TY - CONF A1 - Avilov, Vjaceslav A1 - Fritzsche, André A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Full penetration laser beam welding of thick duplex steel plates with electromagnetic weld pool support T2 - ICALEO 2015 - 34th International congress on applications of lasers & electro-optics (Proceedings) N2 - Full penetration high power bead-on-plate laser beam welding tests of up to 20 mm thick 2205 duplex steel plates were performed in PA position. A contactless inductive electromagnetic (EM) weld pool support system was used to prevent gravity drop-out of the melt. Welding experiments with 15 mm thick plates were carried out using IPG fiber laser YLR 20000 and Yb:YAG thin disk laser TruDisk 16002. The laser power needed to achieve a full penetration was found to be 10.9 and 8.56kW for welding velocity of 1.0 and 0.5 m min(-1), respectively. Reference welds without weld pool support demonstrate excessive root sag. The optimal value of the alternating current (AC) power needed to completely compensate the sagging on the root side was found to be approximate to 1.6 kW for both values of the welding velocity. The same EM weld pool support system was used in welding tests with 20 mm thick plates. The laser beam power (TRUMPF Yb:YAG thin disk laser TruDisk 16002) needed to reach a full penetration for 0.5 m min(-1) was found to be 13.9 kW. Full penetration welding without EM weld pool support is not possible-the surface tension cannot stop the gravity drop-out of the melt. The AC power needed to completely compensate the gravity was found to be 2 kW. (C) 2016 Laser Institute of America T2 - ICALEO 2015 - 34th International congress on applications of lasers & electro-optics CY - Atlanta, GA, USA DA - 2015-10-18 KW - Electromagnetic weld pool support KW - Laser beam welding KW - Duplex stainless steel PY - 2015 SN - 978-1-940168-05-0 SP - 571 EP - 579 PB - Amer inst physics CY - Melville, NY, USA AN - OPUS4-35035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fritzsche, André A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - High power laser beam welding of thick-walled ferromagnetic steels with electromagnetic weld pool support N2 - The paper describes an experimental investigation of high power laser beam welding with an electromagnetic weld pool support for up to 20 mm thick plates made of duplex steel (AISI 2205) and mild steel (S235JR). The results of the welding tests show a successful application of this technology at ferromagnetic metals. Irregular sagging was suppressed successfully. An ac-power of less than 2 kW at oscillation frequencies between 800 Hz and 1.7 kHz is necessary for a full compasation of the hydrostatic pressure. Thus, it was demonstrated that the electromagnetic weld pool support is not only limited to non-ferromagnetic metals like austenitic steels. For future studies with duplex steel, the use of filler material has to take into account with regard to the balance of the mixed austenitic and ferritic phases. T2 - LANE - 9 International Conference on Photonic Technologies CY - Fürth, Germany DA - 19.09.2016 KW - Laser beam welding KW - Thick-walled steel KW - Ferromagnetic steel KW - Weld pool support PY - 2016 AN - OPUS4-37772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, André A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - High power laser beam welding of thick-walled ferromagnetic steels with electromagnetic weld pool support JF - Physics procedia N2 - The paper describes an experimental investigation of high power laser beam welding with an electromagnetic weld pool support for up to 20 mm thick plates made of duplex steel (AISI 2205) and mild steel (S235JR). The results of the welding tests show a successful application of this technology at ferromagnetic metals. Irregular sagging was suppressed successfully. An ac-power of less than 2 kW at oscillation frequencies between 800 Hz and 1.7 kHz is necessary for a full compasation of the hydrostatic pressure. Thus, it was demonstrated that the electromagnetic weld pool support is not only limited to non-ferromagnetic metals like austenitic steels. For future studies with duplex steel, the use of filler material has to take into account with regard to the balance of the mixed austenitic and ferritic phases. KW - Laser beam welding KW - Thick-walled steel KW - Ferromagnetic steel KW - Weld pool support PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-377593 DO - https://doi.org/10.1016/j.phpro.2016.08.038 SN - 1875-3892 VL - 83 SP - 362 EP - 372 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-37759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Avilov, Vjaceslav A1 - Fritzsche, André A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Full penetration laser beam welding of thick duplex steel plates with electromagnetic weld pool support JF - Journal of laser applications N2 - Full penetration high power bead-on-plate laser beam welding tests of up to 20 mm thick 2205 duplex steel plates were performed in PA position. A contactless inductive electromagnetic (EM) weld pool support system was used to prevent gravity drop-out of the melt. Welding experiments with 15 mm thick plates were carried out using IPG fiber laser YLR 20000 and Yb:YAG thin disk laser TruDisk 16002. The laser power needed to achieve a full penetration was found to be 10.9 and 8.56 kW for welding velocity of 1.0 and 0.5 m min−1, respectively. Reference welds without weld pool support demonstrate excessive root sag. The optimal value of the alternating current(AC) power needed to completely compensate the sagging on the root side was found to be ≈1.6 kW for both values of the welding velocity. The same EM weld pool support system was used in welding tests with 20 mm thick plates. The laser beam power (TRUMPF Yb:YAG thin disk laser TruDisk 16002) needed to reach a full penetration for 0.5 m min−1 was found to be 13.9 kW. Full penetration welding without EM weld pool support is not possible—the surface tension cannot stop the gravity drop-out of the melt. The AC power needed to completely compensate the gravity was found to be 2 kW. KW - Electromagnetic weld pool control KW - Duplex stainless steel KW - Laser beam welding KW - Full penetration welding PY - 2016 DO - https://doi.org/10.2351/1.4944103 SN - 1042-346X SN - 1938-1387 VL - 28 IS - 2 SP - 022420-1 EP - 022420-7 PB - American institute of physics CY - Woodbury, NY, USA AN - OPUS4-35668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fritzsche, André A1 - Hilgenberg, Kai A1 - Teichmann, F. A1 - Pries, H. A1 - Rethmeier, Michael T1 - Electromagnetic porosity Reduction in Laser Beam Welding of Die-Cast Aluminum Alloy T2 - Lasers in Manufacturing Conference 2017 N2 - The present paper investigates the electromagnetic porosity reduction in partial penetration laser beam welding of 6 mm aluminum die casting AlSi9MnMg. Applying an electromagnetic field, a significant reduction of the porosity as well as smoothing of the surface of aluminum die casting can be observed. Starting from the reference case without an electromagnetic support, the porosity was reduced by 76 %. Especially big pores can be removed from the weld pool effectively due to their beneficial volume-to-area ratio whereas very small metallurgical pores tend to remain within the weld pool even when higher magnetic flux densities are applied. T2 - Lasers in Manufacturing Conference 2017 CY - Munich, Germany DA - 26.06.2017 KW - Laser beam welding KW - Die-cast aluminum KW - Porosity reduction KW - Electromagnetic influence PY - 2017 SP - 1 EP - 10 AN - OPUS4-41244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fritzsche, André A1 - Hilgenberg, Kai A1 - Teichmann, F. A1 - Pries, H. A1 - Rethmeier, Michael T1 - Electromagnetic Porosity Reduction in Laser Beam Welding of Die-Cast Aluminum Alloy N2 - The present paper investigates the electromagnetic porosity reduction in partial penetration laser beam welding of 6 mm aluminum die casting AlSi9MnMg. Applying an electromagnetic field, a significant reduction of the porosity as well as smoothing of the surface of aluminum die casting can be observed. Starting from the reference case without an electromagnetic support, the porosity was reduced by 76 %. Especially big pores can be removed from the weld pool effectively due to their beneficial volume-to-area ratio whereas very small metallurgical pores tend to remain within the weld pool even when higher magnetic flux densities are applied. T2 - Lasers in Manufacturing Conference 2017 CY - Munich, Germany DA - 26.06.2017 KW - Laser beam welding KW - Die-cast aluminum KW - Porosity reduction KW - Electromagnetic influence PY - 2017 AN - OPUS4-41245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, André A1 - Hilgenberg, Kai A1 - Teichmann, F. A1 - Pries, H. A1 - Dilger, K. A1 - Rethmeier, Michael T1 - Improved degassing in laser beam welding of aluminum die casting by an electromagnetic field JF - Journal of materials processing technology N2 - The paper describes an experimental investigation of the electromagnetic porosity reduction in partial penetration laser beam welding of 6 mm thick aluminum die casting AlSi9MnMg. The Investigation reveals that the usage of an electromagnetic field leads to a significant reduction of the porosity as well as to a surface smoothing of aluminum die casting. Based on the reference case without an electromagnetic influence, the porosity area was reduced gradually up to 76%. Metallurgical pores as well as process pores were removed from the weld pool. Also the weld reinforcement was improved up to 78%. Best results were reached with a frequency of 4325 Hz and a magnetic flux density of 348 mT. Although a complete prevention of porosity was not achieved, the best weld seam reached a high quality and can be ranked in valuation group B of DIN EN ISO 13919-2:2001–12. KW - Laser beam welding KW - Die-cast aluminum KW - Porosity reduction KW - Electromagnetic influence PY - 2018 DO - https://doi.org/10.1016/j.jmatprotec.2017.10.021 SN - 0924-0136 VL - 253 SP - 51 EP - 56 PB - Elsevier CY - Amsterdam AN - OPUS4-42767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, André A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Influence of welding parameters on electromagnetic supported degassing of die-casted and wrought aluminum JF - Journal of Laser Applications N2 - Laser beam welding of aluminum die casting is challenging. A large quantity of gases (in particular, hydrogen) is absorbed by aluminum during the die-cast manufacturing process and is contained in the base material in solved or bound form. After remelting by the laser, the gases are released and are present in the melt as pores. Many of these metallurgic pores remain in the weld seam as a result of the high solidification velocities. The natural (Archimedean) buoyancy is not sufficient to remove the pores from the weld pool, leading to process instabilities and poor mechanical properties of the weld. Therefore, an electromagnetic (EM) system is used to apply an additional buoyancy component to the pores. The physical mechanism is based on the generation of Lorentz forces, whereby an electromagnetic pressure is introduced into the weld pool. The EM system exploits the difference in electrical conductivity between poorly conducting pores (inclusions) and the comparatively better conducting aluminum melt to increase the resulting buoyancy velocity of the pores. Within the present study, the electromagnetic supported degassing is investigated in dependence on the laser beam power, welding velocity, and electromagnetic flux density. By means of a design of experiments, a systematic variation of these parameters is carried out for partial penetration laser beam welding of 6mm thick sheets of wrought aluminum alloy AlMg3 and die-cast aluminum alloy AlSi12(Fe), where the wrought alloy serves as a reference. The proportion of pores in the weld seams is determined using x-ray images, computed tomography images, and cross-sectional images. The results prove a significant reduction of the porosity up to 70% for both materials as a function of the magnetic flux density. T2 - ICALEO 2019 CY - Orlando, FL, USA DA - 07.10.2019 KW - Laser beam welding KW - Electromagnetic supported degassing KW - Die-casted aluminum PY - 2020 DO - https://doi.org/10.2351/7.0000064 VL - 32 IS - 2 SP - 022031-1 EP - 022031-8 PB - AIP Publishing AN - OPUS4-50728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -