TY - GEN A1 - Naik, Aakash A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Philipp A1 - George, Janine T1 - A Quantum-Chemical Bonding Database for Solid-State Materials (JSONS: Part 2) N2 - This database consists of bonding data computed using Lobster for 1520 solid-state compounds consisting of insulators and semiconductors. The files are named as per ID numbers in the materials project database. Here we provide the larger computational data JSON files for the rest of the 820 compounds. This file consists of all important LOBSTER computation output files data stored as a dictionary. KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7821727 PB - Zenodo CY - Geneva AN - OPUS4-57440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Philipp A1 - George, Janine T1 - A Quantum-Chemical Bonding Database for Solid-State Materials (JSONS: Part 1) N2 - This database consists of bonding data computed using Lobster for 1520 solid-state compounds consisting of insulators and semiconductors. It consists of two kinds of json files. Smaller lightweight JSONS consists of summarized bonding information for each of the compounds. The files are named as per ID numbers in the materials project database. Here we provide also the larger computational data json files for 700 compounds. This files consists of all important LOBSTER computation output files data stored as dictionary. KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7794811 PB - Zenodo CY - Geneva AN - OPUS4-57439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Philipp A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 1) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) Refer to README.md file instructions to reproduce the data. KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7852082 PB - Zenodo CY - Geneva AN - OPUS4-57441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Philipp A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 3) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7852791 PB - Zenodo CY - Geneva AN - OPUS4-57443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Philipp A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 4) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7852798 PB - Zenodo CY - Geneva AN - OPUS4-57444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Philipp A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 2) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7852107 PB - Zenodo CY - Geneva AN - OPUS4-57442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Naik, Aakash T1 - Building quantum chemical orbital based bonding descriptor database N2 - Motivation, methodology and and results of our quantum chemical bonding descriptors database presented in form of a Poster T2 - RSC Twitter Conference 2023 CY - Online meeting DA - 28.02.2023 KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 UR - https://twitter.com/NaikAak/status/1630400167080869893 UR - https://twitter.com/NaikAak/status/1630540436434558977 AN - OPUS4-57101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Naik, Aakash A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Philipp A1 - George, Janine T1 - A Quantum-Chemical Bonding Database for Solid-State Materials N2 - Understanding the chemistry and nature of individual chemical bonds is essential for materials design. Bonding analysis via the LOBSTER software package has provided valuable insights into the properties of materials for thermoelectric and catalysis applications. Thus, the data generated from bonding analysis becomes an invaluable asset that could be utilized as features in large-scale data analysis and machine learning of material properties. However, no systematic studies exist that conducted high-throughput materials simulations to curate and validate bonding data obtained from LOBSTER. Here we present an approach to constructing such a large database consisting of quantum-chemical bonding information. T2 - 16th International conference on materials chemistry (MC16) CY - Dublin, Ireland DA - 03.07.2023 KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 AN - OPUS4-57889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Philipp A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 5) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7852806 PB - Zenodo CY - Geneva AN - OPUS4-57445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Philipp A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 6) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7852808 PB - Zenodo CY - Geneva AN - OPUS4-57446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Philipp A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 7) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7852820 PB - Zenodo CY - Geneva AN - OPUS4-57447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bustamante, Joana A1 - Naik, Aakash A1 - Ueltzen, Katharina A1 - Ertural, Christina A1 - George, Janine T1 - Thermodynamic and Thermoelectric Properties of the Canfieldite, (Ag8SnS6 ), in the Quasi-Harmonic Approximation N2 - Argyrodite-type materials have lately sparked a lot of research interest due to their thermoelectric properties. One promising candidate is canfieldite (Ag8SnS6), which has a Pna21 orthorhombic crystal structure at room temperature (RT). Recently, Slade group found a new low-temperature (LT) phase transition of canfieldite at 120K. Therefore, we investigate structural, vibrational and thermodynamic properties of Ag8SnS6 at room- and low-temperature employing density-functional theory (DFT) and lattice dynamics computations. Thermal properties calculations were based on the quasi-harmonic approximation (QHA) as implemented in phonopy. We achieve good agreement with experiments. Lattice parameters were overestimated by 2%, and thermal properties such as the constant-pressure heat capacity Cp are very close to experimental measurements. Our simulations also reveal a possible new phase transition at around 312 K. Furthermore, we compared RT and LT Ag8SnS6 Grüneisen parameters with some argyrodites analogues, Ag8TS6 (T = Si, Ge, Ti and Sn), finding a relationship between the anharmonicity and low thermal conductivity. T2 - TDEP Summer School 2023 (TDEP2023: Finite-temperature and anharmonic response properties of solids in theory and practice) CY - Linköping, Sweden DA - 20.08.2023 KW - Thermoelectric materials KW - DFT KW - QHA KW - Grüneisen parameter PY - 2023 AN - OPUS4-58147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Naik, Aakash T1 - Material property predictions by incorporating quantum chemical bonding information N2 - Interactions between constituent atoms in crystalline materials have been shown to influence the properties of materials, such as elasticity, ionic and thermal conductivity, etc.[1–3] These interactions between constituent atoms, often quantified as bond strengths, can be extracted from crystalline materials using density-based[4], energy-based[5], and orbital-based methods. LOBSTER[6] is a software that relies on the orbital-based method to extract such bonding information by projecting the plane wave-based wave functions of modern density functional theory computations (DFT) onto a local atomic orbital basis. To garner a better understanding of how this bonding information relates to material properties on a larger scale, machine learning seems an obvious choice. However, for such data-driven studies, large quantities of data that are systematically generated, validated, and post-processed (feature engineering) in a form suitable for input in state-of-the-art ML models are often needed.[7] Here, we first present a workflow implemented in atomate2[8] that can generate such bonding-related data using the LOBSTER program with minimal user input and a post-processing tool, LobsterPy[9], which can summarize and engineer features that could be directly used as input for ML studies. Lastly, we demonstrate the utility of these newly generated features by building a simple machine-learned model to predict harmonic phonon properties using the bonding dataset[10] generated by us for 1500 materials. We find a clear correlation between the bonding information and the phonon property. T2 - STC 2024 CY - Braunschweig, Germany DA - 02.09.2024 KW - Bonding analysis KW - Machine learning KW - Feature engineering PY - 2024 AN - OPUS4-61130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Naik, Aakash T1 - Enhancing material property predictions using quantum chemical bonding descriptors N2 - The properties of crystalline materials, such as elasticity, ionic conductivity, and thermal conductivity, are influenced by interactions between their constituent atoms.[1–3] These interactions, which are often quantified in terms of bond strength, can be extracted from crystalline materials using density-based[4], energy-based[5] and orbital-based methods. LOBSTER[6] is a software that relies on the orbital-based method to extract such bonding information by projecting the plane wave-based wave functions of modern density functional theory computations (DFT) onto a local atomic orbital basis. To garner a better understanding of how this bonding information relates to material properties on a larger scale, machine learning seems an obvious choice. However, for such data-driven studies, large quantities of data need to be systematically generated, validated, and post-processed (e.g., by feature engineering), as they can only then be used as input for state-of-the-art ML models. We have, therefore, previously developed workflows for high-throughput bonding analysis[7]. In this work, we use the results[8] from high-throughput LOBSTER calculations using our workflows to generate bonding-based features. To extract such features from the LOBSTER computations, we use our package LobsterPy.[9] The importance of these features is then tested by employing them in several state-of-the-art ML algorithms and architectures to predict the mechanical and vibrational properties of crystalline materials. We show that including these bonding-based features alongside typical composition and structure-based features helps enhance the model’s predictive accuracy. T2 - 18th German Conference on Cheminformatics CY - Bad Soden am Taunus, Germany DA - 03.11.2024 KW - Bonding analysis KW - Machine learning KW - Materials Descriptors PY - 2024 AN - OPUS4-62217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Naik, Aakash T1 - Harnessing quantum chemical bonding analysis descriptors for material property predictions N2 - Examining the bonding between their constituent atoms in crystalline materials has played a vital role in understanding material properties.[1–4] For instance, low thermal conductivity in materials is typically attributed to its anharmonicity, which has been reported to arise from strong antibonding interactions and local environment distortions.[5–7] The bonds in the material are often quantified in terms of bond strength and can be extracted from crystalline materials using density-based[8], energy-based[9], and orbital-based[10] methods. LOBSTER[11] is a program that relies on an orbital-based method to extract such bonding information by projecting the plane wave-based wave functions of modern density functional theory computations (DFT) onto a local atomic orbital basis. Since our goal was to use bonding analysis descriptors for material property predictions, we needed to first systematically generate large quantities of bonding analysis data. To streamline this process, we have developed a user-friendly workflow[12], which is now also part of the atomate2[13] package that can generate bonding information data extracted using the LOBSTER program for crystalline materials. This workflow requires only the structure as input from the user. Employing this workflow, we have generated for ~13000 crystalline compounds such bonding analysis data. To create new descriptors from these data, we use our package LobsterPy.[14] The curated descriptors span different types, including statistical representations of bonding characteristics for traditional ML algorithms (e.g., random forests), textual descriptions for large language models (LLMs), and structure graphs for graph neural networks (GNNs). These descriptors are then tested by employing them in several state-of-the-art ML algorithms and architectures to predict the mechanical, vibrational, and thermal properties of crystalline materials. Through this work, we are not only able to demonstrate how one can enhance the model’s predictive accuracy[15] by incorporating quantum chemical bonding-based descriptors alongside typical composition and structure-based descriptors but it also aids in uncovering relationships between bonding and materials properties on a larger scale, which was not possible before. T2 - MRS SPRING 2025 CY - Seattle, WA, USA DA - 07.04.2025 KW - Bonding analysis KW - Machine learning KW - Materials Descriptors PY - 2025 AN - OPUS4-63001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bustamante, Joana A1 - Naik, Aakash A1 - Ueltzen, Katharina A1 - George, Janine A1 - Ertural, Christina T1 - Thermal Transport in Ag8TS6 (T= Si, Ge, Sn) Argyrodites: An Integrated Experimental, Quantum-Chemical, and Computational Modelling Study. DFT-part N2 - This repository contains computational data supporting the manuscript titled *“Thermal Transport in Ag8TS6 (T= Si, Ge, Sn) Argyrodites: An Integrated Experimental, Quantum-Chemical, and Computational Modelling Study”* It includes raw data for vibrational properties, elastic properties and Bonding analysis. KW - DFT KW - QHA KW - Lattice thermal conductivity KW - Grüneisen parameter PY - 2025 DO - https://doi.org/10.5281/zenodo.17399975 PB - Zenodo CY - Geneva AN - OPUS4-64671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bustamante, Joana A1 - Naik, Aakash A1 - Ueltzen, Katharina A1 - Ertural, Christina A1 - George, Janine T1 - Thermal Transport in Ag8TS6 (T= Si, Ge, Sn) Argyrodites: An Integrated Experimental, Quantum-Chemical, and Computational Modelling Study. N2 - This repository includes raw data for bonding analysis and lattice thermal conductivity using MLIP-MACE-MP03b, supporting the manuscript “Thermal Transport in Ag8TS6 (T= Si, Ge, Sn) Argyrodites: An Integrated Experimental, Quantum-Chemical, and Computational Modelling Study” KW - DFT KW - LOBSTER KW - Lattice thermal conductivity KW - MLIP PY - 2025 DO - https://doi.org/10.5281/zenodo.17397456 PB - Zenodo CY - Geneva AN - OPUS4-64674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Naik, Aakash Ashok T1 - Linking quantum chemical bonding analysis descriptors to material property predictions N2 - Examining the bonding between their constituent atoms in crystalline materials has played a vital role in understanding material properties. For instance, low thermal conductivity in materials is typically attributed to its anharmonicity, which has been reported to arise from strong antibonding interactions and local environment distortions. Employing an automated for bonding analysis that we developed, we have generated for ~13000 crystalline compounds such bonding analysis data. To create new descriptors from these data automatically, we extended our package LobsterPy. The curated descriptors span different types, including statistical representations of bonding characteristics for traditional ML algorithms (e.g., random forests), textual descriptions for large language models (LLMs), and structure graphs for graph neural networks (GNNs). These descriptors are then tested by employing them in several state-of-the-art ML algorithms and architectures to predict the mechanical, vibrational, and thermal properties of crystalline materials. Through this work, we are not only able to demonstrate how one can enhance the model’s predictive accuracy by incorporating quantum chemical bonding-based descriptors alongside typical composition and structure-based descriptors, but it also aids in uncovering relationships between bonding and materials properties on a larger scale, which was not possible before. T2 - AI MSE 2025 CY - Bochum, Germany DA - 18.11.2025 KW - Bonding analysis KW - Machine learning KW - Materials Descriptors KW - Force constants PY - 2025 AN - OPUS4-64791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zimmermann, Yoel A1 - Bazgir, Adib A1 - Al-Feghali, Alexander A1 - Ansari, Mehrad A1 - Bocarsly, Joshua A1 - Brinson, L Catherine A1 - Chiang, Yuan A1 - Circi, Defne A1 - Chiu, Min-Hsueh A1 - Daelman, Nathan A1 - Evans, Matthew A1 - Gangan, Abhijeet S A1 - George, Janine A1 - Harb, Hassan A1 - Khalighinejad, Ghazal A1 - Takrim Khan, Sartaaj A1 - Klawohn, Sascha A1 - Lederbauer, Magdalena A1 - Mahjoubi, Soroush A1 - Mohr, Bernadette A1 - Mohamad Moosavi, Seyed A1 - Naik, Aakash Ashok A1 - Ozhan, Aleyna Beste A1 - Plessers, Dieter A1 - Roy, Aritra A1 - Schoeppach, Fabian A1 - Schwaller, Philippe A1 - Terboven, Carla A1 - Ueltzen, Katharina A1 - Wu, Yue A1 - Zhu, Shang A1 - Janssen, Jan A1 - Li, Calvin A1 - Foster, Ian A1 - Blaiszik, Ben T1 - 32 examples of LLM applications in materials science and chemistry: towards automation, assistants, agents, and accelerated scientific discovery N2 - Large Language Models (LLMs) are reshaping many aspects of materials science and chemistry research, enabling advances in molecular property prediction, materials design, scientific automation, knowledge extraction, and more. Recent developments demonstrate that the latest class of models are able to integrate structured and unstructured data, assist in hypothesis generation, and streamline research workflows. To explore the frontier of LLM capabilities across the research lifecycle, we review applications of LLMs through 34 total projects developed during the second annual Large Language Model Hackathon for Applications in Materials Science and Chemistry, a global hybrid event. These projects spanned seven key research areas: (1) molecular and material property prediction, (2) molecular and material design, (3) automation and novel interfaces, (4) scientific communication and education, (5) research data management and automation, (6) hypothesis generation and evaluation, and (7) knowledge extraction and reasoning from the scientific literature. Collectively, these applications illustrate how LLMs serve as versatile predictive models, platforms for rapid prototyping of domain-specific tools, and much more. In particular, improvements in both open source and proprietary LLM performance through the addition of reasoning, additional training data, and new techniques have expanded effectiveness, particularly in low-data environments and interdisciplinary research. As LLMs continue to improve, their integration into scientific workflows presents both new opportunities and new challenges, requiring ongoing exploration, continued refinement, and further research to address reliability, interpretability, and reproducibility. KW - Large Language Models KW - Machine Learning KW - Materials Design KW - Bonding Analysis KW - Phonons KW - Thermal properties PY - 2025 DO - https://doi.org/10.1088/2632-2153/ae011a SN - 2632-2153 VL - 6 IS - 3 SP - 1 EP - 34 PB - IOP Publishing AN - OPUS4-64019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Batatia, Ilyes A1 - Benner, Philipp A1 - Chiang, Yuan A1 - Elena, Alin M. A1 - Kovács, Dávid P. A1 - Riebesell, Janosh A1 - Advincula, Xavier R. A1 - Asta, Mark A1 - Avaylon, Matthew A1 - Baldwin, William J. A1 - Berger, Fabian A1 - Bernstein, Noam A1 - Bhowmik, Arghya A1 - Bigi, Filippo A1 - Blau, Samuel M. A1 - Cărare, Vlad A1 - Ceriotti, Michele A1 - Chong, Sanggyu A1 - Darby, James P. A1 - De, Sandip A1 - Della Pia, Flaviano A1 - Deringer, Volker L. A1 - Elijošius, Rokas A1 - El-Machachi, Zakariya A1 - Fako, Edvin A1 - Falcioni, Fabio A1 - Ferrari, Andrea C. A1 - Gardner, John L. A. A1 - Gawkowski, Mikołaj J. A1 - Genreith-Schriever, Annalena A1 - George, Janine A1 - Goodall, Rhys E. A. A1 - Grandel, Jonas A1 - Grey, Clare P. A1 - Grigorev, Petr A1 - Han, Shuang A1 - Handley, Will A1 - Heenen, Hendrik H. A1 - Hermansson, Kersti A1 - Ho, Cheuk Hin A1 - Hofmann, Stephan A1 - Holm, Christian A1 - Jaafar, Jad A1 - Jakob, Konstantin S. A1 - Jung, Hyunwook A1 - Kapil, Venkat A1 - Kaplan, Aaron D. A1 - Karimitari, Nima A1 - Naik, Aakash A. A1 - Csányi, Gábor T1 - A foundation model for atomistic materials chemistry N2 - Atomistic simulations of matter, especially those that leverage first-principles (ab initio) electronic structure theory, provide a microscopic view of the world, underpinning much of our understanding of chemistry and materials science. Over the last decade or so, machine-learned force fields have transformed atomistic modeling by enabling simulations of ab initio quality over unprecedented time and length scales. However, early machine-learning (ML) force fields have largely been limited by (i) the substantial computational and human effort required to develop and validate potentials for each particular system of interest and (ii) a general lack of transferability from one chemical system to the next. Here, we show that it is possible to create a general-purpose atomistic ML model, trained on a public dataset of moderate size, that is capable of running stable molecular dynamics for a wide range of molecules and materials. We demonstrate the power of the MACE-MP-0 model—and its qualitative and at times quantitative accuracy—on a diverse set of problems in the physical sciences, including properties of solids, liquids, gases, chemical reactions, interfaces, and even the dynamics of a small protein. The model can be applied out of the box as a starting or “foundation” model for any atomistic system of interest and, when desired, can be fine-tuned on just a handful of application-specific data points to reach ab initio accuracy. Establishing that a stable force-field model can cover almost all materials changes atomistic modeling in a fundamental way: experienced users obtain reliable results much faster, and beginners face a lower barrier to entry. Foundation models thus represent a step toward democratizing the revolution in atomic-scale modeling that has been brought about by ML force fields. KW - Materials Design KW - Thermal Conducitivity KW - Nanoparticles KW - Batteries PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647829 DO - https://doi.org/10.1063/5.0297006 SN - 0021-9606 VL - 163 IS - 18 SP - 1 EP - 89 PB - AIP Publishing AN - OPUS4-64782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ganose, Alex M. A1 - Sahasrabuddhe, Hrushikesh A1 - Asta, Mark A1 - Beck, Kevin A1 - Biswas, Tathagata A1 - Bonkowski, Alexander A1 - Bustamante, Joana A1 - Chen, Xin A1 - Chiang, Yuan A1 - Chrzan, Daryl C. A1 - Clary, Jacob A1 - Cohen, Orion A. A1 - Ertural, Christina A1 - Gallant, Max C. A1 - George, Janine A1 - Gerits, Sophie A1 - Goodall, Rhys E. A. A1 - Guha, Rishabh D. A1 - Hautier, Geoffroy A1 - Horton, Matthew A1 - Inizan, T. J. A1 - Kaplan, Aaron D. A1 - Kingsbury, Ryan S. A1 - Kuner, Matthew C. A1 - Li, Bryant A1 - Linn, Xavier A1 - McDermott, Matthew J. A1 - Mohanakrishnan, Rohith Srinivaas A1 - Naik, Aakash A. A1 - Neaton, Jeffrey B. A1 - Parmar, Shehan M. A1 - Persson, Kristin A. A1 - Petretto, Guido A1 - Purcell, Thomas A. R. A1 - Ricci, Francesco A1 - Rich, Benjamin A1 - Riebesell, Janosh A1 - Rignanese, Gian-Marco A1 - Rosen, Andrew S. A1 - Scheffler, Matthias A1 - Schmidt, Jonathan A1 - Shen, Jimmy-Xuan A1 - Sobolev, Andrei A1 - Sundararaman, Ravishankar A1 - Tezak, Cooper A1 - Trinquet, Victor A1 - Varley, Joel B. A1 - Vigil-Fowler, Derek A1 - Wang, Duo A1 - Waroquiers, David A1 - Wen, Mingjian A1 - Yang, Han A1 - Zheng, Hui A1 - Zheng, Jiongzhi A1 - Zhu, Zhuoying A1 - Jain, Anubhav T1 - Atomate2: Modular workflows for materials science N2 - High-throughput density functional theory (DFT) calculations have become a vital element of computational materials science, enabling materials screening, property database generation, and training of “universal” machine learning models. While several software frameworks have emerged to support these computational efforts, new developments such as machine learned force fields have increased demands for more flexible and programmable workflow solutions. This manuscript introduces atomate2, a comprehensive evolution of our original atomate framework, designed to address existing limitations in computational materials research infrastructure. Key features include the support for multiple electronic structure packages and interoperability between them, along with generalizable workflows that can be written in an abstract form irrespective of the DFT package or machine learning force field used within them. Our hope is that atomate2's improved usability and extensibility can reduce technical barriers for high-throughput research workflows and facilitate the rapid adoption of emerging methods in computational material science. KW - Automation KW - Materials design KW - DFT workflows KW - Phonons KW - Thermal conductivity KW - Bonding analysis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-635759 DO - https://doi.org/10.1039/d5dd00019j SN - 2635-098X SP - 1 EP - 30 PB - Royal Society of Chemistry (RSC) CY - Cambridge AN - OPUS4-63575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ueltzen, Katharina A1 - Naik, Aakash A1 - Ertural, Christina A1 - Benner, Philipp A1 - George, Janine T1 - Software and data repository: Can simple exchange heuristics guide us in predicting magnetic properties of solids? N2 - Software and data for the publication "Can simple exchange heuristics guide us in predicting magnetic properties of solids?" Release that corresponds to the first preprint version of the article. Full Changelog: https://github.com/DigiMatChem/paper-exchange-heuristics-in-magnetic-materials/commits/v1.0.0 KW - Magnetism KW - Machine Learning KW - Materials Design KW - Chemically Complex Materials KW - Sustainable Materials Design PY - 2025 DO - https://doi.org/10.5281/zenodo.16811104 PB - Zenodo CY - Geneva AN - OPUS4-64672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ganose, Alex M. A1 - Sahasrabuddhe, Hrushikesh A1 - Asta, Mark A1 - Beck, Kevin A1 - Biswas, Tathagata A1 - Bonkowski, Alexander A1 - Bustamante, Joana A1 - Chen, Xin A1 - Chiang, Yuan A1 - Chrzan, Daryl C. A1 - Clary, Jacob A1 - Cohen, Orion A. A1 - Ertural, Christina A1 - Gallant, Max C. A1 - George, Janine A1 - Gerits, Sophie A1 - Goodall, Rhys E. A. A1 - Guha, Rishabh D. A1 - Hautier, Geoffroy A1 - Horton, Matthew A1 - Inizan, T. J. A1 - Kaplan, Aaron D. A1 - Kingsbury, Ryan S. A1 - Kuner, Matthew C. A1 - Li, Bryant A1 - Linn, Xavier A1 - McDermott, Matthew J. A1 - Mohanakrishnan, Rohith Srinivaas A1 - Naik, Aakash A. A1 - Neaton, Jeffrey B. A1 - Parmar, Shehan M. A1 - Persson, Kristin A. A1 - Petretto, Guido A1 - Purcell, Thomas A. R. A1 - Ricci, Francesco A1 - Rich, Benjamin A1 - Riebesell, Janosh A1 - Rignanese, Gian-Marco A1 - Rosen, Andrew S. A1 - Scheffler, Matthias A1 - Schmidt, Jonathan A1 - Shen, Jimmy-Xuan A1 - Sobolev, Andrei A1 - Sundararaman, Ravishankar A1 - Tezak, Cooper A1 - Trinquet, Victor A1 - Varley, Joel B. A1 - Vigil-Fowler, Derek A1 - Wang, Duo A1 - Waroquiers, David A1 - Wen, Mingjian A1 - Yang, Han A1 - Zheng, Hui A1 - Zheng, Jiongzhi A1 - Zhu, Zhuoying A1 - Jain, Anubhav T1 - Correction: Atomate2: Modular workflows for materials science N2 - Correction for “Atomate2: modular workflows for materials science” by Alex M. Ganose et al., Digital Discovery, 2025, 4, 1944–1973, https://doi.org/10.1039/D5DD00019J. PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-640297 DO - https://doi.org/10.1039/d5dd90036k SN - 2635-098X SP - 1 EP - 2 PB - Royal Society of Chemistry (RSC) CY - Cambridge AN - OPUS4-64029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -