TY - CONF A1 - Paul, Andrea A1 - Töpfer, Désirée A1 - Ruiken, J-P A1 - Illner, M A1 - Esche, E A1 - Repke, J A1 - Maiwald, Michael A1 - Meyer, Klas T1 - Raman spectroscopy for online monitoring of a homogeneous hydroformylation process in microemulsion N2 - An important industrial reaction is hydro¬formylation for the production of aldehydes from alkenes and syngas on the basis of homogeneous catalysis. The main cost factors of the processes currently used are product selectivity and the loss of the catalysts used. Therefore, various concepts for the hydroformylation of long-chain olefins have been developed, including hydroformylation in microemulsions, which is being investigated on a mini-plant scale at the Technical University of Berlin [1]. In this study, online Raman spectroscopy of the reaction of 1-dodecene to 1-tri¬decanal in a microemulsion was performed [2]. First, an experimental design was used to obtain a good representation of the operating range in the mini plant with respect to the concentrations of five reactants in a laboratory setup [3]. Based on the Raman spectra, Partial Least Squares (PLS) models for the prediction of 1-dodecene and 1-tride-decanal were calibrated and with these the reactions were predicted on a laboratory scale. In the next step, the PLS models were applied to online spectra from a mini-plant. This resulted in promising estimates of 1-tridecanal and acceptable predictions of 1-dodecene mass fractions. The predictive power of PLS models in this particular case was limited by unexpected by-product formation which, however, can easily be compensated by an extended calibration. Hence, Raman spectroscopy is a promising technique for process analysis in microemulsions. T2 - EuroPACT2021 CY - Online meeting DA - 15.11.2021 KW - Raman KW - Process analytics KW - Inline measurement PY - 2021 AN - OPUS4-53767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -