TY - JOUR A1 - Musolff, André A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Droste, Bernhard A1 - Komann, Steffen T1 - Drop test program with half scale model CASTOR HAW/TB2 N2 - Federal Institute for Materials Research and Testing (BAM) is the competent authority for mechanical and thermal safety assessment of transport packages for spent fuel and high level waste in Germany. In context with package design approval of the new German high level waste cask CASTOR® HAW28M, BAM performed several drop tests with a half scale model of the CASTOR® HAW/TB2. The cask is manufactured by Gesellschaft für Nuklear Service mbH and was tested under accident transport conditions on the 200 tons BAM drop test facility at the BAM Test Site Technical Safety. For this comprehensive test program, the test specimen CASTOR® HAW/TB2 was instrumented at 21 measurement planes with altogether 23 piezo resistive accelerometers, five temperature sensors and 131 triaxial strain gauges in the container interior and exterior respectively. The strains of four representative lid bolts were recorded by four uniaxial strain gauges per each bolt. Helium leakage rate measurements were performed before and after each test in the above noted testing sequence. The paper presents some experimental results of the half scale CASTOR® HAW/TB2 prototype (14 500 kg) and measurement data logging. It illustrates the extensive instrumentation and analyses that are used by BAM for evaluating the cask performance to the mechanical tests required by regulations. Although some of the quantitative deceleration, velocity and strain values cannot be shown because of confidentially issues, they are provided qualitatively to illustrate the types of measurements and methodologies used at BAM. KW - IAEA drop testing KW - Half scale model KW - Experimental test PY - 2011 U6 - https://doi.org/10.1179/1746510911Y.0000000013 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 22 IS - 3 SP - 154 EP - 160 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-25293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Komann, Steffen A1 - Droste, Bernhard A1 - Müller, Karsten A1 - Quercetti, Thomas T1 - Drop test program with a HLW cask model - performance, measurements and results N2 - BAM (Federal Institute for Material Research and Testing) is the competent authority for mechanical and thermal safety assessment of transport packages for spent fuel and high level waste (HLW) in Germany. In context with package design approval of the new German HLW cask CASTOR HAW28M, BAM performed several drop tests with a half-scale model of the CASTOR HAW/TB2. The test model was manufactured by GNS (Gesellschaft fur Nuklear Service mbH) and tested under accident transport conditions on the 200 tons BAM drop test facility at the BAM Test Site Technical Safety. For this comprehensive test program the test specimen CASTOR HAW/TB2 was instrumented at 21 measurement planes with altogether 23 piezo-resistive accelerometers, five temperature sensors and 131 tri-axial strain gauges in the container interior and exterior, respectively. The strains of four representative lid bolts were recorded by four uniaxial strain gauges per each bolt. Helium leakage rate measurements were performed before and after each test in the above noted testing sequence. The paper presents some experimental results of the half-scale CASTOR HAW/TB2 prototype (14,500 kg) and measurement data logging. T2 - 52nd INMM Annual meeting CY - Palm Desert, CA, USA DA - 17.07.2011 KW - Drop test results KW - Spent fuel transport cask KW - Impact limiter KW - Measurement methods KW - Drop test program PY - 2011 SP - 1 EP - 9 AN - OPUS4-24245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Müller, Karsten A1 - Neumann, Martin A1 - Kadji, Arsène Brice A1 - Droste, Bernhard T1 - Drop Results of the full-scale CONSTOR V/TC prototype T2 - PATRAM 2007 CY - Miami, FL, USA DA - 2007-10-21 PY - 2007 AN - OPUS4-16054 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Quercetti, Thomas A1 - Minack, Mathias T1 - Bauteilerprobung und -prüfung im geführten Fallprüfstand T2 - Tagung "Werkstoffprüfung 2007" CY - Neu-Ulm, Germany DA - 2007-11-29 PY - 2007 AN - OPUS4-16142 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Müller, Karsten A1 - Neumann, Martin A1 - Kadji, Arsène Brice A1 - Droste, Bernhard T1 - Drop Test Results of the Full-scale CONSTOR V/TC Prototype T2 - PATRAM 2007, 15th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Miami, Florida, USA DA - 2007-10-21 PY - 2007 IS - Abstract #65 SP - 1 EP - 7 PB - Institute of Nuclear Materials Management AN - OPUS4-17838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gründer, Klaus-Peter A1 - Kadoke, Daniel A1 - Müller, Karsten A1 - Musolff, André T1 - Characterisation of shock absorber deformation by optical surface digitisation N2 - The performance of shock absorbers has been tested in specific regulatory drop tests onto an unyielding target at the BAM drop test facility. Optical surface digitisation methods have been used to measure, analyse and evaluate permanent deformations of shock absorbers more systematically. The measurement principle of the used fringe projection technique and its technical application to shock absorber investigations is explained in detail. Furthermore, examples of shock absorber testing results as well as final data visualisation are given in the present paper. KW - Approval assessment of packages KW - Shock absorber KW - Drop test KW - Optical deformation measurement KW - Fringe projection KW - Three-dimensional surface digitisation KW - Optische Digitalisierung KW - Streifenprojektion KW - Fotogrammetrie KW - 3D-Verformung KW - Behälterzulassung PY - 2008 U6 - https://doi.org/10.1179/174651008X362566 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 19 IS - 3 SP - 155 EP - 159 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-18562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Quercetti, Thomas T1 - Characterisation of shock-absorbing components under impact loading T2 - DYMAT 2009, Royal Military Academy CY - Brussels, Belgium DA - 2009-09-07 PY - 2009 AN - OPUS4-18580 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gründer, Klaus-Peter A1 - Kadoke, Daniel A1 - Müller, Karsten A1 - Musolff, André T1 - Characterization of shock absorber deformation by optical surface digitization N2 - The performance of shock absorbers has been tested in specific regulatory drop tests onto an un-yielding target at the BAM drop test facility. Optical surface digitization methods have been used to measure, analyze and evaluate permanent deformations of shock absorbers more systemati-cally. The measurement principle of the fringe projection technique used and its technical appli-cation to shock absorber research is explained in detail in this paper. Furthermore, examples of shock absorber testing results as well as final data visualization are presented. T2 - PATRAM 2007, 15th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Miami, Florida, USA DA - 2007-10-21 KW - 3D Verformung KW - Optische Digitalisierung KW - Behälterzulassung KW - Streifenprojektion KW - Fotogrammetrie PY - 2007 IS - Paper 84 SP - 1 EP - 6 PB - Institute of Nuclear Materials Management AN - OPUS4-18692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Musolff, André T1 - Characterisation of shock-absorbing components under impact loading N2 - For validation of structural integrity under normal and hypothetical accident conditions during transport and storage of dangerous goods the Federal Institute for Materials Research and Testing (BAM) focuses its safety related scientific research on advanced mechanical safety assessment methods including simulation of high rate impact of model components and structures. An impact and crash test facility was recently developed for performing dynamic impact tests with component size specimen, or to crash specimens of impact limiter materials and structural components. The paper presents experimental techniques of BAM drop test machine and options of several measurement methods and advancements in order to characterize typical shock-absorbing materials under impact loading conditions. Instrumented drop weight tests are performed to complete materials data base and energy absorption of shock-absorbing materials as well as to implement materials and structural parameters into FEA of reference structures. T2 - 9th International conference on the mechanical and physical behaviour of materials under dynamic loading - DYMAT 2009 CY - Brussels, Belgium DA - 2009-09-07 PY - 2009 SN - 978-2-7598-0472-6 U6 - https://doi.org/10.1051/dymat/2009081 VL - 1/2 SP - 569 EP - 574 PB - EDP Sciences AN - OPUS4-20242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Musolff, André T1 - Numerische Analyse der 1-m-Fallprüfung auf einen Stahldorn T2 - Jahrestagung Kerntechnik 2010 CY - Berlin, Deutschland DA - 2010-05-04 KW - IAEO KW - 1-m-Fallprüfung KW - Stahldorn KW - Numerische Analyse KW - Verifizierung PY - 2010 IS - Sektion 5 / 505 SP - 1 EP - 5 CY - Berlin AN - OPUS4-21292 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Droste, Bernhard A1 - Musolff, André A1 - Müller, Karsten A1 - Quercetti, Thomas T1 - Drop and fire testing of spent fuel and HLW transport casks at "BAM test site technical safety" - 10079 T2 - WM2010 - 36th Annual radioactive waste management symposium CY - Phoenix, Arizona, USA DA - 2010-03-07 KW - transport packages of radioactive materials KW - Safety KW - Mechanical tests KW - Thermal tests KW - Drop test facility KW - Fire test facilities KW - Numerical calculations PY - 2010 SN - 978-0-9828171-0-0 SP - 1 EP - 11 CY - Tempe, AZ, USA AN - OPUS4-21830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Droste, Bernhard A1 - Quercetti, Thomas A1 - Müller, Karsten T1 - Durchführung experimenteller Fallprüfungen im Rahmen der mechanischen Bauartprüfung von Transportbehältern für radioaktive Stoffe T2 - Jahrestagung Kerntechnik 2010 CY - Berlin, Deutschland DA - 2010-05-04 PY - 2010 SP - 1 EP - 7 CY - Berlin AN - OPUS4-22770 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Droste, Bernhard A1 - Komann, Steffen T1 - Drop test program with the half-scale model CASTOR HAW/TB2 T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - Spent fuel transport cask KW - Drop test KW - Impact limiter KW - Measurement procedure PY - 2010 SP - 1 EP - 8 AN - OPUS4-22771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Droste, Bernhard A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Komann, Steffen T1 - Drop Test Program with the Half-Scale Model CASTOR HAW/TB2 T2 - 16th International Symposium on the Packaging and Transport of Radioactive Materials PATRAM CY - London, England DA - 2010-10-03 PY - 2010 AN - OPUS4-22133 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Qiao, Linan A1 - Zencker, Uwe A1 - Völzke, Holger A1 - Wille, Frank A1 - Musolff, André ED - Topping, B.H.V. T1 - Validation of numerical simulation models for transport and storage casks using drop test results N2 - The safety assessment of new designs for transport and storage casks for radioactive materials is a challenging task accomplished using different methods such as prototype tests, model tests, calculations and analogy reflections. At BAM (Federal Institute for Materials Research and Testing), the test procedures for the mechanical IAEA (International Atomic Energy Agency) test conditions often start with preliminary finite element (FE) calculations mostly with a small-scale cask model for verification of the proposed test cask instrumentation and test plan. On that basis the extensive test cask instrumentation is applied and checked. After that, a series of drop tests consisting of different test sequences is performed. Following the drop tests, numerical post-analyses are carried out. These analyses offer the possibility of a detailed calculation and assessment of stresses and strains in the entire test cask construction. The calculation results have to be carefully compared with the measurement data over the impact history to find out all relevant parameters for a realistic simulation of the impact scenario. The desired ideal boundary test conditions often cannot be met exactly during the drop tests. Therefore, the numerical post-analyses are carried out by using the real boundary conditions of the drop tests. The objective is to find a validated model, where the results of the numerical simulations satisfactorily meet the experimental results. Under test conditions according to the IAEA transport regulations, casks are usually equipped with impact limiters and dropped onto a so-called unyielding target. In general, it is difficult to verify a complex FE model by using results from only one drop test because of the complex impact process and the complex structure of such packages. After each drop test, numerical post-analyses should be carried out. Only if all drop tests were simulated successfully by using the same FE model under different test conditions, it is possible to obtain a validated numerical model for further investigations. In this case the results of the numerical simulations meet satisfactorily the experimental results. In this paper a study is presented, where the influence of different components on the cask loading is investigated systematically. T2 - 11th International conference on computational structures technology CY - Dubrovnik, Croatia DA - 2012-09-04 KW - Impact KW - Simulation KW - Cask KW - Dop test KW - Finite element model KW - Validation KW - Dynamics KW - Transport and storage cask PY - 2012 U6 - https://doi.org/10.4203/ccp.99.273 SN - 1759-3433 IS - Paper 273 SP - 1 EP - 12 PB - Civil Comp Press AN - OPUS4-26537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Droste, Bernhard A1 - Musolff, André A1 - Müller, Karsten A1 - Quercetti, Thomas T1 - Drop and fire testing of spent fuel and HLW transport casks at 'BAM test site technical safety' N2 - BAM, as a competent German government institute for the mechanical and thermal testing of radioactive material transport and storage containers, operates unique drop and fire test facilities for experimental investigations on the open air BAM Test Site Technical Safety. To be able to perform even drop tests with full scale spent fuel or HAW casks (i.e. the German CASTOR cask designs), BAM constructed in 2004 a large drop test facility capable to handle 200 ton test objects, and to drop them onto a steel plate covered unyielding target with a mass of nearly 2600 ton. Drop test campaigns of the 181 ton GNS CONSTOR V/TC, the 129 ton MHI MSF-69BG and a 1:2 scale model of the GNS CASTOR HAW28M (CASTOR HAW/TB2) have been performed since then. The experimental BAM drop testing activities can be supported also by drop testing of smaller packages (up to 2 ton) in an in-house test facility and by dynamic, guided impact testing of package components and material specimen inside a new drop test machine. In May 2008, a new modern fire test facility was put into operation. The facility provides two test stands fired with liquid propane. Testing in every case has to be completed by computational investigations, where BAM operates appropriate finite element modelling on appropriate computer codes, e.g. ABAQUS, LS-DYNA, ANSYS and other analytical tools. KW - Package testing KW - Drop testing KW - Fire testing KW - Regulations PY - 2011 U6 - https://doi.org/10.1179/1746510912Y.0000000002 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 22 IS - 4 SP - 200 EP - 205 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-26691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Musolff, André A1 - Müller, Karsten T1 - Instrumented measurements on radioactive waste disposal containers during experimental drop testing N2 - In context with disposal container safety assessment of containers for radioactive waste the German Federal Institute for Materials Research and Testing (BAM) performed numerous drop tests in the last years. The tests were accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The instrumentation of a specimen is an important tool to evaluate its mechanical behavior during impact. Test results as deceleration-time and strain-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of calculations based on finite-element methods. Strain gauges are useful to determine the time dependent magnitude of any deformation and the associated stresses. Accelerometers are widely used for the measuring of motion i.e. speed or the displacement of the rigid cask body, vibration and shock events. In addition high-speed video technique can be used to visualize and analyze the kinematical impact scenario by motion analysis. The paper describes some selected aspects on instrumented measurements and motion analysis in context with low level radioactive waste (LLW) container drop testing T2 - ICEM 2011 - 14th International Conference on environmental remediation and radioactive waste management CY - Reims, France DA - 25.09.2011 KW - Drop test KW - Radioactive KW - Disposal container KW - Instrumented measurements PY - 2011 U6 - https://doi.org/10.1115/ICEM2011-59142 SP - 929 EP - 938 AN - OPUS4-27044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nakagami, M. A1 - Quercetti, Thomas A1 - Komatsuki, S. A1 - Fujisawa, K. A1 - Nishio, T. A1 - Musolff, André A1 - Müller, Karsten A1 - Droste, Bernhard T1 - Waste container drop tests onto a concrete target N2 - The paper presents technical details of the drop test performance as well as some experimental results of tests carried out with the Japanese 'Yoyushindo-disposal' waste container for intermediate depth disposal. The tests were accompanied by various metrology to collect data as basis for safety assessment. T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - Waste container KW - Drop test KW - Concrete target PY - 2010 SP - 1 EP - 8 (Paper 367) AN - OPUS4-27045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weber, Mike A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Musolff, André T1 - From experiment to appropriate finite element model-safety assessment for ductile cast iron casks demonstrated by means of IAEA puncture drop test N2 - In the approval procedure of transport packages for radioactive materials, the competent authority mechanical and thermal safety assessment is carried out in Germany by BAM Federal Institute for Materials Research and Testing. The combination of experimental investigations and numerical calculations in conjunction with materials and components testing is the basis of the safety assessment concept of the BAM. Among other mechanical test scenarios, a 1 metre drop test onto a steel bar has to be considered for the application of the hypothetical accident conditions to Type B packages according to IAEA regulations. Within the approval procedure for the new German package design of the HLW cask CASTOR® HAW 28M, designed by GNS Gesellschaft für Nuklear-Service Germany, a puncture drop test was performed with a half-scale model of the cask at -40°C. For independent assessment and to control the safety analysis presented by the applicant, BAM developed a complex finite element (FE) model for a dynamical ABAQUS/ExplicitTM analysis. This paper describes in detail the use of the FE method for modelling the puncture drop test within an actual assessment strategy. At first, investigations of the behaviour of the steel bar were carried out. Different friction coefficients and the material law of the bar were analysed by using a 'rigid-body' approximation for the cask body. In the next step, a more detailed FE model with a more realistic material definition for the cask body was developed. The validation of calculated strains was carried out by comparison with the results of the strain gauges located at the relevant points of the cask model. The influence of the FE meshing is described. Finally, the validated FE half-scale model was expanded to full-scale dimension. Scaling effects were analysed. The model was used for safety assessment of the package to be approved. KW - IAEA puncture drop test KW - Cylindrical cask KW - Explicit dynamics KW - Scaled model KW - Numerical analysis KW - Validation KW - Safety assessment PY - 2011 U6 - https://doi.org/10.1179/1746510911Y.0000000010 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 22 IS - 3 SP - 148 EP - 153 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-25356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Droste, Bernhard A1 - Gründer, Klaus-Peter T1 - Experimental Testing of Impact Limiters for RAM Packages under Drop Test Conditions T2 - PATRAM 2013 - 17th International Symposium on the Packaging and Transportation of Radioactive Materials CY - San Francisco, CA, USA DA - 2013-08-18 PY - 2013 AN - OPUS4-29770 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Droste, Bernhard A1 - Gründer, Klaus-Peter T1 - Experimental Investigation of RAM Packages Impact Limiters T2 - Waste Management Conference 2014 (WM2014) CY - Phoenix, AZ, USA DA - 2014-03-02 PY - 2014 AN - OPUS4-30277 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Musolff, André A1 - Droste, Bernhard T1 - Quality assurance requirements for mechanical test campaigns of packagings N2 - A management system based on international, national or other standards acceptable to the competent authority shall be established and implemented for all activities including design, manufacture, testing, documentation, use, maintenance, inspection in accordance with IAEA SSR-6. Hereby, quality assured testing and documentation can substantially contribute to the demonstration of package design compliance with the regulations. Nowadays, a drop test campaign within the approval process of packages for radioactive materials can be a very complex and extensive project including various test and measurement techniques. On this basis of procedures and documents the experimental tests of packages and containers are performed with quality proofed results and a high reliability. A complete traceability and direct transferability of package design test results can give particular importance to the type approval procedure. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 KW - Quality assurance KW - Packaging KW - Drop test PY - 2013 SP - Paper 181, 1 EP - 7 PB - Omnipress AN - OPUS4-30493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Droste, Bernhard A1 - Gründer, Klaus-Peter T1 - Experimental testing of impact limiters for RAM packages under drop test conditions N2 - In context with new cask designs and their approval procedure, the experimental testing of impact limiters under drop test conditions becomes more and more important in order to assess the damage mechanics behaviour and safety margins for validation reasons. In recent years, various designs of impact limiters have been tested by the Federal Institute for Materials Research and Testing within specific component testing and particularly with regard to type B package design approval procedures. The paper focuses on the experimental realisation of impact limiter tests and presents implemented measurement techniques to determine the amount of deformation and to explain the impact behaviour by means of photogrammetric metrology and three-dimensional fringe projection method, high speed motion analysis and adjusted deceleration measurements. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 KW - Drop test KW - Impact limiters KW - RAM packages KW - Measurement methods PY - 2013 SP - 1 EP - 9 PB - Omnipress AN - OPUS4-31040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Quercetti, Thomas A1 - Droste, Bernhard A1 - Müller, Karsten A1 - Gründer, Klaus-Peter T1 - Experimental investigation of RAM packages impact limiters - 14256 N2 - In context with new cask designs and their approval procedure the experimental testing of impact limiters under drop test conditions becomes more and more important in order to assess the damage mechanics behavior and safety margins for validation reasons. In recent years various designs of impact limiters have been tested by the Federal Institute for Materials Research and Testing (BAM) within specific component testing and particularly with regard to type B package design approval procedures. The paper focuses on the experimental realization of impact limiter tests and presents implemented measurement techniques to determine the amount of deformation and to explain the impact behavior by means of photogrammetric metrology and 3-d fringe projection method, high-speed motion analysis and adjusted deceleration measurements. T2 - WM2014 Conference CY - Phoenix, Arizona, USA DA - 02.03.2014 KW - Drop test KW - Impact limiters KW - RAM packages KW - Measurement methods PY - 2014 SN - 978-0-9836186-3-8 SP - Paper 14256, 1 EP - 10 AN - OPUS4-31050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quercetti, Thomas A1 - Nakagami, M. A1 - Komatsuki, S. A1 - Musolff, André A1 - Müller, Karsten A1 - Droste, Bernhard A1 - Fujisawa, K. T1 - Disposal container safety assessment - drop tests with 'Yoyushindo-disposal' waste container onto concrete target N2 - This paper presents technical details of the drop test performance as well as some experimental results of tests carried out with the Japanese 'Yoyushindo-Disposal' waste container for intermediate depth disposal. The drop test program comprised three single 8 m drop tests at the specimen's corner edge orientation onto a concrete slab. The slab was connected to the unyielding IAEA target of the BAM's 200 t drop test facility. The three tested specimens had masses between 20 000 and 28 000 kg depending on their content mass. The tests were accompanied by various metrology, such as strain and deceleration measurements, optical three-dimensional deformation methods, leak tightness testing and test installation for potential particle release measurements to collect a set of data for establishing a basis for safety assessment. KW - Drop test KW - Disposal container KW - Safety PY - 2010 U6 - https://doi.org/10.1179/174650910X12681251630291 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 21 IS - 3 SP - 132 EP - 141 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-22613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Droste, Bernhard A1 - Komann, Steffen T1 - Drop Test Program with a HLW Cask Model - Performance, Measurements and Results T2 - INMM 2011 - 52nd Annual Meeting CY - Palm Desert, CA, USA DA - 2011-07-17 PY - 2011 AN - OPUS4-23945 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Musolff, André T1 - From experiment to an appropriate finite element model-safety assessment for ductile cast iron casks demonstrated by means of IAEA puncture drop test N2 - In the approval procedure of transport packages for radioactive materials, the competent authority mechanical and thermal safety assessment is carried out in Germany by BAM Federal Institute for Materials Research and Testing. The combination of experimental investigations and numerical calculations in conjunction with materials and components testing is the basis of the safety assessment concept of the BAM. Among other mechanical test scenarios a 1 meter drop test onto a steel bar has to be considered for hypothetical accident conditions of Type B packages according to IAEA regulations. Within the approval procedure for the new German package design of the HLW cask CASTOR® HAW 28M, designed by GNS Gesellschaft für Nuklear-Service Germany, a puncture drop test was performed with a half-scale model of the cask at -40°C. For independent assessment and to control the safety analysis presented by applicant, BAM developed a complex finite element model for a dynamical ABAQUS/ExplicitTM analysis. This paper describes in detail the use of the finite element (FE) method for modeling the puncture drop test within an actual assessment strategy. At first investigations of the behaviour of the steel bar are carried out. Different friction coefficients and the material law of the bar are analysed by using a 'rigid-body' approximation for the cask body. In the next step a more detailed FE model with a more realistic material definition for the cask body is developed. Strain verification is possible by results of the strain gauges located at the relevant points of the cask model. The influence of the finite element meshing is described. Finally, the verified FE half-scale model is expanded to full-scale dimension. Scaling effects are analysed. The model is used for safety assessment of the package to be approved. T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - IAEA KW - Puncture drop test KW - Numerical analysis KW - Verification PY - 2010 SP - 1-8 (Tuesday/T19/26-115) AN - OPUS4-23928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Musolff, André A1 - Müller, Karsten A1 - Neumann, Martin A1 - Kadji, Arsène Brice A1 - Droste, Bernhard T1 - Results of full scale CONSTOR® V/TC prototype 9 m horizontal drop test KW - Drop testing KW - Impact limiter KW - Finite element method KW - Full scale cast PY - 2008 U6 - https://doi.org/10.1179/174651008X382951 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 19 IS - 4 SP - 228 EP - 232 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-18625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Droste, Bernhard A1 - Quercetti, Thomas A1 - Müller, Karsten T1 - Durchführung experimenteller Fallprüfungen im Rahmen der mechanischen Bauartprüfung von Transportbehältern für radioaktive Stoffe T2 - Jahrestagung Kerntechnik CY - Berlin, Germany DA - 2010-05-04 PY - 2010 AN - OPUS4-22215 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Qiao, Linan A1 - Zencker, Uwe A1 - Musolff, André A1 - Komann, Steffen T1 - Dynamic finite element analyses of a spent fuel transport and storage cask with impact limiters by 9 meter drop tests N2 - The 9 meter drop onto an unyielding target is one of the important mechanical tests within the safety assessment of transport casks for radioactive material. In general, the cask is equipped with impact limiters to reduce the dynamic load on the cask body by absorbing a major part of the kinetic energy. The impact limiters are often made of wood or aluminium. In this study an elastic-plastic material model with volume change was used to describe the stress-strain behaviour of wood found in crush tests. For aluminium, an elastic-incremental plastic material model with Cowper-Symonds parameters for strain rate depending material hardening was used to model the adiabatic stress-strain relations measured at specimens at constant ambient temperature. Hereafter simulations with a sophisticated finite element model were carried out and compared with different drop tests. Four drop tests of a half-scale cask model equipped with wood and aluminium impact limiters with different drop positions were selected to investigate the impact limiter behaviour during a 9 meter drop test. All drop tests were simulated with the same FE mesh but under different boundary and initial conditions. T2 - SIMULIA Customer conference CY - Barcelona, Spain DA - 17.05.2011 KW - Cask KW - Drop test KW - Impact limiter KW - Wood KW - Aluminium KW - Dynamics PY - 2011 SP - 932 EP - 944 AN - OPUS4-23706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Qiao, Linan A1 - Zencker, Uwe A1 - Wille, Frank A1 - Musolff, André T1 - Numerical simulation of 9 meter drop of a transport and storage cask with aluminium impact limiter N2 - For the purpose of numerical simulation of 9 meter drop of a transport and storage cask with aluminium impact limiter, an elastic-incremental plastic material model with strain rate hardening acc. to Cowper-Symonds is used for the development of isothermal as well as adiabatic stress-strain relations of aluminium from the compression test at constant ambient temperature. After that, two different simulation strategies are compared. At first, the drop test is calculated fully coupled, i.e. with isothermal stress-strain relations and possible heat generation in the material. Then the drop test is recalculated in a very simplified manner with adiabatic stress-strain relations from the compression test in an isothermal simulation. Both calculation strategies show similar results in the investigated load scenario. T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - Drop test KW - Spent fuel transport cask KW - Finite element calculation KW - Dynamic simulation KW - Impact limiter KW - Aluminium PY - 2010 SP - 1-8 (Monday-T16-117) AN - OPUS4-23707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Nehrig, Marko A1 - Bletzer, Claus A1 - Musolff, André A1 - Erenberg, Marina A1 - Wille, Frank T1 - Behaviour of Wood Filled Impact Limiters during Fire Test N2 - Packages for the transport of radioactive material are often equipped with impact limiters consisting of wood, encapsulated by steel sheets. These impact limiters shall ensure the transport cask meets the mechanical and thermal IAEA regulatory test requirements. After damage caused by the mechanical tests the package has to withstand a severe fire scenario. According to the regulations during and following the thermal test, the specimen shall not be artificially cooled and any combustion of materials of the package shall be permitted to proceed naturally. Corresponding to results of the French institute IRSN combustion and smouldering of wood inside the impact limiter occurred during and after the fire test. An additional energy supply from a pre-damaged impact limiter to the cask could be the consequence for the safety assessment of the containment. BAM started a first test phase to examine the issue of combustion for such kind of package components. The goal was to understand the phenomena under the consideration of relevant regulatory boundary conditions. Several metal buckets were filled with wood and equipped with thermocouples. The test specimens have been prepared with different damage arrangements to take the influence of the mechanical tests into account. This paper shows the experimental setup and the conduction of the tests. The first test shows that pre-damaged metal encapsulations can lead to smouldering of the wood and with this to a supplement energy release after the end of the 30 minute fire. BAM is in the preparation process for a second test phase. A thermal test will take place with a wood filled test specimen weighing about 2Mg. T2 - The 18th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 2016) CY - Kobe, Japan DA - 18.09.2016 KW - Large scale testing KW - Fire test KW - Impact limiter KW - Shock absorber KW - Thermal test KW - Typ-B KW - Wood KW - Smouldering PY - 2016 SP - paper no. 1011 AN - OPUS4-37854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Musolff, Andre A1 - Nakagami, M. A1 - Komatsuki, S. A1 - Tamaki, H. A1 - Kishimoto, J. A1 - Fujisawa, K. A1 - Nishio, T. ED - Quercetti, Thomas T1 - Experimental testing of RAM packages within Japanese German projects N2 - In context with Japanese disposal and transport container safety assessment the German Federal Institute for Materials Research and Testing (Bundesanstalt für Materialforschung und -prüfung) per-formed extensive drop test series with prototypes of RAM packages in recent years. The paper presents two cooperative projects focused on project management, testing performance and experimental results. In the first project, a full-scale prototype of a package for transport and storage of spent fuel elements with a total mass of 127,000 kg and its reduced-scale model which was similar to the prototype in both geometry and design were drop tested in 9 m and 1 m puncture tests at various drop orientations under regulatory conditions. In context with a corresponding research project the test data was used in combination with numerical methods to investigate the phenomenon of internal cask- content collisions during drop tests. Here, technological gaps between basket or radioactive content and cask body or primary lid can be a reason for significant high dynamic loadings of cask components and its internals due to additional impact interactions in the cask cavity caused by inner relative movement between content and cask. Further investigations were carried out in the field of similarity mechanics comparing experimental drop test data of the full-scale prototype and reduced-scale model in regard to the transferability of package impact response from reduced-scale models to full-scale packages. In the second project, drop tests with a waste container for intermediate depth disposal were per-formed being contracted by Kobe Steel, Ltd. and a consortium of Japanese electric power plant com-panies. The drop test program comprised three single 8-m drop tests in a specimen’s corner edge orientation. For drop tests according to legal regulations for interim storage or final disposal it is often necessary to use a target which represents the real ground of the storage facility. In such cases the container hits directly onto a well-defined concrete slab on top of the IAEA target. Here, the directly impact target for the drop tests were concrete slabs manufactured in Japan and connected by mortar to the impact pad of the unyielding IAEA target. KW - Drop testing KW - Package PY - 2016 SP - Paper 1043, 1 EP - 13 CY - Kobe, Japan AN - OPUS4-37557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Musolff, André A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Droste, Bernhard A1 - Gründer, Klaus-Peter T1 - Experimental testing of impact limiters for RAM packages under drop test conditions N2 - In context with new cask designs and their approval procedure, the experimental testing of impact limiters under drop test conditions becomes more and more important in order to assess the damage mechanics behaviour and safety margins for validation reasons. In recent years, various designs of impact limiters have been tested by the Federal Institute for Materials Research and Testing within specific component testing and particularly with regard to type B package design approval procedures. The paper focuses on the experimental realisation of impact limiter tests and presents implemented measurement techniques to determine the amount of deformation and to explain the impact behaviour by means of photogrammetric metrology and three-dimensional fringe projection method, high speed motion analysis and adjusted deceleration measurements. KW - Experimental KW - Drop test KW - Impact limiter KW - Close range photogrammetry PY - 2014 U6 - https://doi.org/10.1179/1746510915Y.0000000003 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 25 IS - 3-4 SP - 133 EP - 138 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-33776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Nehrig, Marko A1 - Bletzer, Claus Wilhelm A1 - Musolff, André A1 - Wille, Frank T1 - Combustion of wood encapsulated in steel sheets during fire test N2 - Packages for the transport of radioactive material are often equipped with impact limiters consisting of wood, encapsulated by Steel sheets. These impact limiters shall ensure the transport cask meets the IAEA safety requirements. After damage caused by the mechanical tests the package has to withstand a severe fire scenario. According to the regulations during and following the fire test, the specimen shall not be artificially cooled and any combustion of materials of the package shall be permitted to proceed naturally. Due to results of the French institute IRSN it was shown that after the fire test an additional energy supply from a pre-damaged impact limiter should be taken into account. The combustion or smouldering of wood was of interest. BAM started a first test phase to examine the issue of combustion for such kind of package components. The goal was to understand the phenomena under the consideration of relevant regulatory boundary conditions. Several metal buckets were filled with wood and equipped with thermocouples. The test specimens have been prepared with different damage arrangements to take the influence of the mechanical tests into account. This paper shows the experimental Setup and the conduction of the tests. The first test shows that pre-damaged metal encapsulations can lead to smouldering of the wood and with this to a Supplement energy release after the end of the 30 minute fire. The consequence could be, to consider additional thermal loads of wood filled impact limiters to filled the IAEA regulations, if the conditions of the tests are transferable to the safety analysis of the package design. T2 - RAMTRANS 2015 - 10th International conference on radioactive materials transport and storage CY - Oxford, UK DA - 19.05.2015 KW - Typ-B KW - Impact limiter KW - Shock absorber KW - Wood KW - Thermal test KW - Fire test PY - 2015 SP - 1 EP - 9 AN - OPUS4-33407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Bartholmai, Matthias T1 - Impact Analysis of RAM Packages under Kinematic Aspects N2 - BAM is the German Federal Institute for Materials Research and Testing and the competent authority for mechanical and thermal safety assessment of transport packages for spent fuel and high level waste. In context with safety assessment of RAM packages BAM performed numerous drop tests in the last decades. The tests were mostly accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The procedure of drop testing and the resulting measurement analysis are the main methods to evaluate the safety against mechanical test conditions. Measurement techniques are dedicated to answer questions in regard to the structural integrity of a RAM package, the mechanical behavior of the prototype as well as of its content under impact conditions. Test results like deceleration-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of numerical calculations. In this context the adequate selection of accelerometers and measurement systems for the performance of drop tests is important. Therefore it is not only necessary to find suitable positions for the accelerometers at the test specimens, but also to consider technical boundary conditions as e.g. temperature. T2 - PATRAM 2016 CY - Kobe, Japan DA - 18.09.2016 KW - RAM packages KW - Drop test KW - Impact KW - Radioactive PY - 2016 UR - http://www.patram2016.org/ SP - Paper 1030, 1 AN - OPUS4-38859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, Andre A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Bartholmai, Matthias T1 - Impact Analysis of RAM Packages under Kinematic Aspects N2 - BAM is the German Federal Institute for Materials Research and Testing and the competent authority for mechanical and thermal safety assessment of transport packages for spent fuel and high level waste. In context with safety assessment of RAM packages BAM performed numerous drop tests in the last decades. The tests were mostly accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The procedure of drop testing and the resulting measurement analysis are the main methods to evaluate the safety against mechanical test conditions. Measurement techniques are dedicated to answer questions in regard to the structural integrity of a RAM package, the mechanical behavior of the prototype as well as of its content under impact conditions. Test results like deceleration-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of numerical calculations. In this context the adequate selection of accelerometers and measurement systems for the performance of drop tests is important. Therefore it is not only necessary to find suitable positions for the accelerometers at the test specimens, but also to consider technical boundary conditions as e.g. temperature. T2 - PATRAM 2016 CY - Kobe, Japan DA - 18.09.2016 KW - RAM packages KW - Drop test KW - Impact KW - Radioactive PY - 2016 AN - OPUS4-38860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehrig, Marko A1 - Erenberg, Marina A1 - Feldkamp, Martin A1 - Bletzer, Claus A1 - Musolff, André A1 - Wille, Frank T1 - Large Scale IAEA Thermal Test with Wood filled Impact Limiters N2 - Packages for the transport of radioactive material are often equipped with impact limiters consisting of wood. Mostly this wood is encapsulated by steel sheets. The impact limiters are needed to ensure that the transport casks meet the IAEA safety requirements. According to the IAEA safety requirements a package has to withstand consecutively severe mechanical tests followed by a thermal test. The mechanical tests have to produce maximum damage concerning the thermal test. Following this, the impact limiters may have serious pre-damage when the thermal tests begins. The IAEA safety requirements state that during and following the fire test, the specimen shall not be artificially cooled and any combustion of materials of the package shall be permitted to proceed naturally. Small scale fire tests with wood filled metal drums by BAM and works of the French Institute for Radiological Protection and Nuclear Safety (IRSN) showed that pre-damaged steel encapsulated wooden structures could start smoldering initiated by the thermal test. These processes supply additional energy to the cask which should be considered within the safety assessment of the package. As not much is known about smoldering processes in encapsulated wooden structures with a reduced oxygen supply the need for a test was identified. To investigate the influence of a smoldering impact limiter concerning the amount of energy supplied to the cask in dependence of the time BAM conducted a large scale impact limiter thermal test. For that, a pre-damaged impact limiter with a diameter of 2,3 m was mounted on a water tank simulating a cask. A complex system of a regulated pump, a heater, a cooler, a slide valve, a flow meter and numerous thermocouples were installed and connected to a control unit to ensure all needed operating conditions. After a pre-heating compared to typical SNF decay-heat, the 30 min lasting fire phase of the thermal test was started. After that, the expected and initiated smoldering began. The results of the large scale test are presented in this poster. Systematic small scale tests will follow to identify the influence of different parameters, e.g. moisture content and scale effects. The tests took place at BAM Test Site for Technical Safety (TTS) with its various possibilities for mechanical and thermal tests. The results of these tests will have direct influence in the safety assessment of transport cask for the transport of radioactive material T2 - 2018 WM Symposia CY - Phoenix, AZ, USA DA - 18.03.2018 KW - Type-B Package KW - Thermal Test PY - 2018 SP - Paper 18257, 1 EP - 11 AN - OPUS4-45311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, Andre A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Bartholmai, Matthias T1 - Kinematic aspects of RAM packages drop tests N2 - BAM is the German Federal Institute for Materials Research and Testing and the competent authority for mechanical and thermal safety assessment of transport packages for spent fuel and high level waste. In context with safety assessment of RAM packages BAM performed numerous drop tests in the last decades. The tests were mostly accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The procedure of drop testing and the resulting measurement analysis are the main methods to evaluate the safety against mechanical test conditions. Measurement techniques are dedicated to answer questions in regard to the structural integrity of a RAM package, the mechanical behavior of the prototype as well as of its content under impact conditions. Test results like deceleration-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of numerical calculations. In this context the adequate selection of accelerometers and measurement systems for the performance of drop tests is important. Therefore it is not only necessary to find suitable positions for the accelerometers at the test specimens, but also to consider technical boundary conditions as e.g. temperature. T2 - 2018 WM Symposia CY - Phoenix, AZ, USA DA - 18.03.2018 KW - Drop KW - Test KW - Measurement KW - Analysis KW - Prototyp PY - 2018 SP - Paper 18149, 1 EP - 12 AN - OPUS4-44872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, Andre A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Bartholmai, Matthias T1 - Kinematic aspects of RAM packages drop tests N2 - BAM is the German Federal Institute for Materials Research and Testing and the competent authority for mechanical and thermal safety assessment of transport packages for spent fuel and high level waste. In context with safety assessment of RAM packages BAM performed numerous drop tests in the last decades. The tests were mostly accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The procedure of drop testing and the resulting measurement analysis are the main methods to evaluate the safety against mechanical test conditions. Measurement techniques are dedicated to answer questions in regard to the structural integrity of a RAM package, the mechanical behavior of the prototype as well as of its content under impact conditions. Test results like deceleration-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of numerical calculations. In this context the adequate selection of accelerometers and measurement systems for the performance of drop tests is important. Therefore it is not only necessary to find suitable positions for the accelerometers at the test specimens, but also to consider technical boundary conditions as e.g. temperature. T2 - 2018 WM Symposia CY - Phoenix, AZ, USA DA - 18.03.2018 KW - Drop KW - Test KW - Measurement KW - Kinematic KW - Analysis PY - 2018 AN - OPUS4-44874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Quercetti, Thomas T1 - Measurement Techniques and Release System of the BAM Drop Test-Facility T2 - International Symposium "Non-Destructive testing in Civil Engineering CY - Berlin, Germany DA - 2015-09-15 PY - 2015 AN - OPUS4-34448 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, Andre A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Bartholmai, Matthias T1 - Analysis of RAM Packages Drop Testing under Kinematic Aspects N2 - BAM is the German Federal Institute for Materials Research and Testing and the competent authority for mechanical and thermal safety assessment of transport packages for spent fuel and high level waste. In context with safety assessment of RAM packages BAM performed numerous drop tests in the last decades. The tests were mostly accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The procedure of drop testing and the resulting measurement analysis are the main methods to evaluate the safety against mechanical test conditions. Measurement techniques are dedicated to answer questions in regard to the structural integrity of a RAM package, the mechanical behaviour of the prototype as well as of its content under impact conditions. Test results like deceleration-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of numerical calculations. In this context the adequate selection of accelerometers and measurement systems for the performance of drop tests is important. Therefore it is not only necessary to find suitable positions for the accelerometers at the test specimens, but also to consider technical boundary conditions as e.g. temperature. Accelerometers are widely used for the measuring of motion i.e. velocity or the displacement of the rigid cask body, vibration and shock events. Acceleration measurements as well as their analysis are often very complex and extensive also because they are in turn embedded in complex drop test experiments having to consider difficult boundary conditions as for example very low specimen temperatures, large drop heights and sophisticated drop orientations of the specimen. In every case special instruments and adequate technical equipment is required to accelerations under these and transient shock conditions which are characterized in our case by impact times in the range of a few milliseconds up to perhaps 100 Milliseconds naturally depending on container design and drop test conditions as drop height and target. The paper gives an overview of drop tests under kinematic aspects performed with RAM packages. Furthermore, experimental advancements of accelerometer instrumentation within drop testing, e.g. the characteristics and possibilities of accelerometers, behavior of accelerometers and various influence factors are shown. T2 - International High-Level Radioactive Waste Management 2019 (IHLRWM 2019) CY - Knoxville, TN, USA DA - 14.04.2019 KW - Accelerometer KW - Radioactive KW - Packages KW - Drop test KW - Kineatic aspects KW - Measurement PY - 2019 AN - OPUS4-48039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Erenberg, Marina A1 - Nehrig, Marko A1 - Bletzer, Claus A1 - Musolff, André A1 - Schönfelder, Thorsten A1 - Wille, Frank T1 - Behavior of wood filled impact limiters during the IAEA thermal test N2 - Packages for the transport of radioactive material are often equipped with impact limiters consisting of wood, encapsulated by steel sheets. These impact limiters shall ensure that transport casks meet the IAEA safety requirements. After damage caused by the mechanical tests the package has to withstand a severe fire scenario. It is required that the mechanical tests have to produce maximum damage, taking into account the thermal test. Furthermore, any damage, which would give rise to increased radiation or loss of containment or affect the confinement system after the thermal test, should be considered. Concerning the thermal test, the IAEA safety requirements state that during and following the fire test, the specimen shall not be artificially cooled and any combustion of materials of the package shall be permitted to proceed naturally. Different works from the French Institute for Radiological Protection and Nuclear Safety (IRSN) and BAM show that additional energy supply from a pre-damaged impact limiter to the cask could occur caused by smoldering of the wood. This effect should be considered within the safety assessment of the package. A heat wave from the fire could overlap with the additional energy from the impact limiter in the sealing system. In 2015 BAM conducted small scale fire tests with wood filled metal drums showing continuing combustion processes during the cooling down phase. As not much is known about smoldering processes in wood filled impact limiters, it is highly complex to define pre-damage of impact limiters, which are conservative, regarding the most damaging energy flow from the impact limiter to the containment system in dependence of time. More research has to be done to develop models to examine the effects of smoldering impact limiters on the containment of packages for the assessment. The process of smoldering is described with regard to the requirements in the thermal safety assessment. Parameters influencing the smoldering process are identified. BAM operates test facilities to examine the issue of mechanical damage, combustion and heat transfer of packages for transport of radioactive material. A thermal test will take place with a wood filled test specimen with a diameter of about 2.3 meters. The aim is to understand the phenomena of smoldering under the consideration of relevant regulatory boundary conditions. T2 - ASME 2017 Pressure Vessels and Piping Conference (PVP2017) CY - Waikoloa, Hawaii, USA DA - 16.07.2017 KW - Fire test KW - Wood KW - IAEA KW - Smoldering KW - Smouldering KW - Shock absorber KW - Thermal test KW - Combustion KW - Impact limiter PY - 2017 SN - 978-0-7918-5802-8 VL - 7 SP - Article UNSP V007T07A038, 1 EP - 9 AN - OPUS4-43172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Erenberg, Marina A1 - Nehrig, Marko A1 - Bletzer, Claus A1 - Musolff, André A1 - Wille, Frank A1 - Schönfelder, Thorsten T1 - Aspects of assessment of packages with wood filled impact limiters during fire tests N2 - Packages for the transport of radioactive material are often equipped with impact limiters consisting of wood, encapsulated by steel sheets. These impact limiters shall ensure that the transport casks meet the mechanical and thermal IAEA regulatory test requirements. According to the accident conditions of transport it is mandatory to expose the specimens to a cumulative effect by mechanical and thermal impacts. The mechanical tests consist of a free drop from 9 m onto a flat unyielding target and a 1 m drop onto a puncture bar. After damage caused by mechanical test sequences the package has to withstand a severe fire scenario. Corresponding to the IAEA advisory material it is required that the impact attitudes for the 9 m drop test and for the puncture test have to be such as to produce maximum damage, taking into account the thermal test. Moreover, any damage, which would give rise to increased radiation or loss of containment or affect the confinement system after the thermal test, should be considered. During and following the thermal test, the specimen shall not be artificially cooled and any combustion of materials of the package shall be permitted to proceed naturally. Different works from the French Institute for Radiological Protection and Nuclear Safety (IRSN) and BAM show that additional energy supply from a pre-damaged impact limiter to the cask could occur. This effect should be considered within the safety assessment of the containment. Thermal effects at the closure system of the cask, which might result in an elevated activity release, have to be excluded. BAM conducted small scale tests with wood filled metal buckets showing continuing combustion processes during the cooling down phase. These test results are presented. As not much is known about smouldering processes in wood filled impact limiters, it is highly complex to define pre-damage of impact limiters, which are conservative, regarding the maximum damaging energy flow from the impact limiter to the containment system. More research has to be done to develop models to examine the effects of smouldering impact limiters on the containment of packages for the transport of radioactive material. Aspects of assessment and its difficulties are shown. BAM as a competent authority for the approval of transport casks for radioactive material in Germany operates the test facilities to examine the issue of mechanical damage, combustion and heat transfer for such kind of package systems. For this purpose the knowledge from real drop tests with casks of a mass partly over 100 tons was transferred to a test application. A thermal test will take place with a wood filled test specimen with a diameter of about 2.3 meters. The aim is to understand the phenomena of smouldering under the consideration of relevant regulatory boundary conditions. The process of smouldering is described with regard to the requirements in the thermal assessment of safety of packages for the transport of radioactive material. Requirements concerning the pre-damage of packages for the maximum damage of impact limiters are discussed. Parameters influencing the smouldering process are identified. T2 - WM 2017 Conference CY - Phoenix, AZ, USA DA - 05.03.2017 KW - Fire test KW - Wood KW - Combustion KW - Smouldering KW - Smoldering KW - Impact limiter KW - Shock absorber KW - Thermal test KW - IAEA PY - 2017 SN - 978-0-9828171-6-2 SP - 1 AN - OPUS4-40157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erenberg, Marina A1 - Bletzer, Claus A1 - Feldkamp, Martin A1 - Musolff, André A1 - Nehrig, Marko A1 - Wille, Frank T1 - Experimental investigations of the burning behaviour of transport package impact limiters and of fire spread impact onto the cask N2 - Accident safe packages for the transport of spent nuclear fuel and high-level waste shall fulfil international IAEA safety requirements. Compliance is shown by consecutive mechanical and thermal testing. Additional numerical analysis are usually part of the safety evaluation. For damage protection some package designs are equipped with wood filled impact limiters encapsulated by steel sheets. The safety of these packages is established in compliance with IAEA regulations. Cumulative mechanical and fire tests are conducted to achieve safety standards and to prevent loss of containment. Mechanical reliability is proven by drop tests. Drop testing might cause significant damage of the impact limiter steel sheets and might enable sufficient oxygen supply to the impact limiter during the fire test to ignite the wood filling. The boundary conditions of the fire test are precisely described in the IAEA regulatory. During the test the impact limiter will be subjected to a 30 minute enduring fire phase. Subsequent to the fire phase any burning of the specimen has to extinguish naturally and no artificial cooling is allowed. At BAM a large-scale fire test with a real size impact limiter and a wood volume of about 3m3 was conducted to investigate the burning behaviour of wood filled impact limiters in steel sheet encapsulation. The impact limiter was equipped with extensive temperature monitoring equipment. Until today burning of such impact limiters is not sufficiently considered in transport package design and more investigation is necessary to explore the consequences of the impacting fire. The objective of the large scale test was to find out whether a self-sustaining smouldering or even a flaming fire inside the impact limiter was initiated and what impact on the cask is resulting. The amount of energy, transferred from the impact limiter into the cask is of particular importance for the safety of heavy weight packages. With the intention of heat flux quantification a new approach was made and a test bench was designed. T2 - ASME 2018 Pressure Vessels and Piping Conference CY - Prague, Czech Republic DA - 15.07.2018 KW - Shock absorber KW - Impact limiter KW - Wood KW - Thermal testing KW - Fire KW - Smoldering KW - IAEA KW - Fire test PY - 2018 SN - 978-0-7918-5170-8 VL - PVP2018 SP - 84714-1 EP - 84714-10 AN - OPUS4-46984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, Andre A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Nehrig, Marko A1 - Wille, Frank A1 - Êhrenberg, M. T1 - Fire Influence to Wood Filled Impact Limiters - Implications for the Package Design Safety Case N2 - Impact limiters with wooden components are widely used in the design of packages for transportation of radioactive material. In most designs, the wood is encapsulated with steel sheets. Impact limiters mainly determine the mechanical and thermal behaviour of the package in accident conditions of transport in accordance with the IAEA Regulations. In context with research and development for package design approval competence, the thermal behaviour of heavy-weight packages was investigated at BAM with an artificially pre-damaged generic impact limiter design. Within this first investigation, the pre-damaged impact limiter with a diameter of 2.3 meters was mounted on a water tank simulating the thermal capacity of a cask during the fire test. The water tank is part of a water circulating system built of several components such as pump, heater, cooler, sliding valve, flow meter, thermocouples and control unit in order to measure the heat flux. Furthermore, the investigations focus on the effects this additional heat generation would have on the cask and especially on the lid-closure system with the gasket. The results of these experiments could find consideration in the safety case of the transport packages of radioactive material using wood filled impact limiters. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - Fire test KW - Impact limiter KW - Mechanical and thermal behaviour PY - 2023 AN - OPUS4-57719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Gleim, Tobias A1 - Nehrig, Marko A1 - Musolff, André A1 - Wille, Frank T1 - R&D Activities by BAM Related to Transport Package Fire Testing N2 - Packages for the transport of radioactive material shall meet the mechanical and thermal test requirements of the International Atomic Energy Agency (IAEA) regulations for package design approval. Besides mechanical testing, the Federal Institute for Materials Research and Testing (BAM) performs thermal tests in accordance with the IAEA regulations. The thermal test includes a 30-minute 800°C fully engulfing fire. BAM continuously performs various thermal experiments for the investigation of the thermal response of packages with respect to the IAEA fire. The purpose of this paper is to give an overview of the already performed, ongoing and future physical tests and experiments of BAM in the field of thermal investigations. These research and development works shall support our competencies for the authority package design assessment. BAM operates a propane gas fire test facility. To be able to carry out comparative investigations and validity between the propane fire and the in detail prescribed pool fire test in the regulations, BAM carries out various calorimetric tests and investigates the boundary conditions of the fire with the help of fire reference packages. At the same time, we are conducting various fire scenarios with wood-filled impact limiters. Large-scale fire tests of impact limiters are carried out on a full scale as well as on a small scale. Influencing variables are investigated in particular by means of geometric changes and the consideration of artificial damages, in particular holes. In addition to propane fire as a heat source, thermal scenarios are also investigated with hydrogen as heat source and an infrared radiator system to ignite test specimens. For these numerous test arrangements, the transferability to existing and newly developed transport package designs is essential and fruitful within the review of design approvals, especially for Dual Purpose casks with a long-lasting operation time. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-Les-Pins, France DA - 11.06.2023 KW - Fire KW - Testing KW - Hydrogen KW - Wood KW - Propane KW - Heat Flux KW - Fire Reference Package KW - Radioactive Material PY - 2023 SP - 1 EP - 10 AN - OPUS4-57721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -