TY - CONF A1 - Hörold, Andreas A1 - Schartel, Bernhard A1 - Trappe, Volker A1 - Korzen, Manfred A1 - Naumann, Maurice T1 - Structural integrity in fire: an intermediate-scale approach T2 - ECCM15 - 15th European conference on composite materials CY - Venice, Italy DA - 2012-06-24 KW - Intermediate-scale test method KW - Structural integrity investigation KW - Fully developed fire KW - Carbon fibre reinforced plastics CFRP PY - 2012 SN - 978-88-88785-33-2 SP - 1 EP - 8(?) AN - OPUS4-26380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörold, Andreas A1 - Schartel, Bernhard A1 - Trappe, Volker A1 - Korzen, Manfred T1 - An intermediate-scale fire testing approach on the structural integrity of lightweight materials T2 - Fire and Materials 2013 CY - San Francisco, CA, USA DA - 2013-01-28 PY - 2013 AN - OPUS4-27734 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörold, Andreas A1 - Schartel, Bernhard A1 - Trappe, Volker A1 - Korzen, Manfred T1 - An intermediate-scale fire testing approach on the structural integrity of lightweight materials N2 - Carbon or glass über composites and Sandwich structures, the lightweight materials of choice for aviation, naval, offshore and construction show an enormous energy saving potential. Their combination of excellent specific mechanical properties, high corrosive resistance and thermal insulation properties in combination with various adoptable fabrication techniques leading to mass and fuel cost reduction. The most limiting single factor for a wider use of fibre reinforced plastics (FRP) in particular as elements for structural application is believed to be their fire behaviour (Mouritz and Gibson, 2006). FRPs promote burning by themselves consuming the stabilizing polymeric matrix while embedded fibers (glass, carbon) persisting the flame (Mouritz et ah, 2006). Already at elevated temperatures (100 - 200 °C) the matrix softens with a loss in mechanical properties (Perret et al., 2011, Mouritz and Gibson, 2006). For this reason the stability of the structural component is decreased severely. Fire behavior becomes the major hazard to worry about, increasingly demanding targetoriented investigation, suitable testing and tailored development. Experimental approaches in the bench-scale have been proposed to investigate the structural integrity in the past (La Delfa et al., 2009, Gibson et al., 2010, Seggewiß, 2011, Mouritz and Gardiner, 2002, Schartel et al.). Ascribed to the small-scale neither the mechanical properties nor the effects of fire may be represented satisfactorily. Flence, the task is to perform more realistic investigations under adequate compressive loads in fully developed fires, based on suitable specimen sizes. Also (La Delfa et al., 2009)) have announced that it is evident that larger scale test of composites are needed. The aim of this study is to present a developed intermediate-scale test setup to perform more realistic investigations (Hörold et al.). Mechanical loading is generated by a column furnace in terms of compression due to a more severe response of specimens in fire tests (Seggewiß, 2011, Gibson et al., 2012, Feih et al., 2008, Feih et al., 2007). An oil burner used to determine the burnthrough resistance of thermal/acoustic insulation materials provides fire directly onto one side of the specimen (Federal Aviation Administration, 2003). Generating a fully developed fire the NexGen burner offers a homogenous heat flux of ~ 180 kW/m2. The intermediate-scale is addressed by specimen sizes either 500 x 500 mm or 1000 x 500 mm with a maximum thickness of 50 mm. The specimen attachment is realized by a compression device that was designed to apply the compressive loads, figure 1. The test setup for specimens with component like dimensions allows realistic investigations up to structural failure in absence and presence of fire load. A first test series was carried out with different levels of loading while the fire remained unchanged. Failure mechanisms, temperature distributions, diversity of FRPs regarding fiber, matrix, lay-up and core as well as flame retardant Systems are in the scope of investigation. T2 - Fire and materials 2013 - 13th International conference and exhibition CY - San Francisco, CA, USA DA - 28.01.2013 PY - 2013 SP - 221 EP - 226 PB - Interscience Communications CY - London, UK AN - OPUS4-27782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hörold, Andreas A1 - Schartel, Bernhard A1 - Trappe, Volker A1 - Korzen, Manfred A1 - Naumann, Maurice T1 - Structural integrity of sandwich structures in fire: an intermediate-scale approach N2 - A test set-up in intermediate scale was conceived to investigate the structural integrity of materials under fire. The task was to develop a realistic test scenario targeting component-like behaviour. Carbon-fibre-reinforced sandwich specimens (500 X 500 X 20 mm) were used to examine failure mechanisms, times to failure and critical failure loads under compression. Fire tests were performed with fully developed fire applied to one side of the specimen by an oil burner. In a first test series, the applied load was varied, but the fully developed fire remained unchanged. In general, times to failure were short. Decreased load levels resulted in prolonged times to failure and led to a different failure mechanism. Results obtained in the test series were compared with a bench-scale study (150 X 150 X 20 mm) investigating identical material. The comparison clearly revealed the influence of size on the time to failure and the load-bearing capacity. KW - Fire testing KW - Structural integrity KW - Carbon-fibre-reinforced plastics KW - Fully developed fire KW - Composites PY - 2013 U6 - https://doi.org/10.1080/15685543.2013.816620 SN - 0927-6440 SN - 1568-5543 VL - 20 IS - 9 (Special Issue: ECCM15: Part 3) SP - 741 EP - 759 PB - VSP CY - Zeist AN - OPUS4-29647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörold, Andreas A1 - Schartel, Bernhard A1 - Trappe, Volker A1 - Korzen, Manfred A1 - Naumann, Maurice T1 - Structural integrity in fire: An intermediate-scale approach T2 - 15th European Conference on Composite Materials, ECCM 15 CY - Venice, Italy DA - 2012-06-24 PY - 2012 AN - OPUS4-26091 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Timme, Sebastian A1 - Hörold, Andreas A1 - Trappe, Volker A1 - Korzen, Manfred T1 - Composites in fire: Intermediate-scale testing of sandwich panels and shells N2 - Intermediate-scale testing is indispensable when investigating the fire resistance under simultaneous compressive load of components made of glass- and carbon-fibre-reinforced composites (GFRP and CFRP). BAM is successfully operating an intermediate-scale test stand, developed for a specimen size of 500 mm x 500 mm (1000 mm). The fire resistance in terms of fire stability of CFRP and GFRP sandwiches are investigated, e.g. at 20 % of their compressive failure load at room temperature. Times to failure increase by up to a factor of 4 due to intumescent coatings. For GFRP sandwiches, different core structures with and without additional flame retardants show an astonishing impact on time to failure. CFRP shell structures are investigated on the intermediate scale with and without stringer reinforcements, resulting in completely different mechanical failure behaviour in the ultimate load test as opposed to the fire resistance test. The stringers become the only load-carrying part, while the shell acts as a protective layer. Thus the design exploiting this self-protection potential, i.e. the residue of the front skin protecting the load-bearing structure, is highlighted as a most promising route to enhance the fire resistance of lightweight materials. T2 - Interflam 2016 CY - Egham, Surrey, UK DA - 04.06.2016 KW - composite KW - fire stability KW - fire resistance KW - sandwich panels KW - shells KW - intermediate-scale testing PY - 2016 SN - 978-0-9933933-2-7 SN - 978-0-9933933-3-4 VL - 2 SP - 1465 EP - 1470 PB - Interscience communications AN - OPUS4-36892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörold, Andreas A1 - Schartel, Bernhard A1 - Trappe, Volker A1 - Korzen, Manfred A1 - Hofmann-Böllinghaus, Anja T1 - Structural integrity of composites in fire: An intermediate-scale approach T2 - 13th European Meeting on Fire Retardant Polymers, FRPM CY - Alessandria, Italy DA - 2011-06-26 PY - 2011 AN - OPUS4-24072 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hörold, Andreas A1 - Schartel, Bernhard A1 - Trappe, Volker A1 - Korzen, Manfred A1 - Bünker, J. T1 - Fire stability of glass-fibre sandwich panels: The influence of core materials and flame retardants N2 - Fire resistance has become a key property for structural lightweight sandwich components in aviation, shipping, railway vehicles, and construction. The development of future composite materials and components demands adequate test procedures for simultaneous application of compression and fully developed fire. Therefore an intermediate-scale approach (specimen size = 500 mm x 500 mm) is applied with compressive loads (up to 1 MN) and direct application of a burner to one side of the specimens, as established in aviation for severe burn-through tests. The influence of different core structures (polyvinylchloride foam, polyisocyanorate foam reinforced by stitched glass bridges, and balsa wood) was investigated for glass-fibre-reinforced sandwich specimens with and without flame retardants applied on the fabrics, in the matrix, and on surface for each specimen at the same time. Times to failure were increased up to a factor of 4. The intumescent coating prolongs the time to failure significantly. What is more, using the intrinsic potential of the front skin together with the core to protect a load bearing back skin in sandwich panels, the design of the core – here using the wood core – is the most promising approach. KW - Fire resistance KW - Fire stability KW - Glass-fibre-reinforced plastics KW - Composite KW - Core materials PY - 2017 U6 - https://doi.org/10.1016/j.compstruct.2016.11.027 SN - 0263-8223 SN - 1879-1085 VL - 160 SP - 1310 EP - 1318 PB - Elsevier AN - OPUS4-38622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hörold, Andreas A1 - Schartel, Bernhard A1 - Trappe, Volker A1 - Gettwert, V. A1 - Korzen, Manfred T1 - Protecting the structural integrity of composites in fire: Intumescent coatings in the intermediate scale N2 - The fire behaviour of light-weight material used in structural applications is regarded as the main challenge to be solved for mass transportation. The task is to perform realistic experiments, including a mechanical test scenario under fully developed fires, to improve the material's reliability in structural applications. Our approach utilises an intermediate-scale test set-up (specimen size 500 × 500 mm) to apply realistic compressive loads and fully developed fires directly to one side of a carbon-fibre-reinforced sandwich composite. Three different intumescent coatings were applied to sandwich structures and compared to a bench-scale study. The results emphasise intumescent coatings as a promising method to sustain fire resistance, multiplying the time to failure. Nevertheless, the realistic intermediate-scale test using severe direct flame application underlines the extremely short failure times when the actual composite components are tested without any additional insulation. KW - Carbon-fibre-reinforced KW - Fire stability KW - High-temperature properties KW - Mechanical testing KW - Fully developed fire KW - Post-crash scenario PY - 2015 U6 - https://doi.org/10.1177/0731684415609791 SN - 0731-6844 SN - 1530-7964 VL - 34 IS - 24 SP - 2029 EP - 2044 PB - Technomic Publ. Co. CY - Westport, Conn. AN - OPUS4-35120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Humphrey, J.K. A1 - Gibson, A.G. A1 - Hörold, Andreas A1 - Trappe, Volker A1 - Gettwert, V. T1 - Assessing the structural integrity of carbon-fibre sandwich panels in fire: Bench-scale approach N2 - The fire resistance of lightweight sandwich panels (SW) with carbon fibre/epoxy skins and a poly(methacryl imide) (PMI) foam core is investigated in compression under direct application of a severe flame (heat flux=200 kW m−2). A bench-scale test procedure was used, with the sample held vertically. The epoxy decomposition temperature was quickly exceeded, with rapid flash-over and progressive core softening and decomposition. There is a change in failure mode depending on whether the load is greater or less than 50% of the unexposed failure load, or in other words if one or two skins carry the load. At high loads, failure involved both skins with a single clear linear separation across each face. There is an inflection in the failure time relationship in the ∼50% load region, corresponding to the time taken for heat to be transmitted to the rear face, along with a change in the rear skin failure mode from separation to the formation of a plastic hinge. The integrity of the carbon front face, even with the resin burnt out, and the low thermal diffusivity of the core, both play key roles in prolonging rear face integrity, something to be borne in mind for future panel design. Intumescent coatings prolong the period before failure occurs. The ratio of times to failure with and without protection is proposed as a measure of their effectiveness. Apart from insulation properties, their adhesion and stability under severe fire impact play a key role. KW - Carbon fibres KW - Sandwich KW - Structural composites KW - Fracture KW - High-temperature properties KW - Surface treatments PY - 2019 U6 - https://doi.org/10.1016/j.compositesb.2018.11.077 SN - 1359-8368 VL - 164 SP - 82 EP - 89 PB - Elsevier AN - OPUS4-46908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -