TY - JOUR A1 - Fritzsche, André A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - High power laser beam welding of thick-walled ferromagnetic steels with electromagnetic weld pool support JF - Physics procedia N2 - The paper describes an experimental investigation of high power laser beam welding with an electromagnetic weld pool support for up to 20 mm thick plates made of duplex steel (AISI 2205) and mild steel (S235JR). The results of the welding tests show a successful application of this technology at ferromagnetic metals. Irregular sagging was suppressed successfully. An ac-power of less than 2 kW at oscillation frequencies between 800 Hz and 1.7 kHz is necessary for a full compasation of the hydrostatic pressure. Thus, it was demonstrated that the electromagnetic weld pool support is not only limited to non-ferromagnetic metals like austenitic steels. For future studies with duplex steel, the use of filler material has to take into account with regard to the balance of the mixed austenitic and ferritic phases. KW - Laser beam welding KW - Thick-walled steel KW - Ferromagnetic steel KW - Weld pool support PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-377593 DO - https://doi.org/10.1016/j.phpro.2016.08.038 SN - 1875-3892 VL - 83 SP - 362 EP - 372 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-37759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Avilov, Vjaceslav A1 - Fritzsche, André A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Full penetration laser beam welding of thick duplex steel plates with electromagnetic weld pool support JF - Journal of laser applications N2 - Full penetration high power bead-on-plate laser beam welding tests of up to 20 mm thick 2205 duplex steel plates were performed in PA position. A contactless inductive electromagnetic (EM) weld pool support system was used to prevent gravity drop-out of the melt. Welding experiments with 15 mm thick plates were carried out using IPG fiber laser YLR 20000 and Yb:YAG thin disk laser TruDisk 16002. The laser power needed to achieve a full penetration was found to be 10.9 and 8.56 kW for welding velocity of 1.0 and 0.5 m min−1, respectively. Reference welds without weld pool support demonstrate excessive root sag. The optimal value of the alternating current(AC) power needed to completely compensate the sagging on the root side was found to be ≈1.6 kW for both values of the welding velocity. The same EM weld pool support system was used in welding tests with 20 mm thick plates. The laser beam power (TRUMPF Yb:YAG thin disk laser TruDisk 16002) needed to reach a full penetration for 0.5 m min−1 was found to be 13.9 kW. Full penetration welding without EM weld pool support is not possible—the surface tension cannot stop the gravity drop-out of the melt. The AC power needed to completely compensate the gravity was found to be 2 kW. KW - Electromagnetic weld pool control KW - Duplex stainless steel KW - Laser beam welding KW - Full penetration welding PY - 2016 DO - https://doi.org/10.2351/1.4944103 SN - 1042-346X SN - 1938-1387 VL - 28 IS - 2 SP - 022420-1 EP - 022420-7 PB - American institute of physics CY - Woodbury, NY, USA AN - OPUS4-35668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -