TY - JOUR A1 - Ramirez, Alejandra A1 - Pauli, Jutta A1 - Crasselt, C. A1 - Simon, S. A1 - Schmidt, W. A1 - Resch-Genger, Ute T1 - The effect of a polycarboxylate ether on C3A / CaSO4.2H2O passivation monitored by optical spectroscopy N2 - Polycarboxylate ethers (PCEs) are widely used in construction, but the exact nature of their interaction with cement is still debated. Aiming at a better understanding of the role of tricalcium Aluminate (C3A) in cement hydration, we assessed the potential of optical spectroscopy in combination with a water-soluble fluorescent organic reporter dye (S0586) to monitor the early hydration of C3A in the presence of 26 wt% CaSO4.2H2O (C3A26G-S) with and without PCE. As optical methods, steady-state fluorescence and diffuse reflectance (UV–VisDR) spectroscopy were employed. Phase characterization and particle size distribution were performed with in-situ X-ray diffraction (in-situ XRD) and dynamic light scattering (DLS). Our results show that fluorescence and UV–VisDR spectroscopy can be used to monitor the formation of metastable phases by the disaggregation of the dye S0586 in a cement paste as well as changes in ettringite formation. Addition of PCE slowed down the disaggregation of the dye as reflected by the corresponding changes of the dyes absorption and fluorescence. This prolonged induction period is a well-known side effect of PCEs and agrees with previous reported calorimetric studies and the Inhibition of gypsum dissolution observed by in-situ XRD. This demonstrates that fluorescence and UV–VisDR spectroscopy together with a suitable optical probe can provide deeper insights into the influence of PCE on C3A-gypsum hydration which could be e.g., utilized as screening method for comparing the influences of different types of PCEs. KW - Fluorescence KW - Cement KW - Nano KW - Particle KW - Optical spectroscopy KW - PCE KW - XRD KW - Calorimetry KW - Monitoring KW - Diffuse KW - Reflection KW - Phase KW - Dye KW - Optical probe KW - Cyanine KW - Sensor KW - Method KW - Analysis PY - 2020 DO - https://doi.org/10.1016/j.conbuildmat.2020.121856 VL - 270 SP - 121856 PB - Elsevier Ltd. AN - OPUS4-52118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramirez Caro, Alejandra A1 - Pauli, Jutta A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - Study of the superplasticizer-cement hydration interaction by optical spectroscopy N2 - Nowadays, superplasticizers (SPs) are widely used to increase fluidity and reduce water content in concrete; thus, allowing better workability for final applications. The present study will focus on the hydration effect using comb shape polycarboxylates (PCEs), which are known to allow a very low water/cement ratio (w/c of 0.20) or less.Optical methods have been successfully used for the analysis and monitoring of the interactions between a broad variety of nanoscale and molecular systems like nanoparticles of various chemical composition and different types of organic ligands or biomolecules.This encouraged us to assess the potential of these methods, and particularly fluorescence, for the investigation of the interactions that occur at the interface between hydrate surfaces of cement particles and PCE at a very early stage of concrete formation and to differentiate between the impact of PCE’s molecular structures on such interactions. T2 - 2nd International Conference on the Chemistry of Construction Materials CY - Munich, Germany DA - 10.10.2016 KW - Cement KW - Dye KW - Superplasticizers KW - Fluorescence PY - 2016 SN - 978-3-936028-96-6 VL - 50 SP - 260 EP - 263 PB - Gesellschaft Deutscher Chemiker e.V. CY - Frankfurth am Main AN - OPUS4-38881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramirez Caro, Alejandra A1 - Pauli, Jutta A1 - Artemeva, Elena A1 - Ermilov, Eugeny A1 - Crasselt, Claudia A1 - Stroh, Julia A1 - Mota Gasso, Berta A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - Study of the hydration of superplasticizer-cement pastes with optical spectroscopy N2 - Chemical admixtures like superplasticizers or stabilizing agents are of ever increasing importance for modern concrete technology. Although such admixtures have meanwhile become common practice in many applications of concrete technology, the understanding of these highly complex systems is still limited and the relevant parameters, which predominantly control the interaction between the superplasticizer and the cement components, have not been identified yet. Optical methods have been successfully used for the analysis and monitoring of the interactions between a broad variety of nanoscale and molecular systems like nanoparticles of various chemical composition and different types of organic ligands or biomolecules. This encouraged us to assess the potential of these methods, and particularly reflectance and fluorescence measurements, for the study of the interactions that occur at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation. Special emphasis is dedicated to search for and identify differences between commonly used superplasticizers. Here, we focus on hydration effects using commercial comb shape polycarboxylate ethers (PCEs) with different charge densities, which are known to allow a very low water/cement ratio (w/c of 0.20 or less) while maintaining good workability. Based upon changes of the intensity of the reflectance and fluorescence signal and spectral effects of a dye, acting as optical reporter, a model for the interactions of dye, PCE molecules and cement nanoparticles in the very first phase of cement hydration is derived T2 - Gesellschaft Deutscher Chemiker-Analytische Chemie-Anakon 2017 CY - Tübingen, Germany DA - 03.04.2017 KW - Cement hydration KW - Optical spectroscopy KW - Superplasticizers PY - 2017 AN - OPUS4-39882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramirez Caro, Alejandra A1 - Pauli, Jutta A1 - Mota, Berta A1 - Crasselt, Claudia A1 - Artemeva, Elena A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - A Spectroscopic Study of the Superplasticizer Effect on Early Cement Hydration N2 - Organic/inorganic mixtures were prepared from ordinary Portland cement (OPC), water (w/c 0.22), a fluorescent dye in aqueous solution (stable at alkaline pH; BAM-I), and two different comb shape polycarboxylates (PCEs), i.e., high charge (PCE-HC) and low charge (PCE-LC), respectively. Rheological and calorimetric measurements were performed prior to optical studies in order to select PCE concentrations. Absorption and fluorescence spectroscopy of the system OPC + BAM-I (CBAM-I) revealed maxima of dye BAM-I located at 645 nm and 663 nm, respectively. In presence of PCE-HC and PCE-LC, these mixtures displayed a small red shift in reflectance and a faster decrease in intensity compared to studies with CBAM-I; however, only slight differences were observed between the different PCEs. With time, all systems exhibited a decrease in intensity of BAM-I in absorption/reflectance and emission. This could be caused by dye adsorption and possibly decomposition when in contact with cement particles or hydration products. T2 - The Sixth International Symposium on Nanotechnology in Construction (NICOM6) CY - Hong Kong, China DA - 02.12.2018 KW - Cement KW - Optical Spectroscopy KW - Dye KW - Hydration PY - 2018 SP - 1 EP - 9 AN - OPUS4-49378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramirez Caro, Alejandra A1 - Mota, Berta A1 - Artemeva, Elena A1 - Pauli, Jutta A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - A spectroscopic study of the superplasticizer effect on early cement hydration N2 - Besides their plasticizing effect, superplasticizers (SPs) are known to retard the hydration of inorganic systems such as cement. Despite their frequent use, the understanding of these highly complex systems is still limited and the relevant parameters, which control the interaction between SPs, and cement components and reaction products are in the focus of ongoing research activities.[1] Optical methods have been successfully used for the analysis and monitoring of the interactions between a broad variety of nanoscale and molecular systems like nanoparticles of various chemical composition and different types of organic ligands or biomolecules. The potential of these methods to study processes at the interface between (hydrated) particles and the fluid phase at a very early stage of concrete formation could reveal possible mechanisms of interaction. This investigation focuses on the study of organic/inorganic mixtures consisting of cement (CEM) and cement phases (C3S and C3A) in the presence of polycarboxylate ether and organic dyes in aqueous solution (particularly alkali resistant dyes) at a water to powder ratio of 1. Diffuse reflectance as well as steady state and time resolved fluorescence spectroscopy of the above mentioned mixtures were evaluated. Based upon changes of the intensity of the reflectance and fluorescence signal and spectral changes of the dye, acting as optical reporter, a model for the interactions of dye, PCE and cement (including different cement phases) was derived which describes the very first stage of cement hydration. T2 - 2nd International Conference on Polycarboxylate Superplasticizers CY - München, Germany DA - 27.09.2017 KW - Cement KW - Superplasticizers KW - Dyes KW - Spectroscopy PY - 2017 AN - OPUS4-43365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramirez Caro, Alejandra A1 - Pauli, Jutta A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - Study of the superplasticizer-cement hydration interaction by optical spectroscopy N2 - Chemical admixtures like superplasticizers or stabilizing agents are of ever increasing importance for modern concrete technology. Although such admixtures have meanwhile become common practice in many applications of concrete technology, the understanding of these highly complex systems is still limited and the relevant parameters, which predominantly control the interaction between the superplasticizer and the cement components, have not been identified yet. Optical methods have been successfully used for the analysis and monitoring of the interactions between a broad variety of nanoscale and molecular systems like nanoparticles of various chemical composition and different types of organic ligands or biomolecules. This encouraged to assess the potential of these methods for the investigation of the interactions that occur at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation and to differentiate between different superplasticizer. T2 - 2. ICCCM CY - Munich, Germany DA - 10.10.2016 KW - Optical spectroscopy KW - Cement hydration PY - 2016 AN - OPUS4-38474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Mota, Berta A1 - Ramirez Caro, Alejandra T1 - The action of aggregates on concrete rheology N2 - Most factors acting on concrete rheology work at an extremely small-scale level. Influencing factors in the millimetre or centimetre area are essentially restricted to sand and aggregates. The latter, however, make up 50 to 70% of the total volume of most concretes – a fact often ignored in research on controlling concrete processing properties. Whereas suitably chosen concrete admixtures and additives can influence rheology in a very targeted manner, sand and aggregates are less suitable for controlling rheology but nonetheless contribute to the rheology of the Overall system. The actions of sand and aggregate can impose themselves upon the actions of admixtures and additives and, in unfavourable circumstances, even render them redundant. For this reason, any results concerning the processability of binding agent systems can only be transferred to concrete with great care. It is important to better understand the action of sand and aggregates in order to be able to harmonise them in such a way that they complement the action of superplasticisers positively, instead of working against them. Savings on costs can also be made by this targeted fine-tuning. KW - Rheology KW - Aggregates KW - Viscosity KW - Yield stress KW - Concrete PY - 2018 VL - 3 SP - 42 EP - 49 PB - ad-media GmbH CY - Cologne AN - OPUS4-47045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Mota, Berta A1 - Ramirez Caro, Alejandra T1 - Einfluss der gesteinskörnung auf die Rheologie von Beton N2 - Die meisten Einflüsse auf die Rheologie von Beton wirken auf sehr kleinen Skalenebenen. Einflussgrößen im Millimeter oder Zentimeterbereich sind im Wesentlichen auf den Sand und die Gesteinskörnung beschränkt. Letztere machen aber in den meisten Betonen 50 %-70 % des Gesamtvolumens aus, was bei Untersuchungen zur Steuerung der Verarbeitungseigenschaften von Beton häufig vernachlässigt wird. Während Betonzusatzmittel und Zusatzstoffe bei geeigneter Wahl die Rheologie sehr gezielt beeinflussen können, eignen sich Sand und Gesteinskörnung weniger gut zur Steuerung der Rheologie, aber sie tragen zur Rheologie des Gesamtsystems bei. Hierbei können Effekte aus Sand und Gesteinskörnung die Effekte von Zusatzmitteln und Zusatzstoffen überlagern und im ungünstigsten Falle sogar nahezu unwirksam machen. Deshalb sollten Ergebnisse zur Verarbeitbarkeit von Bindemittelsystemen nur mit großer Sorgfalt auf Beton übertragen werden. Es ist wichtig, den Einfluss des Sandes und der Gesteinskörnung besser zu verstehen, um diese so abzustimmen, dass sie Effekte aus Fließmitteln positiv ergänzen anstatt diesen entgegenzuwirken. Durch eine gezielte Abstimmung lassen sich Kosten wirksam sparen. KW - Gesteinskörnung KW - Rheologie KW - Fließgrenze KW - Viskosität KW - Beton PY - 2018 VL - 3 SP - 42 EP - 51 PB - ad-media GmbH CY - Köln AN - OPUS4-47044 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schmidt, Wolfram A1 - Ramirez Caro, Alejandra A1 - Sojref, Regine A1 - Mota Gassó, Berta ED - Greim, M. ED - Kusterle, W. ED - Teubert, O. T1 - Contribution of the coarse aggregates to rheology - effects of flow coefficient, particle size distribution, and volume fraction N2 - In order to observe the effect of the aggregate phases between 2 mm and 16 mm without overlap with rheological effects induced by the cement hy-dration and without interactions with a threshold fine sand particle size that affects both, paste and aggregates, rheological experiments were conducted on a limestone filler based paste mixed with aggregates up to 16 mm. Vari-ous aggregate fractions were blended and mixed with the replacement paste in different volumetric ratios. The dry aggregates’ flow coefficients were determined and compared to yield stress and plastic viscosity values at different aggregate volume fractions. The results indicated that the flow coefficient is not a suitable parameter to predict the performance of the aggregates in the paste. It was shown that the yield stress of pastes is largely determined by the blend of different aggregate fractions, while the plastic viscosity to large extend depends upon the coars-est aggregate fraction. Based on the results, ideal aggregate composition ranges for minimised yield stress are presented. For the plastic viscosity no such grading curves to achieve minimum values could be found, but high viscosity curves are identified. KW - Rheology KW - Flow Coefficient KW - Particle Size Distribution KW - Volume Fraction KW - Cement KW - Concrete KW - Reference Material KW - Limestone Filler PY - 2018 SN - 978-3-7469-1878-5 SP - 96 EP - 108 PB - tredition GmbH CY - Hamburg AN - OPUS4-44434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramirez Caro, Alejandra A1 - Mota, Berta A1 - Artemeva, E. A1 - Pauli, Jutta A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - A spectroscopic study of the superplasticizer effect on early cement hydration N2 - Organic/inorganic mixtures were prepared from ordinary Portland cement (OPC), water (w/c 0.22), a fluorescent dye in aqueous solution (stable at alkaline pH; BAM-I), and two different comb shape polycarboxylates (PCEs), i.e., high charge (PCE-HC) and low charge (PCE-LC), respectively. Rheological and calorimetric measurements were performed prior to optical studies in order to select PCE concentrations. Absorption and fluorescence spectroscopy of the system OPC + BAM-I (CBAM-I) revealed maxima of dye BAM-I located at 645 nm and 663 nm, respectively. In presence of PCE-HC and PCE-LC, these mixtures displayed a small red shift in reflectance and a faster decrease in intensity compared to studies with CBAM-I; however, only slight differences were observed between the different PCEs. With time, all systems exhibited a decrease in intensity of BAM-I in absorption/reflectance and emission. This could be caused by dye adsorption and possibly decomposition when in contact with cement particles or hydration products. T2 - 20. Internationale Baustofftagung CY - Weimar, Germany DA - 12.09.2018 KW - Optical spectroscopie KW - Cement hydration KW - Dyes PY - 2018 SN - 978-3-00-059950-7 VL - 20 SP - 1 EP - 6 PB - F.A. Finger-Institut für Baustoffkunde CY - Weimar AN - OPUS4-46277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ramirez Caro, Alejandra A1 - Pauli, Jutta A1 - Mota, Berta A1 - Simon, Sebastian A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - C⁠3A passivation with gypsum and hemihydrate monitored by optical spectroscopy N2 - Tricalcium aluminate (C⁠3A) is found with less than 10% wt. of the total composition; however, during hydration, C⁠3A plays an important role in the early hydration of cement in the presence of gypsum as a set retarder. The aim of this investigation is to assess the suitability of optical spectroscopy and a dye-based optical probe to monitor early hydration of C⁠3A in the presence of gypsum and hemihydrate. Optical evaluation was performed using steady-state fluorescence and diffuses reflectance spectroscopy (UV-VisDR). Phase characterization during hydration was done with in-situ X-ray diffraction. UV-VisDR with a cyanine dye probe was used to monitor the formation of metastable phases and was employed together with fluorescence spectroscopy, to follow the Aggregation and disaggregation of the dye during hydration. In conclusion, for the first time, a cyanine dye was identified as a feasible and stable probe to monitor C⁠3A hydration changes in the presence of calcium sulfate. KW - Dye KW - Photoluminescence KW - Fluorescence KW - Reflection spectroscopy KW - Cement KW - Hydration KW - Method development PY - 2020 DO - https://doi.org/10.1016/j.cemconres.2020.106082 VL - 133 SP - 106082 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-50952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramirez Caro, Alejandra A1 - Pauli, Jutta A1 - Mota, Berta A1 - Crasselt, Claudia A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - The Effect of Low Charge Polycarboxylate on C3A Passivation Monitored by Optical Spectroscopy N2 - Tricalcium aluminate (C3A) is less than 10 wt.% of the total cement composition; however, during hydration, the soluble C3A plays an important role in cement setting when mixed with the appropriate amount of sulfate.1 A good understanding about the balance of these components is therefore crucial to follow with the rapid growth of substitution materials and the rising levels of aluminate clinker. The aim of this investigation is the use of optical spectroscopy and in-situ X-ray diffraction utilizing a water-soluble organic dye (dye-S) to monitor early hydration of calcium aluminate (C3A) in the presence of 26 wt.% CaS04.2H2O (G) and PCE polymers with different charge densities (PCE-LC and PCE-HC). Phase characterization and optical evaluation were performed using in-situ X-ray diffraction and steady-state fluorescence and diffuse reflectance spectroscopy. Fluorescence spectroscopy of the reference C3A + dye-S revealed a fast decay in fluorescence intensity. However, in the presence of 26 wt.% G (C3A + dye-S + 26 wt.% G), a gradual increase in fluorescence intensity was observed in the first hours of reaction followed by a plateau that subsequently dropped in intensity after eight hours. The addition of PCE-LC and PCE HC to the mixture exhibited changes in the intensity threshold and overall a higher fluorescence intensity. Dye changes during hydration and structural changes will be further discussed. T2 - 3rd International Conference on Polycarboxylate Superplasticizers (PCE 2019) CY - Munich, Germany DA - 23.10.2019 KW - Dye KW - C3A KW - Optical Spectroscopy KW - Gypsum PY - 2019 AN - OPUS4-49343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramirez Caro, Alejandra A1 - Pauli, Jutta A1 - Mota, Berta A1 - Crasselt, Claudia A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - Use of Optical Spectroscopy to Monitor Cement Hydration and Additive Effect N2 - Use of optical spectroscopy and fluorescence reporter (DFFL and dye-S) to visualize the effects of additives on the hydration of cement pastes as a fast, sensitive and monitoring method. T2 - Beirat Tagung CY - Berlin, Germany DA - 26.04.2019 KW - Cement KW - Optical Spectroscopy KW - Dye KW - Hydration KW - Superplasticizer PY - 2019 AN - OPUS4-49349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -