TY - JOUR A1 - Bachmann, H. J. A1 - Bucheli, T. D. A1 - Dieguez-Alonso, A. A1 - Fabbri, D. A1 - Knicker, H. A1 - Schmidt, H.-P. A1 - Ulbricht, A. A1 - Becker, Roland A1 - Buscaroli, A. A1 - Buerge, D. A1 - Cross, A. A1 - Dickinson, D. A1 - Enders, A. A1 - Esteves, V.I. A1 - Evangelou, M. W. H. A1 - Fellet, G. A1 - Friedrich, K. A1 - Gasco Guerrero, G. A1 - Glaser, B. A1 - Hanke, U. M. A1 - Hanley, K. A1 - Hilber, I. A1 - Kalderis, D. A1 - Leifeld, J. A1 - Masek, O. A1 - Mumme, J. A1 - Paneque Carmona, M. A1 - Calvelo Pereira, R. A1 - Rees, F. A1 - Rombola, A. G. A1 - de la Rosa, J. M. A1 - Sakrabani, R. A1 - Sohi, S. A1 - Soja, G. A1 - Valagussa, M. A1 - Verheijen, F. A1 - Zehetner, F. T1 - Towards the standardization of biochar analysis: the COST action TD1107 interlaboratory comparison N2 - Biochar produced by pyrolysis of organic residues is increasingly used for soil amendment and many other applications. However, analytical methods for its physical and chemical characterization are yet far from being specifically adapted, optimized, and standardized. Therefore, COST Action TD1107 conducted an interlaboratory comparison in which 22 laboratories from 12 countries analyzed three different types of biochar for 38 physical–chemical parameters (macro- and microelements, heavy metals, polycyclic aromatic hydrocarbons, pH, electrical conductivity, and specific surface area) with their preferential methods. The data were evaluated in detail using professional interlaboratory testing software. Whereas intralaboratory repeatability was generally good or at least acceptable, interlaboratory reproducibility was mostly not (20% < mean reproducibility standard deviation < 460%). This paper contributes to better comparability of biochar data published already and provides recommendations to improve and harmonize specific methods for biochar analysis in the future. KW - Biochar KW - Analysis KW - Standardization KW - Ring test KW - Interlaboratory comparison PY - 2016 DO - https://doi.org/10.1021/acs.jafc.5b05055 SN - 0021-8561 SN - 1520-5118 VL - 64 IS - 2 SP - 513 EP - 527 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-35289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturgeon, R. E. A1 - Wahlen, R. A1 - Brandsch, T. A1 - Fairman, B. A1 - Wolf-Briche, C. A1 - Alonso, J. I. G. A1 - González, P. R. A1 - Encinar, J. R. A1 - Sanz-Medel, A. A1 - Inagaki, K. A1 - Takatsu, A. A1 - Lalere, B. A1 - Monperrus, M. A1 - Zuloaga, O. A1 - Krupp, E. A1 - Amouroux, D. A1 - Donard, O. F. X. A1 - Schimmel, H. A1 - Sejeroe-Olsen, B. A1 - Konieczka, P. A1 - Schultze, P. A1 - Taylor, P. A1 - Hearn, R. A1 - Mackay, L. A1 - Myors, R. A1 - Win, Tin A1 - Liebich, Almuth A1 - Philipp, Rosemarie A1 - Yang, L. A1 - Willie, S. T1 - Determination of tributyltin in marine sediment: Comité Consultatif pour la Quantité de Matière (CCQM) pilot study P-18 international intercomparison N2 - The capabilities of National Metrology Institutes (NMIs—those which are members of the Comité Consultatif pour la Quantité de Matière (CCQM)of the CIPM) and selected outside "expert" laboratories to quantitate (C4H9)3Sn+ (TBT) in a prepared marine sediment were assessed. This exercise was sanctioned by the 7th CCQM meeting, April 4–6, 2001, as an activity of the Inorganic Analysis Working Group and was jointly piloted by the Institute for National Measurement Standards of the National Research Council of Canada (NRC) and the Laboratory of the Government Chemist (LGC), UK. A total of 11 laboratories submitted results (7 NMIs, and 4 external labs). Two external laboratories utilized a standard calibration approach based on a natural abundance TBT standard, whereas all NMIs relied upon isotope dilution mass spectrometry for quantitation. For this purpose, a species specific 117Sn-enriched TBT standard was supplied by the LGC. No sample preparation methodology was prescribed by the piloting laboratories and, by consequence, a variety of approaches was adopted by the participants, including mechanical shaking, sonication, accelerated solvent extraction, microwave assisted extraction and heating in combination with Grignard derivatization, ethylation and direct sampling. Detection techniques included ICP–MS (with GC and HPLC sample introduction), GC–MS, GC–AED and GC–FPD. Recovery of TBT from a control standard (NRCC CRM PACS-2 marine sediment) averaged 93.5±2.4% (n=14). Results for the pilot material averaged 0.680±0.015 µmol kg–1 (n=14; 80.7±1.8 µg kg–1) with a median value of 0.676 µmol kg–1. Overall, performance was substantially better than state-of-the-art expectations and the satisfactory agreement amongst participants permitted scheduling of a follow-up Key comparison for TBT (K-28), a Pilot intercomparison for DBT (P-43), and certification of the test sediment for TBT content and its release as a new Certified Reference Material (HIPA-1) with a TBT content of 0.679±0.089 µmol kg–1 (expanded uncertainty, k=2, as Sn) (80.5±10.6 µg kg–1). Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00216-003-2016-9. KW - Tributyltin KW - Marine sediment KW - International intercomparison PY - 2003 DO - https://doi.org/10.1007/s00216-003-2016-9 SN - 1618-2642 SN - 1618-2650 VL - 376 IS - 6 SP - 780 EP - 787 PB - Springer CY - Berlin AN - OPUS4-10905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -