TY - CONF A1 - Marinescu, M.V.A. A1 - Schmidt, Wolfram A1 - Priebe, Nsesheye Susan A1 - Uzoegbo, H.C. A1 - Stipanovic Oslakovic, I. A1 - Kumaran, G.S. A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Rogge, Andreas T1 - Recent developments and perspectives regarding the standardisation and quality surveillance of cement in the east, central and south african region T2 - 13th ICCC - International congress on the chemistry of cement (Proceedings) N2 - The cement and concrete market in East, Central and Southern Africa is highly fragmented. The concrete industry in this area consists of multiple parties, including producers and suppliers of construction materials, formal and informal contractors, engineers and architects, unions of trades persons and workmen, governmental bodies and formal institutions of research and education. All these institutions mostly do not interact adequately, which makes building with cementitious materials susceptible to damage and failures. Completely opposed to the situation in Europe or North America, cement in Africa is often unaffordable, while manpower is cheap, which results in a questionable economisation of cement. Typically, there is not sufficient awareness of methods to sensibly reducing the cement content in concrete or replace Ordinary Portland Cement by adequate alternative materials. Research activities in this field of technology are often missing completely. Only few countries in the area, such as South Africa, are exempted from these issues. This paper presents the SPIN project, which is a joint project of a consortium of 8 African and 3 European partners within the ACP Science and Technology Programme. The project is funded by the EC and ACP Secretariat is the project body. The main objective of the current project is to strengthen the cement and concrete industry in the East and Central African regions. The project shall generate reasonable solution strategies to implement clean, safe and sustainable cement and concrete technology on the African continent, including general and specific guidelines for sensible application. Furthermore it shall be the kick-off for future projects, research activities and the world-wide expansion of a European-African network. The paper addresses special problems the cement and concrete market in Eastern, Central and Southern African countries has to face. Several options are presented in detail, which shall help overcoming the current situation. Customized solutions for the African market include rational methods for reducing the amount of cement used and the replacement of Ordinary Portland Cement with cheaper alternatives. The use of recycled concrete through a new and economically effective method, as well as the opportunity of using locally available resources is also discussed. T2 - 13th International congress on the chemistry of cement CY - Madrid, Spain DA - 03.07.2011 KW - Africa KW - Clean and safe cement production KW - Scientific network PY - 2011 SN - 978-84-7292-400-0 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 1 EP - 6 AN - OPUS4-24041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Uzoegbo, H.C. A1 - Priebe, Nsesheye Susan A1 - Kühne, Hans-Carsten A1 - Rogge, Andreas ED - Uzoegbo, H.C. ED - Schmidt, Wolfram T1 - Experiences in an African-European-cooperation project: strengthening research capacity in cement and concrete in Africa T2 - ACCTA - International conference on advances in cement and concrete technology in Africa 2013 (Proceedings) N2 - This report is based on a three-year experience as coordinator of the ACP-EU funded SPIN project. The project involved eight African and three European partners. Practical and unforeseeable problems are addressed that occurred during the project implementation and ways how they were successfully solved are reported. The major problems in many African institutions were administrations that are not used to work in multi-national consortia and a lack of institutional support for the African researchers. In Europe a misjudgement of the African boundary conditions as well as inflexible administrations caused problems. Finally the funding scheme did not always allow to easily overcome the high number of unexpected practical problems. A major deficit identified during the project was a general trend in Africa to underestimate the role of research for the development of the continent. Most universities focus on teaching applied sciences, which is without doubt important to cover the market need for qualified staff in the rapidly growing African industries. However, this makes it unattractive for highly qualified performers to conduct research on the continent. Furthermore this leads to the situation that the curricula can only contain second hand knowledge. In order to attract international high level researchers, it is suggested to install multi-national regional excellence research centres that only promote PhD and post-doc research on a level that can cope with highest international excellence. High level research is often perceived as not capable of focusing on immediate actual problems that many African economies have to cope with.. However, it is considered to be very sustainable in terms of autonomy and mastering future challenges. T2 - ACCTA - International conference on advances in cement and concrete technology in Africa 2013 CY - Johannesburg, South Africa DA - 28.01.2013 PY - 2013 SN - 978-3-9815360-3-4 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 1177 EP - 1184 AN - OPUS4-27762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Priebe, Nsesheye Susan A1 - Schmidt, Wolfram A1 - Mota, Berta A1 - Leinitz, Sarah A1 - Kühne, Hans-Carsten A1 - Rogge, Andreas T1 - The effect of superplasticizers on rheology and early hydration kinetics of rice husk ash-blended cementitious systems JF - Construction and Building Materials N2 - Superplasticizers (SPs) have been employed in concrete technology for decades to improve the workability of concrete in its fresh state. The addition of SPs in cement-based systems affects the early properties. Although the interaction of the cement particles with various SPs has been extensively researched, there still exists limited research on the interaction of SPs with supplementary cementitious materials such as rice husk ash (RHA). This paper investigates the rheological properties and early hydration kinetics of RHA-blended systems with three types of SPs, a polycarboxylate ether (PCE) and two lignosulphonates (LS-acc and LS-ret). In rheological properties, the addition of SP causes an initial improvement of workability as the yield stress is significantly reduced. The pastes with PCE and LS-acc show a slight increase of yield stress over time whereas pastes with LS-ret tend to lower the yield stress slightly over time, further improving the workability. Without SP, pastes with RHA show a lower yield stress but an increase in plastic viscosity as cement is further replaced with RHA. The addition of the LS SPs is observed to lower the plastic viscosity but remains constant with further replacement of cement with RHA. This indicates that LS SPs further adsorbs on RHA particles and hydration products produced causing dispersion of the particles within the system. In early hydration kinetics, pastes with PCE retard hydration and the degree of retardation is further increased with LS SPs. In the presence of RHA, the retardation of LS SP systems is significantly reduced. The pastes with PCE show more ettringite in the SEM micrographs, but is observed to be shorter needles. This indicates an initial good workability for PCE. However, C-S-H and CH were observed to be low in quantity, whereby the pastes with LS show more nucleation sites for C-S-H and CH. The ettringite needles in the LS systems were similar in quantity and more elongated in some cases but not abundant as in the PCE systems. KW - Plastic viscosity KW - Cement KW - CO2 reduction KW - Supplementary cementitious materials KW - Rice husk ash KW - Superplasticizers KW - Hydration KW - Rheology KW - Yield stress KW - Slump flow PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0950061817310978?via%3Dihub DO - https://doi.org/10.1016/j.conbuildmat.2017.05.197 SN - 0950-0618 SN - 1879-0526 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 150 SP - 511 EP - 519 PB - Elsevier Ltd. AN - OPUS4-41036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Priebe, Nsesheye Susan A1 - Schmidt, Wolfram A1 - Rogge, Andreas A1 - Kühne, Hans-Carsten T1 - Performance of rice husk ash as an alternative binder in a modified cementitious system with added superplasticizers JF - Cement and Concrete Composites Journal N2 - Rice husk as (RHA) is an eco-friendly material, which can be used as a supplementary cementitious material (SCM) in cement and concrete. Due to the high water demand for the material, superplasticizers (SPs) are essential to improve the performance. However, the interaction between the SPs and RHA systems is limited. This paper investigates the interaction of the binders with three SPs, i.e. two polycarboxylate ethers (PCEs) and one lignosulphonate (LS). The investigations are performed on blended systems of mortar containing various percentages of RHA and limestone powder (LSP). LSP is used in this research to improve the workability of the mortar. The results from the zeta potential (ZP) shows that the SPs are extremely dependent on the pH of the suspension. At higher pH values such as in a cementitious system, the ZP becomes less negative indicating that the ions in the suspension interact with the carboxyl groups in the backbone of the polymers thus reducing the surface charges of the SP. The mini-slump flow shows that the workability of the blended mortar systems is significantly improved with the addition of SPs. LS systems with increasing RHA is observed to have similar workability as the control mix over time. The compressive strength test results show increased strength for all mortar specimens with added RHA and LSP at later ages. KW - Compressive strength KW - Rice husk ash KW - Superplasticizers KW - Zeta potential KW - Workability PY - 2017 DO - https://doi.org/10.1016/j.cemconcomp.2017.07.014 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 83 SP - 202 EP - 208 PB - Elsevier Ltd. AN - OPUS4-42602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Priebe, Nsesheye Susan A1 - Schmidt, Wolfram A1 - Rogge, Andreas A1 - Kühne, Hans-Carsten ED - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - Optimising available resources for production of good concrete properties T2 - Advances in Cement and Concrete Technology in Africa N2 - There is a wide range of research worldwide on supplementary cementitious materials (SCMs) such as fly ash and slag for substituting pure cement. Such materials are suitable to be considered in a cementitious system with ordinary Portland cement (OPC) due to their high pozzolanic properties. In addition, majority of the SCMs are said to significantly improve concrete properties especially in terms of increased strength and durability. Unfortunately, the production of such SCMs is not entirely eco-friendly and also limited to certain parts of the world, hence one has to look at alternative options. The issue of availability of resources is a strong concept that is ever-increasing, and the use of more eco-friendly SCMs in a cementitious system is furthermore attractive. Hence this paper addresses the use of eco-friendly SCMs in concrete such as rice husk ash (RHA). Despite the fact that extensive research has been done on this material, its application in a cementitious system to obtain sufficient concrete properties is still rather limited. In a country like Tanzania, high strength concrete construction is applicable in special construction cases but certainly not a high priority. Majority of construction is still undertaken using normal strength concrete. In a ternary cementitious system consisting of OPC, RHA and other readily available resources such as limestone filler (LSF), normal strength concrete can still be produced having good performance and suitable for regular on-site construction. This paper explains a possible application of obtaining sufficient concrete properties from the available resources. T2 - 2nd International Conference on Advances in Cement and Concrete Technology in Africa CY - Dar es Salaam, Tanzania DA - 27.01.2016 KW - Sub-Saharan Africa KW - Rice husk ash KW - Admixtures KW - Workability KW - Rheology PY - 2016 SN - 978-3-9817502-3-2 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 323 EP - 331 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -