TY - JOUR A1 - Driscoll, Laura L. A1 - Driscoll, Elizabeth H. A1 - Dong, Bo A1 - Sayed, Farheen N. A1 - Wilson, Jacob N. A1 - O’Keefe, Christopher A. A1 - Gardner, Dominic J. A1 - Grey, Clare P. A1 - Allan, Phoebe K. A1 - Michalchuk, Adam A1 - Slater, Peter R. T1 - Under pressure: offering fundamental insight into structural changes on ball milling battery materials N2 - Synthesis of Li ion battery materials via ball milling has been a huge area of growth, leading to new high-capacity electrode materials, such as a number of promising disordered rocksalt (DRS) phases. In prior work, it was generally assumed that the synthesis was facilitated simply by local heating effects during the milling process. In this work, we show that ball milling Li2MoO4 leads to a phase transformation to the high pressure spinel polymorph and we report electrochemical data for this phase. This observation of the formation of a high pressure polymorph shows that local heating effects alone cannot explain the phase transformation observed (phenakite to spinel) and so indicates the importance of other effects. In particular, we propose that when the milling balls collide with the material, the resulting shockwaves exert a localised pressure effect, in addition to local heating. To provide further support for this, we additionally report ball milling results for a number of case studies (Li2MnO3, Li2SnO3, Nb2O5) which reinforces the conclusion that local heating alone cannot explain the phase transformations observed. The work presented thus provides greater fundamental understanding of milling as a synthetic pathway and suggests potential strategies to prepare such samples without milling (e.g., doping to create internal chemical pressure). In addition, we suggest that further research is needed into the effect of the use of milling as a route to smaller particles, since we believe that such milling may also be affecting the surface structure of the particles through the influence of the shockwaves generated. KW - Pollution KW - Nuclear Energy and Engineering KW - Sustainability and the Environment KW - Environmental Chemistry KW - Renewable Energy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590086 DO - https://doi.org/10.1039/d3ee00249g VL - 16 IS - 11 SP - 5196 EP - 5209 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Speight, Isaiah R. A1 - Ardila-Fierro, Karen J. A1 - Hernández, José G. A1 - Emmerling, Franziska A1 - Michalchuk, Adam A. L. A1 - García, Felipe A1 - Colacino, Evelina A1 - Mack, James T1 - Ball milling for mechanochemical reactions N2 - Mechanochemistry is an emerging field with the potential to pave the way for sustainable chemistry. Although the use of mechanical force to initiate chemical reactions has been recognized for millennia, it has often taken a backseat to thermal and photonic methods. Over the past 30 years, mechanochemistry has seen a resurgence of interest, attracting researchers across the globe. Despite its proven ability to address numerous challenges within the chemical community, mechanochemistry remains on the periphery. This Primer serves as a valuable guide for conducting mechanochemical reactions by ball milling, offering an overview of the processes, methods, tools and terminology necessary to embark on research in this field. It also highlights persistent hurdles such as equipment standardization, understanding the impact of new discoveries and the lack of predictability of reaction outcomes. The Primer’s focus is on how mechanochemical ball milling is used in various chemical transformations, distinguishing it from other forms of mechanochemistry discussed in the literature. With a promising future, this Primer serves as a gateway for those aspiring to contribute to the field’s advancement. KW - Mechanochemistry KW - Ball milling KW - Upscaling PY - 2025 DO - https://doi.org/10.1038/s43586-025-00401-2 SN - 2662-8449 VL - 5 IS - 1 SP - 1 EP - 18 PB - Springer Science and Business Media LLC AN - OPUS4-63447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinekamp, Christian A1 - Palmer, Tahlia M. A1 - Al‐Sabbagh, Dominik A1 - May, Anastasia A1 - Prinz, Carsten A1 - Michalik, Stefan A1 - Michalchuk, Adam A. L. A1 - Emmerling, Franziska T1 - Pre‐Activation as a Route for Tuning the Kinetics of Mechanochemical Transformations N2 - Learning to control reaction kinetics is essential for translating any chemical technology into real‐world application. Based on time‐resolved in situ powder X‐ray diffraction data, we demonstrate the opportunity to tune mechanochemical reaction rates through the pre‐activation of the starting reagents. For three model co‐crystal systems, the pre‐activation of the most stable reagent yields up to a ca 10‐fold increase in the reaction rate, whilst negligible kinetic enhancement is seen when the less stable reagent is pre‐activated. Moreover, we demonstrate how the polymorphic outcome of mechano‐co‐crystallization is also sensitive to pre‐activation of the starting material. Our results suggest that reproducibility of mechanochemical processes requires detailed understanding over the origin and history of reagent powders, whilst providing a new conceptual framework to design and control mechanochemical reactions. KW - Mechanochemistry KW - In situ synthesis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-649409 DO - https://doi.org/10.1002/anie.202516632 SN - 1433-7851 SP - 1 EP - 7 PB - Wiley VHC-Verlag AN - OPUS4-64940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Konar, S. A1 - Michalchuk, Adam A1 - Sen, N. A1 - Bull, C. L. A1 - Morrison, C. A. A1 - Pulham, C. R. T1 - High-Pressure Study of Two Polymorphs of 2,4,6-Trinitrotoluene Using Neutron Powder Diffraction and Density Functional Theory Methods N2 - A high-pressure neutron diffraction study was conducted on polycrystalline samples of the two known polymorphs of 2,4,6-trinitrotoluene [monoclinic (m) and orthorhombic (o) TNT] under hydrostatic conditions. Isothermal equations of state were obtained for both polymorphic forms. Neither polymorph was observed to undergo a phase transition in the pressure region 0–5 GPa, with both polymorphs displaying smooth compression behavior across the pressure range. This differs somewhat from previous X-ray diffraction and Raman spectroscopy investigations in which discontinuities were observed in the P–V curves and spectral changes were reported at ∼2 GPa. The high-pressure response of these materials is supported by dispersion-corrected density functional theory calculations which, while overestimating the experimental bulk moduli, give excellent agreement with the observed smooth compression response of both phases. KW - Energetic Materials PY - 2019 DO - https://doi.org/10.1021/acs.jpcc.9b07658 VL - 123 SP - 26095 EP - 26105 PB - ACS AN - OPUS4-49811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stolar, Tomislav A1 - Alić, Jasna A1 - Casali, Lucia A1 - Gugin, Nikita A1 - Baláž, Matej A1 - Michalchuk, Adam A.L. A1 - Emmerling, Franziska ED - Stolar, Tomislav T1 - Mechanochemistry: Looking back and ahead N2 - Starting with the discovery of fire and the preparation of food in prehistoric times, mechanochemistry is the oldest form of chemistry that humans have controlled. Mechanochemical practices, such as grinding with a mortar and pestle, continued into the Middle Ages until dedicated scientific studies began in the 19th century. Since then,research in mechanochemistry has shown that many chemicalreactions can be performed via mechanical force without or with small amounts of solvent. Besides being time, material, and energy efficient, mechanochemical reactions often yield products that differ from those obtained in solution. Therefore, not only is mechanochemistry greener and more sustainable than conventional solution chemistry, but it also has the added value of providing new reactivity and selectivity. This is especially important today, when chemists need to invent high-performance materials, intermediates, and products with the use of sustainable feedstocks and develop environmental remediation pathways. At the same time, time-resolved in situ monitoring and computational modeling are necessary for addressing fundamental questions about the atomistic, molecular, and electronic nature of mechanochemical reactivity. Integrating digitalization, robotics, and artificial intelligence tools promises to increase the reproducibility and scalability of mechanochemical processes. Further evolution of mechanochemistry is expected to have a transformative effect on the chemical industry. KW - Mechanochemistry PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653962 DO - https://doi.org/10.1016/j.chempr.2025.102880 SN - 2451-9294 SP - 1 EP - 27 PB - Elsevier BV AN - OPUS4-65396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -