.org/10.1016/j.phpro.2014.08.046 SN - 1875-3892 VL - 56 SP - 582 EP - 590 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-31439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Experimental and numerical investigation of an electromagnetic weld pool control for laser beam welding N2 - The objective of this study was to investigate the influence of externally applied magnetic fields on the weld quality in laser beam welding. The optimization of the process parameters was performed using the results of computer simulations. Welding tests were performed with up to 20 kW laser beam power. It was shown that the AC magnet with 3 kW power supply allows for a prevention of the gravity drop-out for full penetration welding of 20 mm thick stainless steel plates. For partial penetration welding it was shown that an0.5 T DC magnetic field is enough for a suppression of convective flows in the weld pool. Partial penetration welding tests with 4 kW beam power showed that the application of AC magnetic fields can reduce weld porosity by a factor of 10 compared to the reference joints. The weld surface roughness was improved by 50%. KW - Laser beam welding KW - Electromagnetic weld pool support KW - Hartmann effect KW - Electromagnetic rectification PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-314405 SN - 1875-3892 VL - 56 SP - 515 EP - 524 PB - Elsevier B.V. CY - Amsterdam [u.a.] AN - OPUS4-31440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gebhardt, M.O. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Solidification cracking in laser GMA hybrid welding of thick-walled parts N2 - Laser GMA hybrid welds, producing partial penetration, were conducted on stiff tubes made of S460NH. Experiments, using a design-of-experiments plan were conducted to examine the influence of the welding parameters on the occurrence of solidification cracks. Results say that cracks diminish, when high levels of arc power are applied, while their number increases with rising laser beam power. The weld velocity had no measurable impact. KW - Laser hybrid welding KW - Solidification cracking KW - Partial penetration welding KW - Tube welding KW - Thick walled parts KW - Design of experiments PY - 2014 U6 - https://doi.org/10.1179/1362171813Y.0000000171 SN - 1362-1718 SN - 1743-2936 VL - 19 IS - 3 SP - 209 EP - 213 PB - Maney CY - London AN - OPUS4-30297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - High-power laser welding of austenitic stainless steel with electromagnetic control of weld pool N2 - Laser deep-penetration welding became a widely applied tool in industrial applications due to available laser power of 20 kW and more for the single-pass welding of steel plates of up to 20 mm thikness. Above a critical limit, liquid metal tends to drop out of the bead due to hydrostatic pressure. Laser welding, in contrast to electron beam welding technique, allows for an electromagnetic manipulation of fluid flow in the weld pool. AC electromagnetic system for compensation of the hydrostatic pressure by induced Lorentz forces in the melt was experimentally and numerically investigated for single-pass full-penetration welding of up to 20 mm thikness austenitic stainless steel plates of grade AISI 304. It was shown that the application of 200-234 mT magnetic fields at oscillation frequency of around 2.6 kHZ lead to a full compensation of hydrostatic forces in the melt for plate 10-20 mm thick, respectively. Coupled fluid flow, thermal and electromagnetic finite element simulations were done with different applied magnetic flux densities and oscillation frequencies calculating for the optimal magnetic field strength to avoid melt sagging in the weld pool. The simulation results point to a lower magnetic field density needed for that purpose. The reason for that can lie in the magnetic properties of the material not being totally non-ferromagnetic. 17 Ref., 1 Table, 5 Figures. KW - Laser welding KW - High power KW - Austenitic stainless steels KW - Drop out of bead KW - Control magnetic field KW - Hydrostatic force compensation KW - Modeling of fluid flow KW - Calculation PY - 2014 SN - 0957-798X VL - 3 SP - 21 EP - 24 PB - E. O. Paton Electric Welding Institute of the National Acad. of Sciences of Ukraine CY - Kyïv AN - OPUS4-30823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -