TY - JOUR A1 - Bierstedt, Andreas A1 - Stindt, Arne A1 - Warschat, Carsten A1 - Panne, Ulrich A1 - Riedel, Jens T1 - High repetition rate atmospheric pressure matrix-assisted laser desorption/ionization in combination with liquid matrices JF - European journal of mass spectrometry N2 - One major drawback of matrix-assisted laser desorption/ionization (MALDI) is still the relatively poor pulse-to-pulse reproducibility of the signal intensity. This problem, caused by insufficient homogeneity in the matrix/analyte co-crystallization, is usually circumvented by averaging the detected ion intensity over several shots. However, during the consecutive laser pulses, the applied matrix gets depleted and only a number of subsequent experiments can be done on the same sample spot. In order to achieve the desired long-term stability in combination with a sufficient pulse-to-pulse reproducibility, recently liquid MALDI matrices have been introduced. This contribution demonstrates the promising combination of liquid matrices with high repetition rate lasers for atmospheric pressure MALDI (AP-MALDI). To demonstrate the robustness of the new approach, two different kinds of liquid matrices were used in combination with both a typical flashlamp pumped 15 Hz laser and a diode pumped solid state laser operated at 5 kHz. The latter showed a stable ion signal over more than 3,500,000 consecutive laser pulses. KW - AP-MALDI KW - Liquid matrix KW - High repetition rate KW - Ionic liquid KW - DPSS laser PY - 2014 DO - https://doi.org/10.1255/ejms.1292 SN - 1469-0667 SN - 1356-1049 SN - 1365-0718 VL - 20 IS - 5 SP - 367 EP - 374 PB - IM Publications CY - Chichester AN - OPUS4-32510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bierstedt, Andreas A1 - Panne, Ulrich A1 - Riedel, Jens T1 - Confinement and enhancement of an airborne atmospheric laser-induced plasma using an ultrasonic acoustic resonator JF - Journal of analytical atomic spectrometry N2 - Optical elemental analysis in the gas phase typically relies on electrically driven plasmas. As an alternative approach, laser-induced plasmas (LIPs) have been suggested but have so far been only scarcely used. Here, a novel signal enhancement strategy for laser-based airborne plasma optical Emission spectroscopy for gas phase analytics is presented. In contrast to an electrically driven plasma, in the laser-induced analogue dynamic matter transport equilibrium builds up. The latter results in a rarefied density regime in the plasma core itself, surrounded by an area of compressed matter. The central rarefaction leads to a decrease in plasma intensity and analyte number density, both of which are detrimental for analytical purposes. Since the repetitive ignition of LIPs is a transient process, a restoration of the former gaseous medium by other dynamically equilibrated diffusion processes would be favourable. The presented combination of an airborne LIP and an ultrasonic acoustic resonator yields a fourfold signal enhancement while the Background contribution of ubiquitous air is at the same time effectively suppressed. Since the entire enhancement effect occurs without contact, no additional sources for abrasive sample contamination are introduced. KW - DPSS laser KW - Laser-induced plasma KW - High repetition rate KW - Ultrasonic acoustic resonator KW - Optical emission spectroscopy PY - 2018 DO - https://doi.org/10.1039/C7JA00297A SN - 0267-9477 SN - 1364-5544 VL - 33 IS - 1 SP - 135 EP - 140 PB - Royal Society of Chemistry CY - London AN - OPUS4-43619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -