TY - CONF A1 - Zhang, Tianyun A1 - Friedrich, Alexander A1 - Heckel, Thomas A1 - Casperson, Ralf T1 - Verifikation von Ultraschall- und Wirbelstromsimulationen bei der Schienenprüfung N2 - Im Rahmen des Forschungsprojekts "Artificial Intelligence for Rail Inspection" (AIFRI) wird ein KI-Algorithmus entwickelt, um die Fehlererkennung und Bewertung bei der Auswertung von Schienenprüfungen mittels Ultraschall- und Wirbelstromprüfverfahren zu verbessern. Je nach Prüfverfahren werden relevante Schienenschädigungen (z. B. Head Checks) und Artefakte (z. B. Bohrungen) entsprechend analysiert und in einem parametrisierbaren digitalen Zwilling abgebildet, um anschließend die KI-Algorithmen trainieren zu können. Mit der Simulation können Prüffahrten virtuell durchgeführt und Schadensbilder für das KI-Training erzeugt werden, die das Verhalten komplexer Systeme reproduzieren, ohne dass das reale System benötigt wird. Die Modellannahmen sind dabei von erheblicher Bedeutung, denn unzureichende Modellannahmen führen leicht zu falschen Simulationsergebnissen. Um die Ergebnisse einer Simulation ordnungsgemäß darstellen zu können, ist das Simulationsmodell selbst zu überprüfen. Die Vollständigkeit, Richtigkeit und Genauigkeit der Simulationsergebnisse werden anhand von realen Prüfungen verifiziert. Für die Verifikation der Ultraschallsimulation werden hier Stegbohrungen als Referenzreflektoren herangezogen. Als Testkörper stehen Schienensegmente mit unterschiedlichen Profiltypen sowie speziell angefertigte Testkörper mit schienenähnlicher Geometrie zur Verfügung. In den Testkörpern befinden sich künstliche und reale Schädigungen in Kopf-, Steg- und Fußbereich, sowie Bohrungen mit Nuten. Die Validierung der Wirbelstromsimulation erfolgt an Testkörpern, die aus Schienenköpfen gefertigt sind. Dabei werden die Signale für unterschiedliche Nuttiefen und Nutenpaare mit unterschiedlichen Abständen untersucht. Für die Modellierung der Simulationsergebnisse verweisen wir auf das ebenfalls eingereichte Poster „Simulation von Ultraschall- und Wirbelstromprüfdaten für die Schienenprüfung“. Das Projekt AIFRI wird im Rahmen der Innovationsinitiative mFUND unter dem Förderkennzeichen 19FS2014 durch das Bundesministerium für Digitales und Verkehr gefördert. T2 - 13. Fachtagung ZfP im Eisenbahnwesen CY - Erfurt, Germany DA - 12.03.2024 KW - Ultraschallprüfung KW - Simulation KW - Schienenprüfung PY - 2024 AN - OPUS4-59720 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Friedrich, Alexander A1 - Zhang, Tianyun A1 - Heckel, Thomas A1 - Casperson, Ralf T1 - Modellierung von Ultraschall- und Wirbelstromschienenprüfdaten N2 - Im Rahmen des Forschungsprojekts "Artificial Intelligence for Rail Inspection" (AIFRI) wird ein KI-Algorithmus entwickelt, um die Fehlererkennung und Bewertung bei der Auswertung von Schienenprüfungen mittels Ultraschall- und Wirbelstromprüfverfahren zu verbessern. Die Bandbreite möglicher Defekte und die Menge an Einflussgrößen auf die Schienenprüfung ist sehr groß, aber die Prüfdaten aus dem Feld bilden diese Bandbreite nicht balanciert ab und sind unzureichend gelabelt. Durch Simulationen werden große Mengen detailliert gelabelter Daten für relevante Schienenschädigungen und Artefakte bereitgestellt. Aus diesen Daten werden wiederum virtuellen Prüffahrten erstellt, die für das Training und die Validierung der KI genutzt werden können. In unserem Poster stellen wir die Simulation dieser Ultraschall- und Wirbelstromprüfdaten vor. Dabei gehen wir im Detail auf die Themen CAD-Modellierung, Modellparameter, Simulationssoftware und Signalverarbeitung ein. Wir stellen ausgewählt die Simulation von Head Checks für Wirbelstromprüfverfahren und Bohrungsanrissen für Ultraschallprüfverfahren dar, da das Erkennen dieser Schädigungstypen bei der Schienenprüfung hohe Priorität innehat. Für die Verifikation der Simulationsergebnisse verweisen wir auf den ebenfalls eingereichten Vortrag „Verifikation von Ultraschall- und Wirbelstromsimulationen bei der Schienenprüfung“. Das Projekt AIFRI wird im Rahmen der Innovationsinitiative mFUND unter dem Förderkennzeichen 19FS2014 durch das Bundesministerium für Digitales und Verkehr gefördert. T2 - 13. Fachtagung ZfP im Eisenbahnwesen CY - Erfurt, Germany DA - 12.03.2024 KW - Simulation KW - Ultraschall KW - Wirbelstrom PY - 2024 AN - OPUS4-59719 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Friedrich, Alexander A1 - Heckel, Thomas A1 - Casperson, Ralf A1 - Zhang, Tianyun A1 - Olm, G. A1 - Islam, A. A1 - Simroth, A. T1 - AI-based analysis of eddy current and ultrasonic rail testing data N2 - Non-destructive testing of rail tracks is carried out by using rail inspection cars equipped with ultrasonic and eddy current measurement. The evaluation of test data is mainly done manually, supported by a software tool which pre-selects relevant indications shown to the evaluators. The resulting indications have to be checked on-site using hand-held testing equipment. Maintenance interventions are then derived on the basis of these on-site findings. Overall aim of the AIFRI (Artificial Intelligence For Rail Inspection) project - funded by the German Federal Ministry of Digital and Transport (BMDV) as part of the mFUND programme under funding code 19FS2014 – is to increase the degree of automation of the inspection process from the evaluation of the data to the planning of maintenance interventions. The accuracy of defect detection shall be increased by applying AI methods in order to enable an automated classification of detected indications into risk classes. For this purpose, data from both eddy current inspections and ultrasonic inspections will be used in combination. Within the framework of this data-driven project, relevant defect patterns and artefacts present in the rail are analysed and implemented into a configurable digital twin. With the help of this digital twin virtual defects can be generated and used to train AI algorithms for detection and classification. With the help of reliability assessment trained AI algorithms will be evaluated with regard to the resulting quality in defect detection and characterisation. A particular aspect of the development of AI methods is the data fusion of different NDT data sources: Thereby, synergies are used that arise from linking eddy current and ultrasonic inspection data in a combined model. In the course of the project a demonstrator consisting of the developed IT-tool and an asset management system will be implemented and tested in the field using real-world data. T2 - NDT in Railway CY - Berlin, Germany DA - 26.09.2022 KW - NDT KW - Eddy current KW - Ultra sound KW - Simulation KW - Machine learning PY - 2022 UR - https://www.dgzfp.de/seminar/railway/#5 AN - OPUS4-57236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Alexander T1 - Simulation of Eddy Current Rail Testing Data for Neural Networks N2 - The present work is part of the AIFRI project (Artificial Intelligence For Rail Inspection), where we and our project partners train a neural network for defect detection and classification. Our goal at BAM is to generate artificial ultrasound and eddy current training data for the A.I. This paper has an exploratory nature, where we focus on the simulation of eddy current signals for head check cracks, one of the most important rail surface defects. The goal of this paper is twofold. On the one hand, we present our general simulation setup. This includes geometric models for head check cracks with features like branching and direction change, a model for the HC10 rail testing probe, and the configuration of the Faraday simulation software. On the other hand, we use the Faraday software to simulate eddy current testing signals with a strong focus on the influence of the damage depth on the signal, while differentiating between different crack geometries. Here, we observe an early saturation effect of the test signal at a damage depth of 2 mm (at a crack angle of 25◦ to the surface). That is about 2 mm earlier than we would expect from measurements at a crack angle of 90◦. This behavior will be investigated further in a future paper. Finally, we interpolate the simulated signals in a two-step curve fitting process. With these interpolations we may generate eddy current test signals for any damage depth within the simulated range. T2 - 13th European Conference on Non-Destructive Testing 2023 CY - Lisbon, Portugal KW - Artificial Intelligence KW - Simulation KW - Eddy Current PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581918 DO - https://doi.org/10.58286/28179 SN - 1435-4934 VL - 28 IS - 8 SP - 1 EP - 6 PB - NDT.net CY - Kirchwald AN - OPUS4-58191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Casperson, Ralf A1 - Friedrich, Alexander A1 - Heckel, Thomas A1 - Zhang, Tianyun T1 - Verwendung von DICONDE bei der Eisenbahn-Schienenprüfung N2 - Bei der zerstörungsfreien Prüfung verlegter Eisenbahnschienen werden die Rohdaten derzeit in proprietären Datenformaten gespeichert und auf Datenträgern zwischen den Prüfzügen und den auswertenden Stellen versendet. Die proprietären Datenformate sind in der Regel nur den Herstellern der Prüfsysteme bekannt und deren Dokumentation nicht allgemein zugänglich. Die „Standard Practice for Digital Imaging and Communication in Nondestructive Evaluation“ (DICONDE), basierend auf dem medizinischen Standard „Digital Imaging and Communication in Medicine“ (DICOM), ermöglicht es, sowohl Prüfdaten als auch Prüfergebnisse und Streckeninformationen in einem standardisierten Format zu speichern und zwischen verschiedenen Endpunkten zu übertragen. Das Poster gibt zunächst einen kurzen Überblick über die hierarchische Struktur von DICONDE und zeigt dann, wie DICONDE bei der Prüfung verlegter Eisenbahnschienen verwendet werden kann. Die geometrischen Besonderheiten (mehrere Kilometer Länge pro Prüffahrt, kurviger Streckenverlauf) stellen dabei eine besondere Herausforderung dar. Im Rahmen des mFUND-geförderten Projektes „Arteficial Intelligence for Railway Inspection (AIFRI)“, Förderkennzeichen 19FS2014C, wurde ein Vorschlag für eine Erweiterung des DICONDE-Standards für die Schienenprüfung erarbeitet und bei der ASTM eingereicht. T2 - DGZfP Jahrestagung 2024 CY - Osnabrück, Germany DA - 05.05.2024 KW - DICONDE KW - Eisenbahn KW - Schienenprüfung PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600204 DO - https://doi.org/10.58286/29500 SP - 1 EP - 5 PB - NDT.net AN - OPUS4-60020 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Friedrich, Alexander T1 - Simulation of Eddy Current Rail Testing Data for Neural Networks N2 - The present work is part of the AIFRI project (Artificial Intelligence For Rail Inspection), where we and our project partners train a neural network for defect detection and classification. Our goal at BAM is to generate artificial ultrasound and eddy current training data for the A.I. This paper has an exploratory nature, where we focus on the simulation of eddy current signals for head check cracks, one of the most important rail surface defects. The goal of this paper is twofold. On the one hand, we present our general simulation setup. This includes geometric models for head check cracks with features like branching and direction change, a model for the HC10 rail testing probe, and the configuration of the Faraday simulation software. On the other hand, we use the Faraday software to simulate eddy current testing signals with a strong focus on the influence of the damage depth on the signal, while differentiating between different crack geometries. Here, we observe an early saturation effect of the test signal at a damage depth of 2 mm (at a crack angle of 25◦ to the surface). That is about 2 mm earlier than we would expect from measurements at a crack angle of 90◦. This behavior will be investigated further in a future paper. Finally, we interpolate the simulated signals in a two-step curve fitting process. With these interpolations we may generate eddy current test signals for any damage depth within the simulated range. T2 - 13th European Conference on Non-Destructive Testing 2023 CY - Lisbon, Portugal DA - 03.07.2023 KW - Simulation KW - Eddy Current KW - Artificial Intelligence PY - 2023 AN - OPUS4-58192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Friedrich, Alexander A1 - Heckel, Thomas A1 - Casperson, Ralf A1 - Zhang, Tianyun A1 - Olm, G. A1 - Islam, A. A1 - Simroth, A. T1 - The AIFRI Project - Artificial Intelligence For Rail Inspection N2 - The rails of modern railways face an enormous wear and tear from ever increasing train speeds and loads. This necessitates diligent non-destructive testing for defects of the entire railway system. Non-destructive testing of rail tracks is carried out by rail inspection trains equipped with ultrasonic and eddy current test devices. However, the evaluation of the gathered data is mainly done manually with a strong focus on ultrasonic data, and defects are checked on-site using hand-held testing equipment. Maintenance measures are derived based on these on-site findings. The aim of the AIFRI project (Artificial Intelligence For Rail Inspection) is to - increase the degree of automation of the inspection process, from the evaluation of the data to the planning of maintenance measures, - increase the accuracy of defect detection, - automatically classify detected indications into risk classes. These aims will be achieved by training a neural network for defect detection and classification. Since the current testing data is unbalanced, insufficiently labeled and largely unverified we will supplement fused, simulated eddy current and ultrasonic testing data in form of a configurable digital twin. T2 - PostDoc Day 2022 CY - Berlin, Germany DA - 03.11.2022 KW - Non-destructive testing KW - Artificial intelligence KW - Simulation KW - Eddy current KW - Ultrasound PY - 2022 AN - OPUS4-57240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Friedrich, Alexander A1 - Zhang, Tianyun A1 - Heckel, Thomas A1 - Casperson, Ralf T1 - Simulation von Ultraschall- und Wirbelstromprüfdaten für die Schienenprüfung N2 - Im Rahmen des Forschungsprojekts "Artificial Intelligence for Rail Inspection" (AIFRI) wird ein KI-Algorithmus entwickelt, um die Fehlererkennung und Bewertung bei der Auswertung von Schienenprüfungen mittels Ultraschall- und Wirbelstromprüfverfahren zu verbessern. Die Bandbreite möglicher Defekte und die Menge an Einflussgrößen auf die Schienenprüfung ist sehr groß, aber die Prüfdaten aus dem Feld bilden diese Bandbreite nicht balanciert ab und sind unzureichend gelabelt. Durch Simulationen werden große Mengen detailliert gelabelter Daten für relevante Schienenschädigungen und Artefakte bereitgestellt. Aus diesen Daten werden wiederum virtuellen Prüffahrten erstellt, die für das Training und die Validierung der KI genutzt werden können. In unserem Vortrag stellen wir den Erstellungsprozess der Datensätze vor. Jeder Schritt von der Geometriedarstellung bis zur Datenverarbeitung wird erfasst. Der Fokus wird auf Simulationsergebnisse und deren Verarbeitung gelegt. Die Signalverarbeitung spielt in den Datensätzen eine große Rolle, dabei werden die Datensätze an die realen Daten angepasst. Für Wirbelstrom und Ultraschall werden diese Prozesse im Hinblick auf die Fehlertypen Head Checks und Bohrungsanrisse veranschaulicht. Ferner diskutieren wir die Simulation von Schweißnähten, die von beiden Prüfsystem detektiert werden können; und somit besondere Abstimmung bedürfen aber auch Synergieeffekte zwischen den Prüfsystem ermöglichen. Für die Ablage der Datensätze verweisen wir auf das ebenfalls eingereichte Poster „Verwendung von DICONDE bei der Eisenbahn-Schienenprüfung“. Das Projekt AIFRI wird im Rahmen der Innovationsinitiative mFUND unter dem Förderkennzeichen 19FS2014 durch das Bundesministerium für Digitales und Verkehr gefördert. T2 - DGZfP-Jahrestagung 2024 CY - Osnabrück, Germany DA - 06.05.2024 KW - Wirbelstrom KW - Ultraschall KW - Simulation KW - Machine Learning PY - 2024 AN - OPUS4-60138 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -