TY - CONF A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - A numerical study on the suppression of a detrimental weld pool profile in wire feed laser beam welding by magnetohydrodynamic technique T2 - Mathematical Modelling of Weld Phenomena 13 N2 - The weld quality and the possible defect formation are directly determined by the weld pool shape and the thermo-fluid dynamics therein. In this paper, an untypical weld pool profile, i.e., elongated at its top and bottom but narrowed at the middle, is found experimentally and numerically in the wire feed laser beam welding. The detrimental influence of the weld pool narrowing on the element transport is analyzed and discussed. A magnetohydrodynamic technique is utilized to suppress the narrowing, aiming at a more homogenous element distribution. It is found that a low-temperature region is formed in the middle of the weld pool due to the interaction of the two dominant circulations from the top and bottom regions. The weld pool is significantly narrowed due to the untypical growth of the mushy zone in the low-temperature region, which results in a direct blocking effect on the downward flow and the premature solidification in the middle region. The Lorentz force produced by a transverse oscillating magnetic field shows the potential to change the flow pattern into a single-circulation type and the low-temperature-gradient region is mitigated. Therefore, the downward transfer channel is widened, and its premature solidification is prevented. The numerical results are well validated by experimental measurements of metal/glass observation and X-ray fluorescence element mapping. T2 - 13th International Seminar Numerical Analysis of Weldability CY - Seggau, Austria DA - 04.09.2022 KW - Thermo-fluid flow KW - Element transport KW - Laser beam welding KW - Magnetohydrodynamics KW - Multi - physical modeling PY - 2023 SN - 2410-0544 VL - 13 SP - 143 EP - 160 PB - Verlag der Technischen Universität Graz AN - OPUS4-58806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huo, W. A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Wolter, K. T1 - Strain Prediction Using Deep Learning during Solidification Crack Initiation and Growth in Laser Beam Welding of Thin Metal Sheets JF - Applied sciences N2 - The strain field can reflect the initiation time of solidification cracks during the welding process. The traditional strain measurement is to first obtain the displacement field through digital image correlation (DIC) or optical flow and then calculate the strain field. The main disadvantage is that the calculation takes a long time, limiting its suitability to real-time applications. Recently, convolutional neural networks (CNNs) have made impressive achievements in computer vision. To build a good prediction model, the network structure and dataset are two key factors. In this paper, we first create the training and test sets containing welding cracks using the controlled tensile weldability (CTW) test and obtain the real strain fields through the Lucas–Kanade algorithm. Then, two new networks using ResNet and DenseNet as encoders are developed for strain prediction, called StrainNetR and StrainNetD. The results show that the average endpoint error (AEE) of the two networks on our test set is about 0.04, close to the real strain value. The computation time could be reduced to the millisecond level, which would greatly improve efficiency. KW - Convolutional neural network KW - Strain fields prediction KW - Laser beam welding KW - Solidification cracking PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570565 DO - https://doi.org/10.3390/app13052930 VL - 13 IS - 5 SP - 1 EP - 15 PB - MDPI AN - OPUS4-57056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey T1 - The bulging effect and its relevance in high power laser beam welding N2 - The present work deals with the recently confirmed widening of the weld pool interface, known as a bulging effect, and its relevance in high power laser beam welding. A combined experimental and numerical approach is utilized to study the influence of the bulge on the hot cracking formation and the transport of alloying elements in the molten pool. A technique using a quartz glass, a direct-diode laser illumination, a high-speed camera, and two thermal imaging cameras is applied to visualize the weld pool geometry in the longitudinal section. The study examines the relevance of the bulging effect on both, partial and complete penetration, as well as for different sheet thicknesses ranging from 8 mm to 25 mm. The numerical analysis shows that the formation of a bulge region is highly dependent on the penetration depth and occurs above 10 mm penetration depth. The location of the bulge correlates strongly with the cracking location. The obtained experimental and numerical results reveal that the bulging effect increases the hot cracking susceptibility and limits the transfer of alloying elements from the top of the weld pool to the weld root. T2 - 1st Annual Assembly and Conference of The Welding Federation of Africa (TWF-Africa) CY - Cairo, Egypt DA - 14.03.2023 KW - Laser beam welding KW - Melt pool dinamics PY - 2023 AN - OPUS4-58695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straße, Anne A1 - Rethmeier, Michael A1 - Gumenyuk, Andrey T1 - Influence of edge‑deposited layers on mechanical and corrosion properties of laser beam welds of 15 mm thick AISI 2205 duplex stainless steel JF - Welding in the World N2 - AISI 2205 duplex stainless steel is used in a variety of industries, including the chemical and petrochemical industries. This is due to its high tensile strength combined with good ductility and corrosion resistance. However, in laser beam welding, these properties are negatively afected by the high cooling rates typical of the welding process. The resulting higher ferrrite content in the weld metal than in the base material leads to a reduction in the ductility and corrosion resistance of the welded joint. To overcome this problem, in this study, thick plates were coated by direct energy deposition (DED) prior to laser beam welding, whereas a duplex powder mixture containing a higher nickel concentration was used as a coating material. To improve the weld quality for the proposed two-step process, a method of additional material deposition instead of conventional tack weld was investigated. The resulting welded joints showed a well-balanced austenite to ferrite ratio and their properties and microstructure were verifed by metallographic analysis, electron backscatter difraction and Charpy impact testing. Using the standard ASTM G48 test method, it was found that the corrosion resistance of the welds was improved by a factor of four in average compared to the conventionally welded joints. The resulting properties, such as good ductility and corrosion resistance, of the welds with pre-coated edges showed good agreement with those of the base metal and confrmed the proposed two-step process as a promising alternative to the conventional approaches for welding thick duplex stainless steel plates. KW - Laser metal deposition KW - Laser beam welding KW - Duplex steels PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581731 UR - https://rdcu.be/dlb6E DO - https://doi.org/10.1007/s40194-023-01567-7 SN - 0043-2288 SP - 1 EP - 12 PB - Springer AN - OPUS4-58173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -