TY - JOUR A1 - Edzards, Joshua A1 - Saßnick, Holger-Dietrich A1 - de Oliveira Guilherme Buzanich, Ana A1 - Valencia, Ana M. A1 - Emmerling, Franziska A1 - Beyer, Sebastian A1 - Cocchi, Caterina T1 - Effects of Ligand Substituents on the Character of Zn-Coordination in Zeolitic Imidazolate Frameworks N2 - Due to their favorable properties and high porosity, zeolitic imidazolate frameworks (ZIFs) have recently received much limelight for key technologies such as energy storage, optoelectronics, sensorics, and catalysis. Despite widespread interest in these materials, fundamental questions regarding the zinc coordination environment remain poorly understood. By focusing on zinc(II)2-methylimidazolate (ZIF-8) and its tetrahedrally coordinated analogues with Br-, Cl-, and H-substitution in the 2-ring position, we aim to clarify how variations in the local environment of Zn impact the charge distribution and the electronic properties of these materials. Our results from densityfunctional theory confirm the presence of a Zn coordinative bond with a large polarization that is quantitatively affected by different substituents on the organic ligand. Moreover, our findings suggest that the variations in the Zn coordination induced by the functionalization have a negligible effect on the electronic structure of the considered compounds. On the other hand, halogen terminations of the ligands lead to distinct electronic contributions in the vicinity of the frontier region which ultimately reduce the band gap size by a few hundred millielectron volts. Experimental results obtained from X-ray absorption spectroscopy (Zn K-edge) confirm the trends predicted by theory and, together with them, contribute to a better understanding of the structure−property relationships that are needed to tailor ZIFs for target applications. KW - Surfaces KW - Physical and Theoretical Chemistry KW - General Energy KW - Electronic KW - Coatings and Films KW - Optical and Magnetic Materials PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589117 DO - https://doi.org/10.1021/acs.jpcc.3c06054 SN - 1932-7447 VL - 127 IS - 43 SP - 21456 EP - 21464 PB - American Chemical Society (ACS) AN - OPUS4-58911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radtke, Martin A1 - Buzanich, Günter A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Scharf, O. A1 - Scholz, Philipp A1 - Guerra, M.F. T1 - Double Dispersive X-Ray Fluorescence (D2XRF) based on an Energy Dispersive pnCCD detector for the detection of platinum in gold N2 - With the aim of improving limits of detection (LOD) of trace elements in a matrix with adjacent fluorescence energies, a simple double dispersive X-ray fluorescence detection system (D2XRF) was constructed to operate at the beamlines BAMline and the mySpot @ BESSY II. This system is based on the combination of a crystal analyzer with an energy resolving single photon counting pnCCD. Without further collimators, the efficient suppression of the background by the pnCCD and the good energy resolution of the crystal results in improved LOD. In first order reflections, an energy resolution of 13 eV for Cu Kα was reached, and an energy range of 1 keV was covered in one shot. This new system was applied to the detection of platinum (Pt) in gold leaves with a LOD of 0.9 mg/kg, which is the lowest attained by totally non-destructive methods nowadays. The presence of Pt in gilded objects from Abydos and Byzantine mosaics provides vital information, as it indicates the alluvial origin of the gold for these examples. KW - Platinum Wavelength dispersive D2XRF KW - Gold Synchrotron XRF PY - 2016 DO - https://doi.org/10.1016/j.microc.2015.10.039 VL - 125 SP - 56 EP - 61 PB - Elsevier Science CY - Amsterdam AN - OPUS4-35777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yusenko, Kirill A1 - Kabelitz, Anke A1 - Schokel, Alexander A1 - Wagner, Ralf A1 - Prinz, Carsten A1 - Kemnitz, E A1 - Emmerling, Franziska A1 - Krahl, Thoralf A1 - de Oliveira Guilherme Buzanich, Ana T1 - Local Structure of Europium-Doped Luminescent Strontium Fluoride Nanoparticles: Comparative X-ray Absorption Spectroscopy and Diffraction Study N2 - Rare-earth based luminescent materials are key functional components for the rational design of light-conversion smart devices. Stable Eu3+-doped strontium fluoride (SrF2) nanoparticles were prepared at room temperature in ethylene glycol. Their luminescence depends on the Eu content and changes after heat treatment. The crystallinity of heat-treated material increases in comparison with as-synthesized samples. Particles were investigated in solution using X-ray diffraction, small-angle X-ray scattering, and X-ray spectroscopy. After heat treatment, the size of the disordered nanoparticles increases together with a change of their local structure. Interstitial fluoride ions can be localized near Eu3+ ions. Therefore, non-radiative relaxation from other mechanisms is decreased. Knowledge about the cation distribution is key information for understanding the luminescence properties of any material. KW - SrF2 KW - EXAFS KW - Eu PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540094 DO - https://doi.org/10.1002/cnma.202100281 VL - 7 IS - 11 SP - 1221 EP - 1229 PB - Wiley Online Library AN - OPUS4-54009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Durlo Tambara, Luís Urbano A1 - Nikoonasab, Ali A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Gluth, Gregor T1 - Determination of the oxidation depths of ground granulated blast furnace slag-containing cement pastes using Mn K-edge X-ray absorption near-edge structure spectroscopy N2 - The redox potential of the pore solution of hardened cements containing ground granulated blast furnace slag (GGBFS) affects reinforcement corrosion and immobilization of radioactive waste. Here, Mn K-edge X-ray absorption near-edge structure (XANES) spectroscopy was applied to determine the depth profile of the oxidation state of manganese in hardened GGBFS-containing cement pastes. Manganese was oxidized in the outer regions of some of the pastes, but the depth to which this occurred was not identical with the ‘blue-green/white color change front’, usually interpreted as indicating oxidation of sulfur species. For CEM III/B, the color change of the material was gradual and thus unsuitable for a precise determination of the oxidation depth, while for the alkali-activated slag, a distinct color change front was found, but full oxidation of manganese and sulfur had not occurred in the brighter region. Mn K-edge XANES spectroscopy is thus a more reliable method than the determination of the visual color change front to follow the ingress of the oxidation front. KW - Manganese KW - Oxidation KW - Sulfide KW - Alkali-activated materials KW - Redox conditions PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651469 DO - https://doi.org/10.1111/jace.70445 SN - 0002-7820 SN - 1551-2916 VL - 109 IS - 1 SP - 1 EP - 11 PB - Wiley CY - Oxford AN - OPUS4-65146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiodjio Sendja, Bridinette A1 - Tchouank Tekou, Carol Trudel A1 - Prinz, Carsten A1 - de Oliveira Guilherme Buzanich, Ana T1 - Adsorptive performance of single-walled carbon nanotubes for divalent manganese sorption characterized by X-ray absorption spectroscopy N2 - The adsorptive performance of divalent manganese onto single-walled carbon nanotubes (SWCNTs) is investigated by X-ray absorption spectroscopy (XAS). The study is focused on the one hand, on the use of SWCNT as adsorbent to remove divalent manganese II) pollutant controlling batch parameters such as pH, adsorbent dose and contact time; and on the other hand, on the characterization of manganese adsorbed by SWCNT (Mn-SWCNT) adsorbent to probe the chemical composition, oxidation state, and local structural environment of Mn absorber. Freundlich adsorption isotherm well fitted the experimental data and suggested the maximum adsorption capacity at pH 2. Ion exchange was proposed as the main adsorption mechanism for removing manganese using SWCNT. XAS results revealed the change in the oxidation state of manganese. The effect of pH, adsorbent dose, and contact time is shown. XAS also showed that Mn-SWCNT material is principally composed of MnCl2, Mn2O3, MnO2, Mn3O4, and MnO in decreasing order with MnCl2 and Mn2O3 as major compounds. KW - Local environment KW - Single-walled carbon nanotubes KW - Divalent manganese KW - Adsorptive performance KW - X-ray absorption spectroscopy KW - Oxidation state PY - 2025 DO - https://doi.org/10.1007/s11696-025-04418-5 SN - 0366-6352 SP - 1 EP - 15 PB - Springer Science and Business Media LLC AN - OPUS4-64492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Yusenko, Kirill A1 - Stawski, Tomasz A1 - Kulow, Anicó A1 - Cakir, Cafer Tufan A1 - Röder, Bettina A1 - Naese, Christoph A1 - Britzke, Ralf A1 - Sintschuk, Michael A1 - Emmerling, Franziska T1 - BAMline - A real-life sample materials research beamline N2 - With increasing demand and environmental concerns, researchers are exploring new materials that can perform as well or better than traditional materials while reducing environmental impact. The BAMline, a real-life sample materials research beamline, provides unique insights into materials’ electronic and chemical structure at different time and length scales. The beamline specializes in x-ray absorption spectroscopy, x-ray fluorescence spectroscopy, and tomography experiments. This enables real-time optimization of material properties and performance for various applications, such as energy transfer, energy storage, catalysis, and corrosion resistance. This paper gives an overview of the analytical methods and sample environments of the BAMline, which cover non-destructive testing experiments in materials science, chemistry, biology, medicine, and cultural heritage. We also present our own synthesis methods, processes, and equipment developed specifically for the BAMline, and we give examples of synthesized materials and their potential applications. Finally, this article discusses the future perspectives of the BAMline and its potential for further advances in sustainable materials research. KW - Extended X-ray absorption fine structure KW - Energy storage KW - Environmental impacts KW - Nondestructive testing techniques KW - X-ray fluorescence spectroscopy KW - Corrosion KW - Near edge X-ray absorption fine structure spectroscopy KW - X-ray absorption spectroscopy PY - 2023 DO - https://doi.org/10.1063/5.0157194 VL - 158 IS - 24 SP - 1 EP - 22 PB - AIP Publishing AN - OPUS4-57824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - The versatility of X-ray absorption spectroscopy (XAS) for exploring new materials in collaborative research N2 - With increasing demand and environmental concerns, researchers are exploring new materials that can perform as well or better than traditional materials while reducing environmental impact. X-ray absorption spectroscopy (XAS) enables unique atom-specific tool to probe the electronic structure of materials. The BAM plays a central role in this highly collaborative research. The BAMline, a real-life sample materials research beamline, at the Berlin Synchrotron BESSY-II, provides unique insights into materials’ electronic and chemical structure at different time and length scales. This enables real-time optimization of material properties and performance for various applications, such as energy storage and conversion, catalysis, and corrosion resistance. This talk provides an overview of the analytical methods and sample environments of the BAMline and addresses its potential for further advances in sustainable materials research. T2 - International symposium of radiation physics (ISRP-16) CY - Lisbon, Portugal DA - 01.09.2024 KW - XAS KW - Time-resolved studies KW - Operando KW - Corrosion KW - Electrochemistry PY - 2024 AN - OPUS4-60996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - Bridging Structure and Electronic State: Real-time XES–XRD Fusion for Functional Alloys N2 - We present a unified X-ray Emission Spectroscopy (XES) and X-ray Diffraction (XRD) approach for real-time, in situ characterization of materials, demonstrated on Co₂FeSi Heusler alloys under varied heat treatments. The combination of XES and XRD is particularly well-suited to Heusler alloys, where subtle changes in atomic ordering and electronic structure (e.g. site occupancy, hybridization, and spin state) are tightly interdependent and critical for their magnetic and transport properties. In addition, this method enables more efficient materials design by reducing experimental iterations through comprehensive structural and electronic analysis. Developed at the mySpot beamline at BESSY-II, the platform integrates (a) digital twin-based experiment planning, (b) open-source XES spectral simulations, (c) an optimized single-shot, two-element XES setup with sub-pixel resolution for enhanced energy precision, and (d) result-driven beamtime utilization. With an unprecedented synchronized XES-XRD platform, we aim to shed light on how diffusion-controlled processes in Heusler alloys and double perovskites at elevated temperatures establish the formation of specific phases with distinct structure types in real time. This, in turn, strongly impacts the functional properties of the materials under scrutiny. T2 - XLIV Colloquium Spectroscopicum Internationale CY - Ulm, Germany DA - 27.07.2025 KW - Multimodal KW - X-ray spectroscopy KW - X-ray diffraction KW - Functional alloys PY - 2025 AN - OPUS4-63991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulow, Anicó A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Hampel, S. A1 - Fittschen, UEA A1 - Streli, C. A1 - Radtke, Martin T1 - Reconstruction for coded aperture full-field x-ray fluorescence imaging N2 - X-ray fluorescence imaging is a well-established tool in materials characterization. In this work, we present the adaption of coded aperture imaging to full-field X-ray fluorescence imaging at the synchrotron. Coded aperture imaging has its origins in astrophysics, and has several advantages: Coded apertures are relatively easy to fabricate, achromatic, allow a high photon throughput, and high angular acceptance. Coded aperture imaging is a two-step-process, consisting of the measurement process and a reconstruction step. Different programs have been written, for the raytracing/forward projection and the reconstruction. Experiments with coded aperture in combination with a Color X-ray Camera and an energy-dispersive area detector, have been conducted at the BAMline. Measured samples were successfully reconstructed, and gave a 9.1-fold increase in count rate compared to a polycapillary optic. KW - Synchrotron KW - BAMline KW - Coded Aperture PY - 2022 SN - 1097-0002 VL - 65 SP - 57 EP - 70 PB - Cambridge University Press CY - Cambridge AN - OPUS4-56350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brieger, C. A1 - Melke, J. A1 - van der Bosch, N. A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - de Oliveira Guilherme Buzanich, Ana A1 - Krishna Kayarkatte, M. A1 - Derr, I. A1 - Schökel, A. A1 - Roth, C. ED - de Oliveira Guilherme Buzanich, Ana T1 - A combined in-situ XAS–DRIFTS study unraveling adsorbate induced changes on Pt nanoparticle structure N2 - The adsorption behavior of Platinum nanoparticles was studied for the as-received catalyst (under inert gas), under hydrogen and CO atmosphere using our newly designed in-situ cell. X-ray Absorption Spectroscopy (XAS) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) experiments were performed simultaneously with high data quality. Structural information and the type of adsorbate could be revealed via Extended X-ray Absorption Fine Structure (EXAFS) analysis, Δμ X-ray Absorption Near Edge Structure analysis (Δμ XANES) and in-situ DRIFTS. The as-received catalyst showed sub-surface oxygen and O(n-fold). Under CO atmosphere only CO(atop) was found. Reversible adsorbate induced changes of the Pt nanoparticle structure were derived from changes in the Pt-Pt coordination number and the corresponding bond distance. Under reducing conditions (H2, CO) a significant increase in both values occurred. Temperature dependent desorption of CO revealed a gradual shift from Pt-CO to Pt-O. Reoxidation was clearly assigned to strong metal support interaction from the SiO2 support. KW - X-ray absorption spectroscopy KW - DRIFTS KW - XANES KW - CO adsoprtion KW - Platinum KW - String metal support interaction KW - Silica support KW - Adsorbates KW - Infrared spectroscopy PY - 2016 DO - https://doi.org/10.1016/j.jcat.2016.03.034 SN - 0021-9517 VL - 339 SP - 57 EP - 67 PB - Elsevier AN - OPUS4-38367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yusenko, Kirill A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin T1 - Studies of high-entropy alloys using x-ray absorption fine structure at the bamline N2 - BAM line is multipurpose high-energy beamline. To extend studies of multicomponent alloys using EXAFS we perform own research and user experiments requiring multiedge spectroscopy, high-temperature and chemically aggressive sample environments. Our study of multicomponent alloys and high-entropy alloys open new perspectives in understanding their reactivity, corrosion, phase transformations and local ordering. T2 - SPP2006: large scale facilities CY - Online meeting DA - 02.11.2021 KW - Synchrotron studies KW - High-entropy alloys KW - EXAFS PY - 2021 AN - OPUS4-54016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lutz, C. A1 - Hampel, S. A1 - Beuermann, S. A1 - Turek, T. A1 - Kunz, U. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Fittschen, U. E. A. T1 - Investigation on Vanadium Species Distribution in Nafion™ 117 after Cyclization in a Vanadium Redox Flow Battery N2 - The vanadium redox flow battery (VRFB) is currently a potential candidate for stationary energy storage. A major challenge is the unintended vanadium transport through the separator, which results in a fade of capacity. To overcome this issue, it is necessary to understand the transport processes in the membrane on a more fundamental level. In this work, the vanadium species distribution in Nafion™ 117 after cyclization was investigated. Two membranes, one from a charged VRFB and another from a discharged VRFB, were analyzed using ultraviolet–visible spectroscopy (UV/VIS) and X-ray absorption near edge structure spectroscopy (XANES). Little difference between the two membranes was recognizable according to the UV/VIS results. In comparison, the XANES results showed that the membrane from the charged VRFB contains more V3+ than VO2+, whereas for the discharged case, more VO2+ is present in the membrane. KW - Synchrotron KW - BAMline KW - XANES KW - Vanadium redox flow battery PY - 2021 VL - 64 SP - 1 EP - 8 AN - OPUS4-54144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulow, Anicó A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Hampel, S. A1 - Fittschen, U.E.A. A1 - Streli, C. A1 - Radtke, Martin T1 - Comparison of three reconstruction methods based on deconvolution, iterative algorithm and neural network for X-ray fluorescence imaging with coded apertures N2 - X-ray imaging methods are used in many fields of research, as they allow a non-destructive Investigation of the elemental content of various samples. As for every imaging method, for X-ray imaging the optics are of crucial importance. However, these optics can be very expensive and laborious to build, as the requirements on surface roughness and precision are extremely high. Angles of reflection and refraction are often in the range of a few mrad, making a compact design hard to achieve. In this work we present a possibility to simplify X-ray imaging. We have adapted the coded aperture method, a high energy radiation imaging method that has its origins in astrophysics, to full field X-ray fluorescence imaging. In coded aperture imaging, an object is projected through a known mask, the coded aperture, onto an area sensitive detector. The resulting image consists of overlapping projections of the object and a reconstruction step is necessary to obtain the information from the recorded image. We recorded fluorescence images of different samples with an energy-dispersive 2D detector (pnCCD) and investigated different reconstruction methods. With a small coded aperture with 12 holes we could significantly increase the count rate compared to measurements with a straight polycapillary optic. We show that the reconstruction of two different samples is possible with a deconvolution approach, an iterative algorithm and a neural network. These results demonstrate that X-ray fluorescence imaging with coded apertures has the potential to deliver good results without scanning and with an improved count rate, so that measurement times can be shortened compared to established methods. KW - X-ray fluorescence imaging KW - Coded apertures KW - Imaging KW - Elemental mapping KW - Image reconstruction PY - 2020 DO - https://doi.org/10.1039/d0ja00146e VL - 35 IS - 7 SP - 1423 EP - 1434 PB - Royal Society of Chemistry CY - United Kingdom AN - OPUS4-51518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruna, F. G. A1 - Prokop, M. A1 - Bystron, T. A1 - Loukrakpam, R. A1 - Melke, J. A1 - Lobo, C. M. S. A1 - Fink, M. A1 - Zhu, M. A1 - Voloshina, E. A1 - Kutter, M. A1 - Hoffmann, H. A1 - Yusenko, Kirill A1 - de Oliveira Guilherme Buzanich, Ana A1 - Röder, B. A1 - Bouzek, K. A1 - Paulus, B. A1 - Roth, C. T1 - Following adsorbed intermediates on a platinum gas diffusion electrode in H3PO3‑containing electrolytes using in situ X‑ray absorption spectroscopy N2 - One of the challenges of high-temperature polymer electrolyte membrane fuel cells is the poisoning of the Pt catalyst with H3PO4. H3PO4 is imbibed into the routinely used polybenzimidazole-based membranes, which facilitate proton conductivity in the temperature range of 120−200 °C. However, when leached out of the membrane by water produced during operation, H3PO4 adsorbs on the Pt catalyst surface, blocking the active sites and hindering the oxygen reduction reaction (ORR). The reduction of H3PO4 to H3PO3, which occurs at the anode due to a combination of a low potential and the presence of gaseous H2, has been investigated as an additional important contributing factor to the observed poisoning effect. H3PO3 has an affinity toward adsorption on Pt surfaces even greater than that of H2PO4 −. In this work, we investigated the poisoning effect of both H3PO3 and H3PO4 using a half-cell setup with a gas diffusion electrode under ambient conditions. By means of in situ X-ray absorption spectroscopy, it was possible to follow the signature of different species adsorbed on the Pt nanoparticle catalyst (H, O, H2PO4 −, and H3PO3) at different potentials under ORR conditions in various electrolytes (HClO4, H3PO4, and H3PO3). It was found that H3PO3 adsorbs in a pyramidal configuration P(OH)3 through a Pt−P bond. The competition between H3PO4 and H3PO3 adsorption was studied, which should allow for a better understanding of the catalyst poisoning mechanism and thus assist in the development of strategies to mitigate this phenomenon in the future by minimizing H3PO3 generation by, for example, improved catalyst design or adapted operation conditions or changes in the electrolyte composition. KW - H3PO4 life cycle KW - XAS KW - In situ coupling KW - High-temperature fuel cells KW - Δμ XANES KW - H3PO3 PY - 2022 DO - https://doi.org/10.1021/acscatal.2c02630 SN - 2155-5435 VL - 12 IS - 18 SP - 11472 EP - 11484 PB - ACS CY - Washington, DC AN - OPUS4-55815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lutz, C. A1 - Hampel, S. A1 - Ke, X. A1 - Beuermann, S. A1 - Turek, T. A1 - Kunz, U. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Fittschen, U. T1 - Evidence for redox reactions during vanadium crossover inside the nanoscopic water-body of Nafion 117 using X-ray absorption near edge structure spectroscopy N2 - A major source of capacity fade of the common vanadium redox flow battery (VRFB) is the vanadium ion transport through the separator. However, different transport models disagree significantly in the diffusion coefficient for the different V species and the influence of different transport mechanisms. The underlying hypothesis of this work is that reactions inside the membrane are partly responsible for these discrepancies. Accordingly, it was investigated if redox reactions inside the nanoscopic water body of Nafion 117 can occur. X-ray absorption near edge structure spectroscopy (XANES) was used to distinguish between the different V species inside hydrated Nafion 117 and novel PVDF-based membranes. It was validated that the speciation of vanadium can be performed using the pre-edge peak energy and intensity. The experiments were performed as follows: strips of the membrane were exposed from one site to a V3+ solution (green) and from the other site to a VO2+ solution (yellow). The ions could diffuse into the membrane from both sides. A change of color of the membrane strip was observed. The blue color in the middle of the strip indicated that VO2+ was formed where V3+ and VO2+ got in contact. Using XANES this reaction inside Nafion was proven. KW - PVDF-Based membrane KW - VRFB KW - Vanadium speciation KW - XANES KW - Nafion 117 PY - 2020 DO - https://doi.org/10.1016/j.jpowsour.2020.229176 VL - 483 SP - 229176 PB - Elsevier B.V. AN - OPUS4-51719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Emmerling, Franziska ED - de Oliveira Guilherme Buzanich, Ana ED - Strange, R. W. T1 - Time- and spatial-resolved XAFS spectroscopy in a single shot: new analytical possibilities for in situ material characterization N2 - A new concept that comprises both time- and lateral-resolved X-ray absorption fine-structure information simultaneously in a single shot is presented. This uncomplicated set-up was tested at the BAMline at BESSY-II (Berlin, Germany). The primary broadband beam was generated by a double multilayer monochromator. The transmitted beam through the sample is diffracted by a convexly bent Si (111) crystal, producing a divergent beam. This, in turn, is collected by either an energy-sensitive area detector, the so-called color X-ray camera, or by an area-sensitive detector based on a CCD camera, in θ–2θ geometry. The first tests were performed with thin metal foils and some iron oxide mixtures. A time resolution of lower than 1 s together with a spatial resolution in one dimension of at least 50 mm is achieved. KW - Single-shot XAFS KW - Time resolution PY - 2016 UR - http://scripts.iucr.org/cgi-bin/paper?S1600577516003969 DO - https://doi.org/10.1107/S1600577516003969 SN - 1600-5775 VL - 23 SP - 769 EP - 776 PB - International Union of Crystallography CY - Liverpool, UK AN - OPUS4-35903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cakir, Cafer Tufan A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin T1 - A Digital Twin Workflow for Optimizing X-ray Emission Spectroscopy (XES) Parameters in Material Science N2 - In this contribution, I present a digital twin-based workflow designed to optimize experimental parameters in X-ray emission spectroscopy (XES), with a focus on reproducibility, data integration, and alignment with FAIR (Findable, Accessible, Interoperable, Reusable) principles in materials science and engineering (MSE). The developed pipeline begins with automated retrieval of crystallographic information from the Materials Project database based on a given sample composition. This structural data is then used to simulate the corresponding XES spectra using FDMNES, allowing for accurate prediction of element-specific emission lines. The simulated emission lines are fed into an X-ray tracing (XRT) module, which builds a virtual replica of the experimental setup. This digital twin environment enables predictive modeling of spectrometer performance based on geometric configurations. The optimization focuses on two key parameters: the choice of the analyzing crystal and the distance between the sample and crystal (which also defines the crystal–detector distance due to Bragg condition constraints). An active learning algorithm is employed to iteratively adjust these parameters in order to achieve a desired energy-per-pixel (E/pixel) resolution with minimal intensity loss, enabling efficient, data-driven experimental planning. By integrating data-driven simulations with real-time optimization strategies, this workflow supports efficient experiment planning while minimizing resource consumption and human error. Furthermore, all stages of the process—from data collection and simulation to optimization and visualization—are structured to ensure traceability and interoperability, facilitating future reuse and collaborative research. I hope this contribution aligns well with the topic “Workflows for FAIR MSE Data” and offers a concrete example of how digital twins can be harnessed to improve the design, execution, and documentation of spectroscopy experiments in the MSE domain. T2 - Opportunities and Challenges of FAIR Data at Photon and Neutron Facilities CY - Bad Honnef, Germany DA - 12.10.2025 KW - Digital-Twin KW - XES KW - Optimization KW - Machine Learning PY - 2025 AN - OPUS4-64676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Somasundaram, S. K. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska A1 - Krishnan, S. A1 - Senthilkumar, K. A1 - Joseyphus, R.J. T1 - New insights into pertinent Fe-complexes for the synthesis of iron via the instant polyol process N2 - Chemically synthesized iron is in demand for biomedical applications due to its large saturation magnetization compared to iron oxides. The polyol process, suitable for obtaining Co and Ni particles and their alloys, is laborious in synthesizing Fe. The reaction yields iron oxides, and the reaction pathway remains unexplored. This study shows that a vicinal polyol, such as 1,2-propanediol, is suitable for obtaining Fe rather than 1,3-propanediol owing to the formation of a reducible Fe intermediate complex. X-ray absorption spectroscopy analysis reveals the ferric octahedral geometry and tetrahedral geometry in the ferrous state of the reaction intermediates in 1,2-propanediol and 1,3-propanediol, respectively. The final product obtained using a vicinal polyol is Fe with a γ-Fe2O3 shell, while the terminal polyol is favourable for Fe3O4. The distinct Fe–Fe and Fe–O bond lengths suggest the presence of a carboxylate group and a terminal alkoxide ligand in the intermediate of 1,2-propanediol. A large Fe–Fe bond distance suggests diiron complexes with bidentate carboxylate bridges. Prominent high-spin and low-spin states indicate the possibility of transition, which favors the reduction of iron ions in the reaction using 1,2-propanediol. KW - XAS KW - Nanoparticle PY - 2023 DO - https://doi.org/10.1039/D3CP01969A SN - 1463-9076 VL - 25 IS - 33 SP - 21970 EP - 21980 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wintzheimer, S. A1 - Szczerba, Wojciech A1 - de Oliveira Guilherme Buzanich, Ana A1 - Kashiwaya, S. A1 - Klein, A. A1 - Jaegermann, W. A1 - Toupance, T. A1 - Shmeliov, A. A1 - Nicolosi, V. A1 - Heuzé, K. A1 - Mandel, K. A1 - Dembski, S. T1 - Discovering the determining parameters for the photocatalytic activity of TiO2 colloids based on an anomalous dependence on the specific surface area N2 - The photocatalytic (PC) performance of titanium dioxide (TiO2) nanoparticles strongly depends on their specific surface, the presence of crystal defects, their crystal phase, and the exposed crystal facets. In order to understand which of these factors contributes most significantly to the PC activity of TiO2 colloids, all of them have to be individually analyzed. This study entails the synthesis of five anatase nanocrystal samples. By maintaining the same reactant ratios as well as hydrothermal sol–gel synthesis route and only varying the autoclaving time or temperature, different crystallite sizes are obtained under comparable experimental conditions. A decrease in PC performance with increase in specific surface area is found. Such an unexpected counterintuitive result establishes the basis for a better understanding of the crucial factors that ultimately determine the PC activity. These are investigated by studying nanocrystals bulk and surface structure and morphology using a selection of complementary analysis methods (X-ray photoelectron spectroscopy (XPS), X-ray absorption fine structure (XAFS), X-ray diffraction (XRD)…). It is found that a change in the nanocrystal morphology from an equilibrium state truncated tetragonal bipyramid to a more elongated rod-like structure accompanied by an increase in oxygen vacancies is responsible for an augmented PC activity of the TiO2 nanocrystals. KW - Ti-based colloids KW - Photocatalysis KW - Spectroscopy KW - XAFS PY - 2018 DO - https://doi.org/10.1002/ppsc.201800216 SN - 0934-0866 SN - 1521-4117 VL - 35 IS - 9 SP - 1800216, 1 EP - 10 PB - Wiley Online Library AN - OPUS4-46068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Liu, Yanchen A1 - de Oliveira Guilherme Buzanich, Ana A1 - Alippi, Paola A1 - Lee, Kug-Seung A1 - Jeon, Taeyeol A1 - Weißer, Kilian A1 - Karlsen, Martin A. A1 - Russo, Patrícia A. A1 - Pinna, Nicola T1 - FeNb2O6 as a high-performance anode for sodium-ion batteries enabled by structural amorphization coupled with NbO6 local ordering. N2 - Pseudocapacitance-type transition metal oxides have been extensively investigated as anodes materials for lithium-ion batteries. Currently, they are also emerging as promising anodes for sodium-ion batteries due to their low volume change and safety. However, the potential electrochemical performance in sodium energy storage is not fully achieved, primarily due to the larger radius of the Na+-ions. Here, we report for the first time an iron niobate with columbite structure as a high-performance sodium storage anode. The presence of iron in the structure is vital to trigger the loss of long-range order through disorder of the FeO6 octahedra local structure, subsequently allowing reversible Na storage in an amorphous phase. Simultaneously, the formation of short-range ordered zigzag-chain structures within the NbO6 planes creates a “skeleton” that offers abundant active sites for pseudocapacitive ion storage and enhanced ion diffusion pathways. These characteristics of FeNb2O6 make it an effective intercalation host, offering high capacity along with fast Na+ insertion and extraction, as demonstrated through operando and ex-situ characterizations. It leads to an applicable reversible capacity ( 300 mAh g-1) with a favorable average voltage of ca. 0.6 V and excellent rate capability (180.4 mAh g-1 at a current density of 2 A g-1). This study provides insights into the development of intrinsically active transition metal oxides for Na+-ion intercalation. KW - XAS KW - Sodium-Ion-Batteries KW - In-situ PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-631159 DO - https://doi.org/10.26434/chemrxiv-2025-2gn7z SP - 1 EP - 51 PB - American Chemical Society (ACS) AN - OPUS4-63115 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lin, R. A1 - Li, X. A1 - Krajnc, A. A1 - Li, Z. A1 - Li, M. A1 - Wang, W. A1 - Zhuang, L. A1 - Smart, S. A1 - Zhu, Z. A1 - Appadoo, D. A1 - Harmer, J. R. A1 - Wang, Z. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Beyer, S. A1 - Wang, L. A1 - Mali, G. A1 - Bennett, T. D. A1 - Chen, V. A1 - Hou, J. T1 - Mechanochemically Synthesised Flexible Electrodes Based on Bimetallic Metal–Organic Framework Glasses for the Oxygen Evolution Reaction N2 - The melting behaviour of metal–organic frameworks (MOFs) has aroused significant research interest in the areas of materials science, condensed matter physics and chemical engineering. This work first introduces a novel method to fabricate a bimetallic MOF glass, through meltquenching of the cobalt-based zeolitic imidazolate Framework (ZIF) [ZIF-62(Co)] with an adsorbed ferric coordination complex. The high-temperature chemically reactive ZIF-62-(Co) liquid facilitates the formation of coordinative bonds between Fe and imidazolate ligands, incorporating Fe nodes into the framework after quenching. The resultant Co–Fe bimetallic MOF glass therefore shows a significantly enhanced oxygen evolution reaction performance. The novel bimetallic MOF glass, when combined with the facile and scalable mechanochemical synthesis technique for both discrete powders and surface coatings on flexible substrates, enables significant opportunities for catalytic device Assembly KW - Electrodes KW - MOF KW - OER KW - XANES KW - XAS KW - Bimetallic frameworks PY - 2022 DO - https://doi.org/10.1002/anie.202112880 VL - 61 IS - 4 SP - e202112880 PB - Wiley AN - OPUS4-54018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Akhmetova, Irina A1 - Schuzjajew, K. A1 - Wilke, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Rademann, K. A1 - Roth, C. A1 - Emmerling, Franziska T1 - Synthesis, characterization and in situ monitoring of the mechanochemical reaction process of two manganese(II)-phosphonates with N-containing ligands N2 - Two divalent manganese aminophosphonates, manganese mono (nitrilotrimethylphosphonate) (MnNP3) and manganese bis N-(carboxymethyl)iminodi(methylphosphonate)) (Mn(NP2AH)2), have been prepared by mechanochemical synthesis and characterized by powder X-ray diffraction (PXRD). The structure of the novel compound Mn(NP2AH)2 was determined from PXRD data. MnNP3 as well as Mn(NP2AH)2 exhibits a chain-like structure. In both cases, the manganese atom is coordinated by six oxygen atoms in a distorted octahedron. The local coordination around Mn was further characterized by extended X-ray absorption fine structure. The synthesis process was followed in situ by synchrotron X-ray diffraction revealing a three-step reaction mechanism. The asprepared manganese(II) phosphonates were calcined on air. All samples were successfully tested for their suitability as catalyst material in the oxygen evolution reaction. KW - Mechanochemistry KW - In situ KW - XRD PY - 2018 DO - https://doi.org/10.1007/s10853-018-2608-6 SN - 0022-2461 SN - 1573-4803 VL - 53 IS - 19 SP - 13390 EP - 13399 PB - Springer Science + Business Media B.V. AN - OPUS4-45673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - The versatility of XAS@BAM for real-time in situ electrocatalysis in collaborative materials research N2 - With the global push toward sustainable energy technologies, the development of efficient and durable electrocatalysts has become a research priority. Real-time in situ studies are essential to understand the dynamic behavior of catalysts under operational conditions. X-ray absorption spectroscopy (XAS) offers a unique, element-specific probe of electronic and structural changes at the active sites of electrocatalysts during electrochemical reactions. At BAM, collaborative research efforts leverage the advanced capabilities of the BAMline at the Berlin Synchrotron BESSY-II to study electrocatalytic materials under realistic working conditions. As a dedicated materials research beamline, the BAMline enables in situ and operando XAS across different time and length scales, making it ideally suited for monitoring catalytic transformations in real time. This presentation highlights the analytical strengths and sample environments developed for electrochemical cells at BAM, showcasing their application to electrocatalysis for energy conversion (e.g., water splitting, CO₂ reduction). Emphasis will be placed on how these insights contribute to the rational design and real-time optimization of functional materials for a sustainable energy future. T2 - MATSUS Konferenz CY - Valencia, Spanien DA - 20.10.2025 KW - Operando KW - XAS KW - In situ KW - Electrocatalysis PY - 2025 AN - OPUS4-64493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Emmerling, Franziska ED - de Oliveira Guilherme Buzanich, Ana T1 - Time- and spatial-resolved X-ray absorption fine structure (XAFS) spectroscopy in a single-shot: new analytical possibilities for in situ material characterization N2 - A new concept that comprises both time- and lateral-resolved X-ray absorption fine-structure information simultaneously in a single shot is presented. This uncomplicated set-up was tested at the BAMline at BESSY-II (Berlin, Germany). The primary broadband beam was generated by a double multilayer monochromator. The transmitted beam through the sample is diffracted by a convexly bent Si (111) crystal, producing a divergent beam. This, in turn, is collected by either an energy-sensitive area detector, the so-called color X-ray camera, or by an area-sensitive detector based on a CCD camera, in θ-2θ geometry. The first tests were performed with thin metal foils and some iron oxide mixtures. A time resolution of lower than 1 s together with a spatial resolution in one dimension of at least 50 µm is achieved. KW - Single-shot XAFS KW - Time resolution KW - Spatial resolution KW - Divergent XAFS PY - 2016 DO - https://doi.org/10.1107/S1600577516003969 SN - 1600-5775 VL - 23 SP - 769 EP - 776 PB - International Union of Crystallography AN - OPUS4-38370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qureshi, Navid A1 - Morrow, Ryan A1 - Eltoukhy, Samar A1 - Grinenko, Vadim A1 - de Oliveira Guilherme Buzanich, Ana A1 - Onykiienko, Yevhen A. A1 - Kulbakov, Anton A1 - Inosov, Dmytro S. A1 - Adler, Peter A1 - Valldor, Martin T1 - Noncollinear Magnetic Structures in the Chiral Antiperovskite β-Fe2SeO N2 - We present the magnetic properties of the chiral, polar, andpossibly magnetoelectric antiperovskite β-Fe2SeO as derived from magnet-ization and specific-heat measurements as well as from powder neutrondiffraction and Mössbauer experiments. Our macroscopic data unambig-uously reveal two magnetic phase transitions at TN1 ≈ 103 K and TN2 ≈ 78K, while Rietveld analysis of neutron powder diffraction data reveals anoncollinear antiferromagnetic structure featuring magnetic moments inthe a−b plane of the trigonal structure and a ferromagnetic moment alongc. The latter is allowed by symmetry between TN1 and TN2, weakly visible inthe magnetization data yet unresolvable microscopically. While theintermediate phase can be expressed in the trigonal magnetic spacegroup P31, the magnetic ground state is modulated by a propagation vectorq = (1/2 1/2 0) resulting in triclinic symmetry and an even more complexlow-temperature spin arrangement which is also reflected in the Mö ssbauer hyperfine patterns indicating additional splitting of Fesites below TN2. The complex noncollinear spin arrangements suggest interesting magnetoelectric properties of this polar magnet. KW - EXAFS KW - Antiperovskite KW - Magnetic structure PY - 2024 DO - https://doi.org/10.1021/acs.inorgchem.4c02916 SN - 0020-1669 VL - 63 IS - 48 SP - 22712 EP - 22720 PB - American Chemical Society (ACS) AN - OPUS4-63116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smekhova, A. A1 - Kuzmin, A. A1 - Siemensmeyer, K. A1 - Abrudan, R. A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana A1 - Schneider, M. A1 - Laplanche, G. A1 - Yusenko, Kirill T1 - Inner relaxations in equiatomic single-phase high-entropy Cantoralloy N2 - The superior properties of high-entropy multi-functional materials are strongly connected with their atomic heterogeneity through many different local atomic interactions. The detailed element-specific studies on a local scale can provide insight into the primary arrangements of atoms in multicomponent systems and benefit to unravel the role of individual components in certain macroscopic properties of complex compounds. Herein, multi-edge X-ray absorption spectroscopy combined with reverse Monte Carlo simulations was used to explore a homogeneity of the local crystallographic ordering and specific structure relaxations of each constituent in the equiatomic single-phase facecentered cubic CrMnFeCoNi high-entropy alloy at room temperature. Within the considered fitting approach, all five elements of the alloy were found to be distributed at the nodes of the fcc lattice without any signatures of the additional phases at the atomic scale and exhibit very close statistically averaged interatomic distances (2.54 – 2.55 Å) with their nearest-neighbors. Enlarged structural displacements were found solely for Cr atoms. The macroscopic magnetic properties probed by conventional magnetometry demonstrate no opening of the hysteresis loops at 5 K and illustrate a complex character of the long-range magnetic order after field-assisted cooling in ± 5 T. The observed magnetic behavior is assigned to effects related to structural relaxations of Cr. Besides, the advantages and limitations of the reverse Monte Carlo approach to studies of multicomponent systems like high-entropy alloys are highlighted. KW - Magnetism KW - High-entropy alloys KW - Reverse Monte Carlo (RMC) KW - Element-specific spectroscopy KW - Extended X-ray absorption fine structure (EXAFS) KW - X-ray absorption near edge structure (XANES) PY - 2022 DO - https://doi.org/10.1016/j.jallcom.2022.165999 SN - 0925-8388 VL - 920 SP - 1 EP - 31 PB - Elsevier AN - OPUS4-55457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szczerba, Wojciech A1 - Schneider, M. A1 - Żukrowski, J. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Riesemeier, Heinrich A1 - Sikora, M. A1 - Mandel, K. T1 - Spectroscopic Study of the Role of Metal Ions in the Adsorption Process of Phosphate in Nanoscaled Adsorbers Based on Metal (Zn/ Fe/Zr) Oxyhydroxides N2 - Currently great effort is made to find materials and technologies for the recycling of phosphate from wastewater. Herein, we present an in-depth study of the Phosphate adsorption mechanism of a promising adsorber material, a Zn−Fe−Zr oxyhydroxide-based nanostructured precipitate. The behavior of the multicomponent nanomaterial, consisting of both crystalline and amorphous parts, is investigated via X-ray absorption fine structure spectroscopy and Mössbauer spectroscopy, revealing the importance of the nanostructured composition for the phosphate adsorption. We found evidence that adsorption takes place especially in the vicinity of iron sites in the amorphous part of the material. KW - Zn-Fe-Zr nanoparticles KW - Adsorption of phosphate KW - XAFS KW - Catalysis PY - 2017 DO - https://doi.org/10.1021/acs.jpcc.7b04773 SN - 1932-7447 VL - 121 IS - 45 SP - 25033 EP - 25042 PB - ACS Publications AN - OPUS4-43348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yun, Tae Gyu A1 - Chen, Boqiang A1 - Wells, Sarah A1 - Lim, Younghwan A1 - Kim, Jun Seop A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Waegele, Matthias M. A1 - Risch, Marcel A1 - Grimaud, Alexis ED - de Oliveira Guilherme Buzanich, Ana T1 - Extrinsic and Intrinsic Factors Governing the Electrochemical Oxidation of Propylene in Aqueous Solutions N2 - The electrochemical synthesis of commoditychemicals such as epoxides and glycols offers a sustainablealternative to conventional methods that involve hazardouschemicals. Efforts to improve the yield and selectivity of propyleneoxidation using Pd-based catalysts have been shown to be highlysensitive to applied potential, pH, and electrochemical cell design.Record efficiencies and yields were obtained by substitution ofPdO by 4d or 5d transition metals, including Pt, with thus far littlerationale regarding the origin for the improvement. Throughelectrochemical analysis, scanning transmission electron micros-copy, X-ray absorption spectroscopy, and surface-enhanced infraredabsorption spectroscopy, we investigated the mechanism ofpropylene oxidation on Pd-based catalysts. We demonstrate thatadsorbates forming on PdO, where Pd adopts a square-planar coordination [PdO4], differ from that forming on the surface ofoxidized metallic Pd catalysts with an oxo intermediate mediating propylene oxidation on PdO. We further show that Pt substitutionin PdO does not modify this oxo intermediate. Varying pH, we found that the onset for propylene oxidation is pH independent,indicating a potential-determining step where the proton is not involved in and similar reaction pathway in acidic and near-neutralconditions. Finally, our work undoubtedly demonstrates that high Faradaic efficiency toward propylene glycol and propylene oxideformation, such as those previously reported in the literature, can be achieved by means of electrode engineering and mastery ofmass transport and local pH. Notably, we achieved ≈100% faradaic efficiency for propylene glycol at 1.7 V vs RHE in acidic mediausing a Pt-substituted PdO catalyst loaded onto a gas diffusion electrode. KW - XAS KW - Electrochemistry KW - Popylene oxidation KW - 4d metals PY - 2025 DO - https://doi.org/10.1021/jacs.5c02585 SN - 0002-7863 VL - 147 IS - 14 SP - 12318 EP - 12330 PB - American Chemical Society (ACS) AN - OPUS4-63112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - The versatility of X-ray absorption spectroscopy (XAS) for exploring new materials in collaborative research N2 - From Physics Engineer at FCUL in Lisbon to senior scientist at the Federal Institute for Materials Research and Testing (BAM) in Berlin, Germany. In this seminar, a personal journey using X-rays as a tool to probe different types of materials will be given. Examples of applications relevant to our society demonstrate how versatile and useful X-rays are T2 - Forschungsseminar an der FCUL (Univesity of Lisbon) CY - Online meeting DA - 25.10.2024 KW - XAS KW - Time-resolved studies KW - Operando KW - Corrosion KW - Electrochemistry PY - 2024 AN - OPUS4-61597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - Time resolved in situ monitoring of mechanochemical transformations by X-ray spectroscopy (XAS) N2 - Mechanochemical reactions promise a new direction for environmentally benign preparation of materials, and has been dubbed by IUPAC as one of the 10 chemical innovations that will change our world. Despite this significant promise, very little is known about the mechanisms that drive mechanochemical transformations, posing significant barriers to realizing their full potential. To this end, there is growing need to follow mechanochemical reactions in situ and in real time. We here describe advances in the development and application of XAS methods to monitor material synthesis in real time under mechanochemical conditions. We demonstrate the generality of our approaches by describing mechanochemical syntheses of materials by both vibratory ball milling and by Resonant Acoustic Mixing (RAM), where a time resolution of 1 second is for a whole XAS spectrum was achieved. Moreover, we describe how spectroscopic methods can be coupled to diffraction-based approaches, thereby providing new dimensions in understanding mechanochemical synthesis. T2 - Denver X-ray Conference: DXC 2021 CY - Online meeting DA - 02.08.2021 KW - Dispersive XAS KW - Mechanochemistry KW - Time resolved KW - In situ PY - 2021 AN - OPUS4-56257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yusenko, Kirill A1 - Emmerling, Franziska A1 - de Oliveira Guilherme Buzanich, Ana T1 - X-Ray absorption spectroscopy to study multicomponent materials N2 - Detailed study of multicomponent systems in solid-state as well as in solution using X-ray diffraction and X-ray spectroscopy is one of the most common topics in modern materials chemistry. 5-6 component high-entropy alloys such as fcc- and bcc-structured AlxCoCrFeNi and fluorescent nanoparticles based on fluorite-structured SrF2 doped by rare-earth metals in organic solutions have high complexity and their local structure cannot be resolved using only diffraction. X-ray absorption spectroscopy should be applied to understand peculiarities in their local structure and make a link between structure on short and long ranges and their macroscopic properties. Here, based on two representativee examples, we discuss how a combination of several X-ray absorption edges might give new insights into complex materials. T2 - Virtual meeting of the African Light Source CY - Online meeting DA - 15.11.2021 KW - EXAFS KW - Synchrotron studies PY - 2021 AN - OPUS4-54014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - Time resolved in situ monitoring of mechanochemical transformations by X-ray absorption spectroscopy (XAS) N2 - Mechanochemical reactions promise a new direction for environmentally benign preparation of materials, and has been dubbed by IUPAC as one of the 10 chemical innovations that will change our world. Despite this significant promise, very little is known about the mechanisms that drive mechanochemical transformations, posing significant barriers to realizing their full potential. To this end, there is growing need to follow mechanochemical reactions in situ and in real time. We here describe advances in the development and application of XAS methods to monitor material synthesis in real time under mechanochemical conditions. We demonstrate the generality of our approaches by describing mechanochemical syntheses of materials by both vibratory ball milling and by Resonant Acoustic Mixing (RAM), where a time resolution of 1 second is for a whole XAS spectrum was achieved. Moreover, we describe how spectroscopic methods can be coupled to diffraction-based approaches, thereby providing new dimensions in understanding mechanochemical synthesis. T2 - Advances X ray Analytics Seminar at TU Berlin CY - Berlin, Germany DA - 14.06.2022 KW - XAS KW - Mechanochemistry KW - Time resolved KW - In situ PY - 2022 AN - OPUS4-56259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Flatken, M. A. A1 - Radicchi, E. A1 - Wendt, R. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Härk, E. A1 - Pascual, J. A1 - Mathies, F. A1 - Shargaieva, O. A1 - Prause, A. A1 - Dallmann, A. A1 - De Angelis, F. A1 - Hoell, A. A1 - Abate, A. T1 - Role of the Alkali Metal Cation in the Early Stages of Crystallization of Halide Perovskites N2 - ABX3 metal halide perovskites revolutionized the research and development of new optoelectronics, including solar cells and light-emitting diodes. Processing polycrystalline thin films from precursor solutions is one of the core advantages of these materials since it enables versatile and cost-effective manufacturing. The perovskite film morphology, that is, continuous substrate coverage and low surface roughness, is of paramount importance for highly efficient solar cells and optoelectronic devices in general. Controlling the chemistry of precursor solutions is one of the most effective strategies to manage the perovskite film morphology. Herein, we show the fundamental influence of the A-site cation composition on the perovskite precursor arrangement and the consequent film formation. Extended X-ray absorption fine structure spectroscopy and small-angle X-ray scattering give unprecedented insights into the complex structural chemistry of the perovskite precursors and, in particular, their repulsive interactions as a crucial parameter for colloidal stability. Combining these techniques with in situ grazing incidence wide-angle X-ray scattering during thin-film formation allows us to identify the mechanism for using alkali metals as a decisive criterion to control the colloidal stability of the perovskite precursor and thus the thin-film morphology. We illustrate the fundamental principle behind the systematic use of alkali metals regardless of whether they are incorporated in the lattice or not. Hence, this work provides tools to selectively control the morphology and crystal growth in present and future systems KW - MAPbI3 perovskites KW - Halide Perovskites KW - X-ray absorption spectroscopy PY - 2022 DO - https://doi.org/10.1021/acs.chemmater.1c03563 SN - 0897-4756 VL - 34 IS - 3 SP - 1121 EP - 1131 PB - American Chemical Society AN - OPUS4-54713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Rui A1 - Russo, Patrícia A. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Jeon, Taeyeol A1 - Pinna, Nicola T1 - Hybrid organic–inorganic transition-metal phosphonates as precursors for water oxidation electrocatalysts N2 - Efficient water oxidation catalysts are required for the development of water splitting technologies. Herein, the synthesis of layered hybrid NiFephenylphosphonate compounds from metal acetylacetonate precursors and phenylphosphonic acid in benzyl alcohol, and their Oxygen evolution reaction performance in alkaline medium, are reported. The hybrid particles are formed by inorganic layers of NiO6 and FeO6 distorted octahedra separated by bilayers of the organic group, and template the Formation in situ of NiFe hydroxide nanosheets of sizes between 5 and 25 nm and thicknesses between 3 and 10 nm. X-ray absorption spectroscopy measurements suggest that the hybrid also acts as a template for the local structure of the metal sites in the active catalyst, which remain distorted after the transformation. Optimum electrocatalytic activity is achieved with the hybrid compound with a Fe content of 16%. The combination of the synergistic effect between Ni and Fe with the structural properties of the hybrid results in an efficient catalyst that generates a current density of 10 mA cm−2 at an overpotential of 240 mV, and also in a stable catalyst that operates continuously at low overpotentials for 160 h. KW - Water oxydation catalysis KW - EXAFS PY - 2017 DO - https://doi.org/10.1002/adfm.201703158 SN - 1616-301X SN - 1616-3028 VL - 27 IS - 40 SP - Article 1703158, 1 EP - 11 PB - WILEY-VCH Verlag CY - Weinheim AN - OPUS4-42783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bach, S. A1 - Visnow, E. A1 - Panthöfer, M. A1 - Gorelik, T. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Gulo, A. A1 - Kolb, U. A1 - Emmerling, Franziska A1 - Lind, C. A1 - Tremel, W. T1 - Hydrate networks under mechanical stress – A case study for Co3(PO4)2·8H2O N2 - The nature of the bound water in solids with hydrogen-bonded networks depends not only on temperature and pressure but also on the nature of the constituents. The collapse and reorientation of these network structures determines the stability of hydrated solids and transitions to other crystalline or amorphous phases. Here, we study the mechanochemically induced loss of bound water in Co₃(PO₄)₂·8H₂O and compare this process to the behavior under hydrostatic pressure. The associated phase transition and its kinetics were monitored by X-ray powder diffraction with Synchrotron radiation and quantitative IR spectroscopy. High shearing forces are responsible for the degradation of the hydrogen-bonded network and the concomitant crystalline–amorphous transformation. UV/Vis spectroscopy, extended X-ray absorption spectroscopy (EXAFS), and X-ray absorption near-edge spectroscopy (XANES) provided information about the short-range order in the amorphous solid, and thermal analysis revealed its composition and showed that the moderate charge densities of the Co²⁺ and PO₄³⁻ ions, which make the hydration enthalpy comparable to the binding energy of the counteranions, and the Formation of hydrogen-bonded networks favor multistage crystallization processes associated with the release and uptake of coordinated water. The changes of the Co²⁺ coordination induce a color change from pink to blue; therefore, Co₃(PO₄)₂·8H₂O can be used as an overheat temperature indicator. KW - Mechanochemistry KW - Amorphous materials KW - Hydrates KW - Cobalt KW - Phosphates PY - 2016 DO - https://doi.org/10.1002/ejic.201501481 SN - 1434-1948 SN - 1099-0682 VL - 2016 IS - 13-14 SP - 2072 EP - 2081 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim, Germany AN - OPUS4-36434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kunkel, Benny A1 - Seeburg, Dominik A1 - Kabelitz, Anke A1 - Witte, Steffen A1 - Gutmann, Torsten A1 - Breitzke, Hergen A1 - Buntkowsky, Gerd A1 - de Oliveira Guilherme Buzanich, Ana A1 - Wohlrab, Sebastian T1 - Highly productive V/Zn-SiO2 catalysts for the selective oxidation of methane N2 - The production of formaldehyde on industrial scale requires huge amounts of energy due to the involvement of reforming processes in combination with the demand in the megaton scale. Hence, a direct route for the transformation of (bio)methane to formaldehyde would decrease costs and puts less pressure on the environment. Herein, we report on the use of zinc modified silicas as possible support materials for vanadium catalysts and the resulting consequences for the performance in the selective oxidation of methane to formaldehyde. After optimization of the Zn content and reaction conditions, a remarkably high space-time yield of 12.4 kgCH2O⋅kgcat − 1 ⋅h− 1 was achieved. As a result of the extensive characterization by means of UV–vis, Raman, XANES and NMR spectroscopy it was found that vanadium is in the vicinity of highly dispersed zinc atoms which promote the formation of active vanadium species as supposed by theoretical calculations. This work presents a further step of catalyst development towards direct industrial methane conversion which may help to overcome current limitations in the future. KW - Catalysis KW - XANES KW - Selective oxidation PY - 2024 DO - https://doi.org/10.1016/j.cattod.2024.114643 SN - 0920-5861 VL - 432 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-60137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, Yanchen A1 - de Oliveira Guilherme Buzanich, Ana A1 - Montoro, Luciano A. A1 - Liu, Hao A1 - Liu, Ye A1 - Emmerling, Franziska A1 - Russo, Patrícia A. A1 - Pinna, Nicola T1 - A partially disordered crystallographic shear block structure as fast-charging negative electrode material for lithium-ion batteries N2 - A well-ordered crystalline structure is crucial in battery electrodes, as the dimensionality and connectivity of the interstitial sites inherently influence Li+ ions diffusion kinetics. Niobium tungsten oxides block structures, composed of ReO3-type blocks of specific sizes with well-defined metal sites, are promising fast-charging negative electrode materials. Structural disorder is generally detrimental to conductivity or ion transport. However, here, we report an anomalous partially disordered Nb12WO33 structure that significantly enhances Li-ion storage performance compared to the known monoclinic Nb12WO33 phase. The partially disordered phase consists of corner-shared NbO6 octahedra blocks of varied sizes, including 5×4, 4×4, and 4×3, with a disordered arrangement of distorted WO4 tetrahedra at the corners of the blocks. This structural arrangement is robust during lithiation/delithiation, exhibiting minor local structure changes during cycling. It enables accelerated Li-ion migration, resulting in promising fast-charging performance, namely, 62.5 % and 44.7 % capacity retention at 20 C and 80 C, respectively. This study highlights the benefits of introducing disorder into niobium tungsten oxide shear structures, through the establishment of clear structure-performance correlations, offering guidelines for designing materials with targeted properties. KW - Lithium ion batteries KW - Oxides KW - XANES KW - XRD PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-637994 DO - https://doi.org/10.1038/s41467-025-61646-9 SN - 2041-1723 VL - 16 IS - 1 SP - 1 EP - 15 PB - Springer Science and Business Media LLC AN - OPUS4-63799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinekamp, Christian A1 - Roy, Arkendu A1 - Karafiludis, Stephanos A1 - Kumar, Sourabh A1 - de Oliveira Guilherme Buzanich, Ana A1 - Stawski, Tomasz M. A1 - Miliūtė, Aistė A1 - von der Au, Marcus A1 - Ahrens, Mike A1 - Braun, Thomas A1 - Emmerling, Franziska T1 - Zirconium fluoride-supported high-entropy fluoride: a catalyst for enhanced oxygen evolution reaction N2 - Extended hydrogen initiatives promote the urgency of research on water splitting technologies and, therein, oxygen evolution reaction catalysts being developed. A route to access a ZrF4 supported high-entropy fluoride catalyst using a facile sol–gel route is presented. The high-entropy character of the catalyst was confirmed by scanning transmission electron microscopy and energy dispersive X-ray spectroscopy (STEM-EDX) as well as inductively coupled plasma-mass spectrometry (ICP-MS). Additional investigations on the local structure were performed using extended X-ray absorption fine structure spectroscopy (EXAFS) and pair distribution function (PDF) analysis. The catalyst shows significant potential for oxygen evolution reaction (OER) in alkaline media with a current density of 100 mA cm−2 at approximately 1.60 V, thus outperforming benchmark materials such as IrO2, despite a significant reduction in electrochemical mass loading. A potential mechanism is suggested based on free energy calculation using DFT calculations. KW - OER KW - HEA KW - CCMAT PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-637116 DO - https://doi.org/10.1039/D4TA08664C SN - 2050-7488 VL - 13 IS - 26 SP - 20383 EP - 20393 PB - Royal Society of Chemistry (RSC) AN - OPUS4-63711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pessanha, Sofia A1 - Fortes, António A1 - Lopes, Marta B. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Ortega-Feliu, Inés A1 - Respaldiza, Miguel A. A1 - Gomez Tubio, Blanca A1 - Makarova, Anna A1 - Smirnov, Dmitry A1 - Kumar, Sourabh A1 - Mata, António A1 - Silveira, João T1 - Multi-technique computational assessment of fluoride uptake in enamel using PIGE, NEXAFS, and Raman spectroscopy N2 - This study explores F incorporation in enamel via PIGE, NEXAFS, and Raman spectroscopy, integrating experimental/simulated spectra. Machine Learning boosts data interpretation, offering key insights into F delivery for clinical application. KW - Simulations KW - Enamel KW - Fuorine KW - NEXAFS PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-631138 DO - https://doi.org/10.1039/D5TB00213C SN - 2050-750X SP - 1 EP - 10 PB - Royal Society of Chemistry (RSC) AN - OPUS4-63113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Scholz, G. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinsch, Stefan A1 - Kemnitz, E. A1 - Emmerling, Franziska T1 - Ca- and Sr- tetrafluoroisophthalates: mechanochemical synthesis, characterization, and ab initio structure determination N2 - New fluorinated coordination polymers were prepared mechanochemically by milling the alkaline earth metal hydroxides MII(OH)2·xH2O (MII: Ca, Sr) with tetrafluoroisophthalic acid (H2mBDC-F4). The structures of [{Ca(mBDC-F4)(H2O)2}·H2O] and [{Sr(mBDC-F4)(H2O)2}·H2O] were determined based on ab initio calculations and their powder X-ray diffraction (PXRD) data. The compounds are isomorphous and crystallize in the orthorhombic space group P212121. The determined structures were validated by using extended X-ray absorption (EXAFS) data. The new materials were thoroughly characterized using elemental analysis, thermal analysis, magic angle spinning NMR, and attenuated total reflection-infrared spectroscopy. Further characterization methods such as BET, dynamic vapor sorption, and scanning electron microscopy imaging were also used. Our investigations indicate that mechanochemistry is an efficient method for preparing such materials. KW - Mechanochemistry KW - In situ KW - XRD KW - Coordination polymers PY - 2017 UR - http://pubs.rsc.org/-/content/articlehtml/2017/dt/c7dt00734e DO - https://doi.org/10.1039/c7dt00734e VL - 46 IS - 18 SP - 6003 EP - 6012 AN - OPUS4-41516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gong, Mengjun A1 - Mehmood, Asad A1 - de Oliveira Guilherme Buzanich, Ana A1 - Fellinger, Tim-Patrick A1 - Jackson, Colleen A1 - Cui, Junyi A1 - Drazic, Goran A1 - Kucernak, Anthony T1 - Designing Co–N/C Cathode Catalysts with Dense Atomic Cobalt Sites for Enhanced PEMFC Performance N2 - Metal-nitrogen/carbon (M-N/C) catalysts, particularly those incorporating Fe,Co, or Mn, are among the most promising non-platinum group catalysts forthe acidic oxygen reduction reaction (ORR) in fuel cells. This study reports aCo-N/C catalyst featuring high (3 wt%) cobalt content exclusively present asatomic sites. Extended X-ray absorption fine structure analysis confirms atetrapyridinic Co-N4 coordination environment in the optimized (3.0)Co-N/C𝚫catalyst. The high cobalt loading leads to a significant density ofelectrochemically accessible active sites, 3.58 × 10 19 sites g−1 , quantified viathe nitrite stripping method. The catalyst demonstrates excellent ORR activityin a rotating ring-disk electrode setup, achieving a half-wave potential (E 1/2 ) of0.76 V at a low loading of 0.2 mg cm−2 and a mass activity of 3.5 A g−1 at 0.80VRHE . Single-cell hydrogen-oxygen PEMFC tests achieve a peak power densityexceeding 1.3 W cm−2 (iR-corrected). Under hydrogen-air condition, thecatalyst delivers 0.54 A cm−2 at 0.60 V (0.39 W cm−2 ). Despite the intrinsicallyhigher turnover frequency of Fe-based sites, the optimized(3.0)Co-N/C𝚫 catalyst achieves similar fuel cell performance to that of Fe-N/C,highlighting the critical role of site density in overall activity. KW - Fuel cells KW - Single atom catalysts KW - Oxygen reduction reaction KW - Non-precious catalysts PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-644276 DO - https://doi.org/10.1002/advs.202516060 SN - 2198-3844 SP - 1 EP - 11 PB - Wiley VHC-Verlag AN - OPUS4-64427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pavlidis, Sotirios A1 - Teutloff, Christian A1 - de Oliveira Guilherme Buzanich, Ana A1 - Krause, Konstantin B. A1 - Emmerling, Franziska A1 - Bittl, Robert A1 - Abbenseth, Josh T1 - A Crystalline Bismuth(II) Radical Anion: Synthesis, Characterization, and Reactivity N2 - AbstractWe report the synthesis of a planarized tris‐amidobismuthane supported by a rigid, bulky NNN pincer ligand, which enforces a T‐shaped geometry at the bismuth center. The Bi(NNN) complex features a low‐lying LUMO with distinct Bi(6p) orbital character as shown by DFT calculations. Cyclic voltammetry reveals a fully reversible one‐electron reduction at E1/2 = –1.85 V versus Fc0/+ in THF. Chemical reduction with KC8 in the presence of 4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane (222‐crypt) enables the isolation of an unprecedented Bi(II) radical anion in high isolated yields. Multi‐frequency EPR, X‐ray absorption spectroscopy and SQUID magnetometry complemented by theoretical calculations confirm localization of the unpaired electron on the bismuth center. Preliminary reactivity studies display radical reactivity as shown by single‐electron transfer chemistry and radical coupling reactions. KW - Bi(III) PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-644143 DO - https://doi.org/10.1002/anie.202515545 SN - 1433-7851 VL - 64 IS - 49 SP - 1 EP - 6 PB - Wiley VHC-Verlag AN - OPUS4-64414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wahl, S. A1 - El-Refaei, S. M. A1 - Amsalem, P. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Koch, N. A1 - Pinna, N. T1 - Operando diffuse reflectance UV-vis spectroelectrochemistry for investigating oxygen evolution electrocatalysts N2 - The characterization of the active structure of water-splitting catalysts is crucial to evolve to a sustainable energy future based on hydrogen. Such information can only be obtained by operando methods. We present a diffuse reflectance UV-vis (DRUV) spectroelectrochemical study that allows tracking the changes of solid oxygen evolution catalysts under working conditions. The versatility of our approach is demonstrated on two cobalt-containing catalysts, Zn0.35Co0.65O and CoAl2O4. The changes the catalysts undergo during the oxygen evolution reaction can be tracked by probing the electronic structure using UV-vis spectroscopy. These findings are compared to ex situ analyses, which support the assignments of the structures stabilized under different potentials. Thus, structure–activity correlations can be proposed, and deeper insights into the catalytically active structures can be obtained. KW - EXAFS PY - 2020 DO - https://doi.org/10.1039/c9cy02329a VL - 10 IS - 2 SP - 517 EP - 528 PB - Royal Society of Chemistry AN - OPUS4-50468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - Time resolved in situ monitoring of mechanochemical transformations by X-ray spectroscopy (XAS) N2 - Mechanochemical reactions promise a new direction for environmentally benign preparation of materials, and has been dubbed by IUPAC as one of the 10 chemical innovations that will change our world. Despite this significant promise, very little is known about the mechanisms that drive mechanochemical transformations, posing significant barriers to realizing their full potential. To this end, there is growing need to follow mechanochemical reactions in situ and in real time. We here describe advances in the development and application of XAS methods to monitor material synthesis in real time under mechanochemical conditions. We demonstrate the generality of our approaches by describing mechanochemical syntheses of materials by both vibratory ball milling and by Resonant Acoustic Mixing (RAM), where a time resolution of 1 second is for a whole XAS spectrum was achieved. Moreover, we describe how spectroscopic methods can be coupled to diffraction-based approaches, thereby providing new dimensions in understanding mechanochemical synthesis. T2 - AfLS3 CY - Online meeting DA - 14.11.2021 KW - Dipsersive XAS KW - Mechanochemistry KW - Time-resolved KW - In situ PY - 2021 AN - OPUS4-56256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - Exploring new materials for Green Intelligent Building how can our BAMline help N2 - With increasing demand and environmental concerns, researchers are exploring new materials that can perform as well or better than traditional materials while reducing environmental impact. Synchrotron X-ray based methods enable unique tools to probe materials properties via e.g. X-ray spectroscopy and diffraction methods. The BAM plays a central role in this highly collaborative research. The BAMline, a real-life sample materials research beamline, at the Berlin Synchrotron BESSY-II, provides unique insights into materials’ electronic and chemical structure at different time and length scales1. This enables real-time optimization of material properties and performance for various applications, such as energy storage and conversion, catalysis, and deterioration resistance. T2 - DAfStb-Kolloquium CY - Berlin, Germany DA - 16.10.2024 KW - XAS KW - Time-resolved studies KW - Binding materials KW - Cements PY - 2024 AN - OPUS4-61616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - Time resolved in situ monitoring of mechanochemical transformations by X-ray absorption spectroscopy (XAS) N2 - Mechanochemical reactions promise a new direction for environmentally benign preparation of materials, and has been dubbed by IUPAC as one of the 10 chemical innovations that will change our world. Despite this significant promise, very little is known about the mechanisms that drive mechanochemical transformations, posing significant barriers to realizing their full potential. To this end, there is growing need to follow mechanochemical reactions in situ and in real time. We here describe advances in the development and application of XAS methods to monitor material synthesis in real time under mechanochemical conditions. We demonstrate the generality of our approaches by describing mechanochemical syntheses of materials by both vibratory ball milling and by Resonant Acoustic Mixing (RAM), where a time resolution of 1 second is for a whole XAS spectrum was achieved. Moreover, we describe how spectroscopic methods can be coupled to diffraction-based approaches, thereby providing new dimensions in understanding mechanochemical synthesis. T2 - European Conference on X-ray Spectrometry 2022 CY - Bruges, Belgium DA - 27.06.2022 KW - XAS KW - Mechanochemictry KW - Time resolved KW - In situ PY - 2022 AN - OPUS4-56258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cakir, Cafer Tufan A1 - Piotrowiak, T. A1 - Reinholz, Uwe A1 - Ludwig, A. A1 - Emmerling, Franziska A1 - Streli, C. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin T1 - Exploring the Depths of Corrosion: A Novel GE-XANES Technique for Investigating Compositionally Complex Alloys N2 - In this study, we propose the use of nondestructive, depth-resolved, element-specific characterization using grazing exit X-ray absorption near-edge structure spectroscopy (GE-XANES) to investigate the corrosion process in compositionally complex alloys (CCAs). By combining grazing exit X-ray fluorescence spectroscopy (GE-XRF) geometry and a pnCCD detector, we provide a scanning-free, nondestructive, depth-resolved analysis in a sub-micrometer depth range, which is especially relevant for layered materials, such as corroded CCAs. Our setup allows for spatial and energy-resolved measurements and directly extracts the desired fluorescence line, free from scattering events and other overlapping lines. We demonstrate the potential of our approach on a compositionally complex CrCoNi alloy and a layered reference sample with known composition and specific layer thickness. Our findings indicate that this new GE-XANES approach has exciting opportunities for studying surface catalysis and corrosion processes in real-world materials. KW - Degradation mechanisms KW - Grazin exit XANES KW - Depth resolved XANES KW - Compositional complex alloys KW - Corrosion PY - 2023 DO - https://doi.org/10.1021/acs.analchem.3c00404 VL - 95 SP - 4810 EP - 4818 PB - ACS Publications AN - OPUS4-57823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dietzmann, Simon A1 - Mehmood, Asad A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska A1 - Fellinger, Tim-Patrick A1 - Thomas, A. T1 - Characterization of Solid-State Complexes by XAS N2 - Atomically dispersed metal-nitrogen doped carbons (M-N-C) are promising catalysts for the activation of small molecules such as O2 and CO2. These single atom catalysts (SAC) operate at the interface between homogenous and heterogenous catalysts. Currently, many examples of M-N-C are known with good oxygen reduction reaction activity but lacking a controlled synthesis of the specific active sites of the precatalyst. Recently, our group facilitated the synthesis of pure pyrrolic M-N4 sites using Zn ions as imprinters.[1] These amorphous materials obtained by active site imprinting method are characterized at the BAMline (Bessy II) by X-ray absorption spectroscopy (XAS). In-situ/operando measurements will be crucial in future work for a better understanding of the dynamic changes of the active site. T2 - InSynX Workshop 2023 CY - Sao Paulo, Brazil DA - 06.03.2023 KW - Solid-State Complexes PY - 2023 AN - OPUS4-58933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - S2XAFS: Time-resolved X-ray absorption spectroscopy in a ‘single-shot’ – First in situ applications N2 - The newly developed EXAFS set-up comprises both time- and spatially-resolved EXAFS information simultaneously in a single-shot. This facile, stable and scanningless set-up was tested at the BAMline @ BESSY-II (Berlin, Germany). The pri-mary broadband beam is generated by a filter/X-ray-mirror combination (bandpass). The transmitted beam through the sample is diffracted by a convexly bent Si (111) crystal, producing a divergent beam. This, in turn, is collected by an area sensitive detector, in a theta - 2 theta geometry. The first in situ measurements were successfully carried out and hereby presented. The case-study deals with research on Zn-based Metal-Organic-Frameworks (MOFs) that have potential for medi-cal/pharmaceutical applications. This hot topic of MOF research targets encapsulation of therapeutically relevant bio-macromolecules (e.g. Enzymes) for drug delivery applications. Questions regarding the influence of proteins on the coor-dination of Zn during MOF crystal growth and within the final MOF can be answered with this new setup. We were able to track structural changes within a 1s time resolution. T2 - CSI XL Conference CY - Pisa, Italy DA - 12.06.2017 KW - Single-shot EXAFS KW - In situ characterization KW - Biomedical applications PY - 2017 AN - OPUS4-40683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - ´Single-shot´XANES with a Color X-ray Camera (CXC) at the BAMline (BESSY-II) T2 - XAFS 16 CY - Karlsruhe, Germany DA - 2015-08-24 PY - 2015 AN - OPUS4-34042 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -