TY - JOUR A1 - You, Yi A1 - Bierstedt, Andreas A1 - Riedel, Jens T1 - Spatial, temporal, and spectral characterization and kinetic investigations of a high repetition-rate laser-induced micro-plasma in air N2 - Advances in laser-induced plasmas have enabled various rapid and simple analytical applications. Especially, their uses in the analyses of condensed-phase samples have drawn significant attention in the past few decades. Depending on the laser energy per pulse, various analytical goals can be achieved. Laser-induced airborne plasmas allow direct analysis of species in ambient air. Importantly, all of these applications are based on a fundamental understanding of the laser–medium interaction. Recent developments of diode-pumped solid-state lasers offer an alternative to conventional powerful, yet bulky lasers, which can specifically operate at high Repetition rates. Although these lasers deliver much lower power per pulse (mJ compared to mJ), the outstanding repetition rates offer significant improvement to meet statistical needs in some cases. In the present work, a mJ-laserinduced airborne plasma was characterized through optical emission analysis. By using a ns-timegated image detector coupled with specific bandpass filters, spatially, temporally, and spectrally resolved plasma images were recorded. Compared to conventional mJ-laser-induced plasmas, the one induced by mJ-lasers demonstrated unique features during its evolution. Specifically, measurements of the distribution of ionic and atomic species revealed distinctive energy/matter transfer processes during early ignition of the plasma. Meanwhile, dynamic investigations suggested subsequent matter transport in the later stage. KW - Laser-induced plasma KW - Plasma KW - DPSS-laser PY - 2019 UR - https://pubs.rsc.org/en/content/articlehtml/2019/ja/c9ja00163h U6 - https://doi.org/10.1039/C9JA00163H SN - 0267-9477 VL - 34 IS - 8 SP - 1618 EP - 1629 PB - Royal Society of Chemistry CY - London AN - OPUS4-48622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bierstedt, Andreas A1 - You, Yi A1 - van Wasen, Sebastian A1 - Bosc-Bierne, Gaby A1 - Weller, Michael G. A1 - Riedel, Jens T1 - Laser-Induced Microplasma as an Ambient Ionization Approach for the Mass-Spectrometric Analysis of Liquid Samples N2 - An airborne high repetition rate laser-induced plasma was applied as a versatile ambient ionization source for mass-spectrometric determinations of polar and nonpolar analytes in solution. The laser plasma was sustained between a home-built pneumatic nebulizer and the inlet capillary of an Orbitrap mass spectrometer. To maintain stable conditions in the droplet-rich spray environment, the plasma was directly fed by the fundamental output (λ = 1064 nm) of a current state-of-the-art diode-pumped solid-state laser. Ionization by the laser-driven plasma resulted in signals of intact analyte ions of several chemical categories. The analyte ions were found to be fully desolvated since no further increase in ion signal was observed upon heating of the inlet capillary. Due to the electroneutrality of the plasma, both positive and negative analyte ions could be formed simultaneously without altering the operational parameters of the ion source. While, typically, polar analytes with pronounced gas phase basicities worked best, nonpolar and amphoteric compounds were also detected. The latter were detected with lower ion signals and were prone to a certain degree of fragmentation induced during the ionization process. All the described attests the laser-induced microplasma by a good performance in terms of stability, robustness, sensitivity, and general applicability as a self-contained ion source for the liquid sample introduction. KW - Laser KW - Laser-induced plasma KW - Ambient ionization KW - Mass Spectrometry PY - 2019 U6 - https://doi.org/10.1021/acs.analchem.9b00329 SN - 0003-2700 VL - 91 IS - 9 SP - 5922 EP - 5928 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-47939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -