TY - JOUR A1 - Bernsmeier, D. A1 - Bernicke, M. A1 - Ortel, Erik A1 - Bergmann, A. A1 - Lippitz, Andreas A1 - Nissen, J. A1 - Schmack, R. A1 - Strasser, P. A1 - Polte, J. A1 - Kraehnert, R. T1 - Nafion-free carbon-supported electrocatalysts with superior hydrogen evolution reaction performance by soft templating JF - CHEMELECTROCHEM N2 - Efficient water electrolysis requires electrode coatings with high catalytic activity. Platinum efficiently catalyzes the hydrogen evolution reaction in acidic environments, but is a rare and expensive metal. The activity achieved per metal atom can be increased if small Pt particles are dispersed onto electrically conductive, highly accessible and stable support materials. However, the addition of Nafion, a typical binder material used in the manufacture of electrode coatings, can decrease catalytic activity by the blocking of pores and active surface sites. A new approach is reported for the direct synthesis of highly active Nafion-free Pt/C catalyst films consisting of small Pt nanoparticles supported in size-controlled mesopores of a conductive carbon film. The synthesis relies on the co-deposition of suitable Pt and C precursors in the presence of polymer micelles, which act as pore templates. Subsequent carbonization in an inert atmosphere produces porous catalyst films with controlled film thickness, pore size and particle size. The catalysts clearly outperform all Nafion-based Pt/C catalysts reported in the literature, particularly at high current densities. KW - XPS KW - SEM KW - TEM KW - SAXS KW - Catalysis KW - Electrochemistry PY - 2017 DO - https://doi.org/10.1002/celc.201600444 SN - 2196-0216 VL - 4 IS - 1 SP - 221 EP - 229 PB - Wiley Online Library CY - Weinheim AN - OPUS4-39733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khosravi, Z. A1 - Kotula, S. A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Klages, C.-P. T1 - IR- and NEXAFS-spectroscopic characterization of plasma-nitrogenated polyolefin surfaces JF - Plasma Processes and Polymers N2 - Modification of polyethylene and polypropylene surfaces by atmospheric-pressure plasmas using mixtures of nitrogen and hydrogen was studied using Fouriertransform infrared spectroscopy in the attenuated total reflection mode (FTIR-ATR) and by near-edge x-ray absorption fine structure spectroscopy (NEXAFS) in order to shed some light on the chemical nature of nitrogen-containing functional Groups on the polymer surface. Using FTIR-ATR spectroscopy combined with hydrogendeuterium isotope exchange of active hydrogen atoms, it was shown that the direct treatment of PE foils by dielectric barrier discharges (DBDs) in N2/H2 mixtures and a subsequent exposure of the samples to the ambient air results in the formation of –NH2 moieties of primary amides on the polymer surface. Corresponding in situ experiments with streaming N2/H2 DBD post-discharges virtually free of H2O and O2, on the other hand, showing the absence of –NH2, proving that no primary amines or amides are formed by this treatment although substantial amounts of nitrogen are incorporated. Moreover, directly N2/H2-plasma-treated polymer surfaces, similar to afterglow-treated low-density polyethylene (LDPE), show amphiphilic character as to be seen by chemical derivatization with nucleophilic reagents 4-(trifluoromethyl) phenylhydrazine and 4-(trifluoromethyl)benzylamine, in addition to electrophilic aromatic aldehydes normally used to derivatize such surfaces. The presence of imines or other functional groups with CN moieties which may be invoked to explain the dual (amphiphilic) reactivity is proven by NEXAFS studies on ultrathin plasma-treated PE films, confirming significant amounts of nitrogen in CN bonds and carbon in CC bonds. KW - X-ray spectroscopy KW - IR spectroscopy KW - Plasma-nitrogenated polyolefin surfaces KW - Unsaturated CN bonds KW - NEXAFS PY - 2017 DO - https://doi.org/10.1002/ppap.201700066 SN - 1612-8869 SN - 1612-8850 VL - 15 IS - 1 SP - e1700066, 1 EP - 15 PB - WILEY-VCH Verlag GmbH & Co. KGaA, CY - Weinheim AN - OPUS4-43786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abbas, F. A1 - Donskyi, Ievgen A1 - Gholami, M. A1 - Ziem, B. A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Böttcher, C. A1 - Rabe, J. A1 - Haag, R. A1 - Adeli, M. T1 - Controlled covalent functionalization of thermally reduced graphene oxide to generate defined bifunctional 2D nanomaterials JF - Angewandte Chemie International Edition N2 - A controlled, reproducible, gram-scale method is reported for the covalent functionalization of graphene Sheets by a one-pot nitrene [2+1] cycloaddition reaction under mild conditions. The reaction between commercially available 2,4,6-trichloro-1,3,5-triazine and sodium azide with thermally reduced graphene oxide (TRGO) results in defined dichlorotriazine-functionalized sheets. The different reactivities of the chlorine substituents on the functionalized graphene allow stepwise post-modification by manipulating the temperature. This new method provides unique access to defined bifunctional 2D nanomaterials, as exemplified by chiral surfaces and multifunctional hybrid architectures. KW - Graphene oxide KW - Bifunctional 2D nanomaterials KW - XPS KW - NEXAFS KW - AFM PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-394789 DO - https://doi.org/10.1002/ange.201612422 SN - 1433-7851 VL - 56 IS - 10 SP - 2675 EP - 2679 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-39478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -