TY - JOUR A1 - Haase, A. A1 - Rott, S. A1 - Mantion, Alexandre A1 - Graf, P. A1 - Plendl, J. A1 - Thünemann, Andreas A1 - Meier, W.P. A1 - Taubert, A. A1 - Luch, A. A1 - Reiser, G T1 - Effects of silver nanoparticles on primary mixed neural cell cultures: uptake, oxidative stress and acute calcium responses N2 - In the body, nanoparticles can be systemically distributed and then may affect secondary target organs, such as the central nervous system (CNS). Putative adverse effects on the CNS are rarely investigated to date. Here, we used a mixed primary cell model consisting mainly of neurons and astrocytes and a minor proportion of oligodendrocytes to analyze the effects of well-characterized 20 and 40 nm silver nanoparticles (SNP). Similar gold nanoparticles served as control and proved inert for all endpoints tested. SNP induced a strong size-dependent cytotoxicity. Additionally, in the low concentration range (up to 10 µg/ml of SNP), the further differentiated cultures were more sensitive to SNP treatment. For detailed studies, we used low/medium dose concentrations (up to 20 µg/ml) and found strong oxidative stress responses. Reactive oxygen species (ROS) were detected along with the formation of protein carbonyls and the induction of heme oxygenase-1. We observed an acute calcium response, which clearly preceded oxidative stress responses. ROS formation was reduced by antioxidants, whereas the calcium response could not be alleviated by antioxidants. Finally, we looked into the responses of neurons and astrocytes separately. Astrocytes were much more vulnerable to SNP treatment compared with neurons. Consistently, SNP were mainly taken up by astrocytes and not by neurons. Immunofluorescence studies of mixed cell cultures indicated stronger effects on astrocyte morphology. Altogether, we can demonstrate strong effects of SNP associated with calcium dysregulation and ROS formation in primary neural cells, which were detectable already at moderate dosages. KW - Silver nanoparticles KW - Neurons KW - Oxidative stress KW - Protein carbonyls KW - Calcium KW - Reference material KW - Nanoparticle KW - Small-angle X-ray scattering KW - SAXS PY - 2012 DO - https://doi.org/10.1093/toxsci/kfs003 SN - 1096-6080 SN - 1096-0929 VL - 126 IS - 2 SP - 457 EP - 468 PB - Oxford University Press CY - Oxford AN - OPUS4-25633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Graf, P. A1 - Mantion, Alexandre A1 - Haase, A. A1 - Thünemann, Andreas A1 - Masic, A. A1 - Luch, A. A1 - Taubert, A. T1 - Silicification of peptide-coated chiral nanosilver: Novel core-shell structures N2 - Nanosilver is increasingly used in optics, medicine and analytical chemistry. We recently reported on the synthesis and properties of novel peptide-coated chiral nanosilver [1] using a small hexapeptide based on the amino acids CKK. In a continuation of our previous work, we use the peptides to catalyse TEOS hydrolysis in order to form a dense silica layer shell around a single nanoparticle, preventing chemical etching, allowing their inclusion in other inorganics, and making them biocompatible. Because of mild reaction conditions, the peptide integrity is ensured, as the chiral information which is contained in the nanoparticle. Moreover, these novel core-shell structures remain well-dispersed and are biocompatible. The possibility of further processing (creation of metamaterials etc.) is also in the focus of our interest. KW - Hybrid materials KW - Nanosilver KW - Core shell PY - 2010 DO - https://doi.org/10.1002/zaac.201009133 SN - 0044-2313 SN - 1521-3749 SN - 0372-7874 SN - 0863-1786 SN - 0863-1778 VL - 636 IS - 11 SP - 2115 PB - Wiley-VCH CY - Weinheim AN - OPUS4-22409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Kästner, Claudia A1 - Krause, B. A1 - Meyer, T. A1 - Burel, A. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Laux, P. A1 - Braeuning, A. A1 - Estreal-Lopis, I. A1 - Gauffre, F. A1 - Fessard, V. A1 - Meijer, J. A1 - Luch, A. A1 - Thünemann, Andreas A1 - Lampen, A. T1 - Impact of an artificial digestion procedure on aluminum-containing nanomaterials N2 - Aluminum has gathered toxicological Attention based on relevant human exposure and its suspected hazardous potential. Nanoparticles from food supplements or Food contact materials may reach the human gastrointestinal tract. Here, we monitored the physicochemical fate of aluminum containing nanoparticles and aluminum ions when passaging an in vitro model of the human gastrointestinal tract. Smallangle X-ray scattering (SAXS), transmission electron microscopy (TEM), ion beam microscopy (IBM), secondary ion beam mass spectrometry (TOF-SIMS), and inductively coupled plasma mass spectrometry (ICP-MS) in the singleparticle mode were employed to characterize two aluminumcontaining nanomaterials with different particle core materials (Al0, γAl2O3) and soluble AlCl3. Particle size and shape remained unchanged in saliva, whereas strong Agglomeration of both aluminum nanoparticle species was observed at low pH in gastric fluid together with an increased ion release. The levels of free aluminum ions decreased in intestinal fluid and the particles deagglomerated, thus liberating primary particles again. Dissolution of nanoparticles was limited and substantial changes of their shape and size were not detected. The amounts of particle-associated phosphorus, chlorine, potassium, and calcium increased in intestinal fluid, as compared to nanoparticles in standard dispersion. Interestingly, nanoparticles were found in the intestinal fluid after addition of ionic aluminum. We provide a comprehensive characterization of the fate of aluminum nanoparticles in simulated gastrointestinal fluids, demonstrating that orally ingested nanoparticles probably reach the intestinal epithelium. The balance between dissolution and de novo complex formation should be considered when evaluating nanotoxicological experiments. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle PY - 2017 DO - https://doi.org/10.1021/acs.langmuir.7b02729 SN - 1520-5827 SN - 0743-7463 VL - 33 IS - 40 SP - 10726 EP - 10735 PB - Americal Chemical Society AN - OPUS4-42438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Graf, P. A1 - Mantion, Alexandre A1 - Haase, A. A1 - Thünemann, Andreas A1 - Masic, A. A1 - Meier, W. A1 - Luch, A. A1 - Taubert, A. T1 - Silicification of peptide-coated silver nanoparticles - a biomimetic soft chemistry approach toward chiral hybrid core-shell materials N2 - Silica and silver nanoparticles are relevant materials for new applications in optics, medicine, and analytical chemistry. We have previously reported the synthesis of pH responsive, peptide-templated, chiral silver nanoparticles. The current report shows that peptide-stabilized nanoparticles can easily be coated with a silica shell by exploiting the ability of the peptide coating to hydrolyze silica precursors such as TEOS or TMOS. The resulting silica layer protects the nanoparticles from chemical etching, allows their inclusion in other materials, and renders them biocompatible. Using electron and atomic force microscopy, we show that the silica shell thickness and the particle aggregation can be controlled simply by the reaction time. Small-angle X ray scattering confirms the Ag/peptide@silica core–shell structure. UV–vis and circular dichroism spectroscopy prove the conservation of the silver nanoparticle chirality upon silicification. Biological tests show that the biocompatibility in simple bacterial systems is significantly improved once a silica layer is deposited on the silver particles. KW - Peptide-templated materials KW - Silver nanoparticles KW - Chiral nanoparticles KW - Ag/peptide@SiO2 nanostructures KW - Core-shell structures PY - 2011 DO - https://doi.org/10.1021/nn102969p SN - 1936-0851 VL - 5 IS - 2 SP - 820 EP - 833 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-23207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Krause, B.-C. A1 - Kästner, Claudia A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Laux, P. A1 - Braeuning, A. A1 - Fessard, V. A1 - Thünemann, Andreas A1 - Luch, A. A1 - Lampen, A. T1 - Cellular Effects of In Vitro-Digested Aluminum Nanomaterials on Human Intestinal Cells N2 - Aluminum (Al) can be taken up from food, packaging, or the environment and thus reaches the human gastrointestinal tract. Its toxic potential after oral uptake is still discussed. The fate of different solid and ionic Al species during the passage through the digestive tract is the focus of this research, as well as the cellular effects caused by these different Al species. The present study combines the physicochemical processing of three recently studied Al species (metallic Al0, mineral Al2O3, and soluble AlCl3) in artificial digestion fluids with in vitro cell systems for the human intestinal barrier. Inductively coupled plasma mass spectrometry (ICP-MS) and small-angle X-ray scattering (SAXS) methods were used to characterize the Al species in the artificial digestion fluids and in cell culture medium for proliferating and differentiated intestinal Caco-2 cells. Cytotoxicity testing and cellular impedance measurements were applied to address the effects of digested Al species on cell viability and cell proliferation. Microarray-based transcriptome analyses and quantitative real-time PCR were conducted to obtain a deeper insight into cellular mechanisms of action and generated indications for cellular oxidative stress and an influence on xenobiotic metabolism, connected with alterations in associated signaling pathways. These cellular responses, which were predominantly caused by formerly ionic Al species and only at very high concentrations, were not impacted by artificial digestion. A two-directional conversion of Al between ionic species and solid particles occurred throughout all segments of the gastrointestinal tract, as evidenced by the presence of nanoscaled particles. Nevertheless, this presence did not increase the toxicity of the respective Al species. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2020 DO - https://doi.org/10.1021/acsanm.9b02354 VL - 3 IS - 3 SP - 2246 EP - 2256 PB - American Chemical Society AN - OPUS4-50632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haase, A. A1 - Arlinghaus, H. F. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Graf, P. A1 - Mantion, Alexandre A1 - Draude, F. A1 - Galla, S. A1 - Plendl, J. A1 - Goetz, M.E. A1 - Masic, A. A1 - Meier, W. A1 - Thünemann, Andreas A1 - Taubert, A. A1 - Luch, A. T1 - Application of laser postionization secondary neutral mass spectrometry / time-of-flight secondary ion mass spectrometry in nanotoxicology: Visualization of nanosilver in human macrophages and cellular responses N2 - Silver nanoparticles (SNP) are the subject of worldwide commercialization because of their antimicrobial effects. Yet only little data on their mode of action exist. Further, only few techniques allow for visualization and quantification of unlabeled nanoparticles inside cells. To study SNP of different sizes and coatings within human macrophages, we introduce a novel laser postionization secondary neutral mass spectrometry (Laser-SNMS) approach and prove this method superior to the widely applied confocal Raman and transmission electron microscopy. With time-of-flight secondary ion mass spectrometry (TOF-SIMS) we further demonstrate characteristic fingerprints in the lipid pattern of the cellular membrane indicative of oxidative stress and membrane fluidity changes. Increases of protein carbonyl and heme oxygenase-1 levels in treated cells confirm the presence of oxidative stress biochemically. Intriguingly, affected phagocytosis reveals as highly sensitive end point of SNP-mediated adversity in macrophages. The cellular responses monitored are hierarchically linked, but follow individual kinetics and are partially reversible. KW - Nanosilver KW - Laser-SNMS KW - TOF-SIMS KW - Confocal Raman microscopy KW - Oxidative stress KW - Protein carbonyls PY - 2011 DO - https://doi.org/10.1021/nn200163w SN - 1936-0851 VL - 5 IS - 4 SP - 3059 EP - 3068 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-23656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Draude, F. A1 - Galla, S. A1 - Pelster, A. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Haase, A. A1 - Mantion, Alexandre A1 - Thünemann, Andreas A1 - Taubert, A. A1 - Luch, A. A1 - Arlinghaus, H. F. T1 - ToF-SIMS and laser-SNMS analysis of macrophages after exposure to silver nanoparticles N2 - Silver nanoparticles (SNPs) are among the most commercialized nanoparticles because of their antibacterial effects. Besides being employed, e.g. as a coating material for sterile surfaces in household articles and appliances, the particles are also used in a broad range of medical applications. Their antibacterial properties make SNPs especially useful for wound disinfection or as a coating material for prostheses and surgical instruments. Because of their optical characteristics, the particles are of increasing interest in biodetection as well. Despite the widespread use of SNPs, there is little knowledge of their toxicity. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and laser post-ionization secondary neutral mass spectrometry (Laser-SNMS) were used to investigate the effects of SNPs on human macrophages derived from THP-1 cells in vitro. For this purpose, macrophages were exposed to SNPs. The SNP concentration ranges were chosen with regard to functional impairments of the macrophages. To optimize the analysis of the macrophages, a special silicon wafer sandwich preparation technique was employed; ToF-SIMS was employed to characterize fragments originating from macrophage cell membranes. With the use of this optimized sample preparation method, the SNP-exposed macrophages were analyzed with ToF-SIMS and with Laser-SNMS. With Laser-SNMS, the three-dimensional distribution of SNPs in cells could be readily detected with very high efficiency, sensitivity, and submicron lateral resolution. We found an accumulation of SNPs directly beneath the cell membrane in a nanoparticular state as well as agglomerations of SNPs inside the cells. KW - Laser-SNMS KW - ToF-SIMS KW - Life sciences KW - Imaging KW - Nanoparticles KW - Three-dimensional depth profiling KW - Silver nanoparticle PY - 2013 DO - https://doi.org/10.1002/sia.4902 SN - 0142-2421 SN - 1096-9918 VL - 45 IS - 1 SP - 286 EP - 289 PB - Wiley CY - Chichester AN - OPUS4-27585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haase, A. A1 - Mantion, Alexandre A1 - Graf, P. A1 - Plendl, J. A1 - Thünemann, Andreas A1 - Meier, W. A1 - Taubert, A. A1 - Luch, A. T1 - A novel type of silver nanoparticles and their advantages in toxicity testing in cell culture systems N2 - Silver nanoparticles (SNPs) are among the most commercialized nanoparticles worldwide. Often SNP are used because of their antibacterial properties. Besides that they possess unique optic and catalytic features, making them highly interesting for the creation of novel and advanced functional materials. Despite its widespread use only little data exist in terms of possible adverse effects of SNP on human health. Conventional synthesis routes usually yield products of varying quality and property. It thus may become puzzling to compare biological data from different studies due to the great variety in sizes, coatings or shapes of the particles applied. Here, we applied a novel synthesis approach to obtain SNP of well-defined colloidal and structural properties. Being stabilized by a covalently linked small peptide, these particles are nicely homogenous, with narrow size distribution, and form monodisperse suspensions in aqueous solutions. We applied these peptide- coated SNP in two different sizes of 20 or 40 nm (Ag20Pep and Ag40Pep) and analyzed responses of THP- 1-derived human macrophages while being exposed against these particles. Gold nanoparticles of similar size and coating (Au20Pep) were used for comparison. The cytotoxicity of particles was assessed by WST-1 and LDH assays, and the uptake into the cells was confirmed via transmission electron microscopy. In summary, our data demonstrate that this novel type of SNP is well suited to serve as model system for nanoparticles to be tested in toxicological studies in vitro. KW - Silver nanoparticles KW - Peptide coating KW - Nanotoxicity PY - 2012 DO - https://doi.org/10.1007/s00204-012-0836-0 SN - 0340-5761 SN - 1432-0738 VL - 86 IS - 7 SP - 1089 EP - 1098 PB - Springer CY - Berlin ; Heidelberg [u.a.] AN - OPUS4-26269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Braeuning, C. A1 - Kunz, B. M. A1 - Daher, H. A1 - Kästner, C. A1 - Krause, B.-C. A1 - Meyer, T. A1 - Jalili, P. A1 - Kogeveen, K. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Burel, A. A1 - Chevance, S. A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Laux, P. A1 - Braeuning, A. A1 - Gauffre, F. A1 - Fessard, V. A1 - Meijer, J. A1 - Estrela-Lopis, I. A1 - Thünemann, Andreas A1 - Luch, A. A1 - Lampen, A. T1 - Uptake and molecular impact of aluminum-containing nanomaterials on human intestinal caco-2 cells N2 - Aluminum (Al) is one of the most common elements in the earth crust and increasingly used in food, consumer products and packaging. Its hazard potential for humans is still not completely understood. Besides the metallic form, Al also exists as mineral, including the insoluble oxide, and in soluble ionic forms. Representatives of these three species, namely a metallic and an oxidic species of Al-containing nanoparticles and soluble aluminum chloride, were applied to human intestinal cell lines as models for the intestinal barrier. We characterized physicochemical particle parameters, protein corona composition, ion release and cellular uptake. Different in vitro assays were performed to determine potential effects and molecular modes of Action related to the individual chemical species. For a deeper insight into signaling processes, microarray transcriptome analyses followed by bioinformatic data analysis were employed. The particulate Al species showed different solubility in biological media. Metallic Al nanoparticles released more ions than Al2O3 nanoparticles, while AlCl3 showed a mixture of dissolved and agglomerated particulate entities in biological media. The protein corona composition differed between both nanoparticle species. Cellular uptake, investigated in transwell experiments, occurred predominantly in particulate form, whereas ionic Al was not taken up by intestinal cell lines. Transcellular transport was not observed. None of the Al species showed cytotoxic effects up to 200 mg Al/mL. The transcriptome analysis indicated mainly effects on oxidative stress pathways, xenobiotic metabolism and metal homeostasis. We have shown for the first time that intestinal cellular uptake of Al occurs preferably in the particle form, while toxicological effects appear to be ion-related. KW - Small-angle x-ray scattering KW - SAXS KW - Nanopatricle PY - 2018 DO - https://doi.org/10.1080/17435390.2018.1504999 SN - 1743-5390 VL - 12 IS - 9 SP - 992 EP - 1013 PB - Taylor & Francis AN - OPUS4-47432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haase, A. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Graf, P. A1 - Mantion, Alexandre A1 - Draude, F. A1 - Plendl, J. A1 - Goetz, M.E. A1 - Galla, S. A1 - Masic, A. A1 - Thünemann, Andreas A1 - Taubert, A. A1 - Arlinghaus, H. F. A1 - Luch, A. T1 - Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses N2 - Silver nanoparticles (SNP) are among the most commercialized nanoparticles worldwide. They can be found in many diverse products, mostly because of their antibacterial properties. Despite its widespread use only little data on possible adverse health effects exist. It is difficult to compare biological data from different studies due to the great variety in sizes, coatings or shapes of the particles. Here, we applied a novel synthesis approach to obtain SNP, which are covalently stabilized by a small peptide. This enables a tight control of both size and shape. We applied these SNP in two different sizes of 20 or 40 nm (Ag20Pep and Ag40Pep) and analyzed responses of THP-1-derived human macrophages. Similar gold nanoparticles with the same coating (Au20Pep) were used for comparison and found to be non-toxic. We assessed the cytotoxicity of particles and confirmed their cellular uptake via transmission electron microscopy and confocal Raman microscopy. Importantly a majority of the SNP could be detected as individual particles spread throughout the cells. Furthermore we studied several types of oxidative stress related responses such as induction of heme oxygenase I or formation of protein carbonyls. In summary, our data demonstrate that even low doses of SNP exerted adverse effects in human macrophages. KW - Silver nanoparticles KW - Neurotoxicology KW - Protein carbonyls KW - ROS PY - 2011 DO - https://doi.org/10.1088/1742-6596/304/1/012030 SN - 1742-6588 SN - 1742-6596 VL - 304 SP - 012030-1 - 012030-14 PB - IOP Publ. CY - Bristol, UK AN - OPUS4-24035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -