TY - GEN A1 - Naik, Aakash A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Philipp A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 8) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7852823 PB - Zenodo CY - Geneva AN - OPUS4-57448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bustamante, Joana A1 - Naik, Aakash A1 - Ertural, Christina A1 - Ueltzen, Katharina A1 - George, Janine T1 - Thermodynamic and Thermoelectric Properties of the Canfieldite, (Ag8SnS6 ), in the Quasi-Harmonic Approximation N2 - Argyrodite-type materials have lately sparked a lot of research interest due to their thermoelectric properties.One promising candidate is canfieldite (Ag8SnS6), which has a Pna21 orthorhombic crystal structure at room temperature (RT). Recently, a new low-temperature (LT) phase transition of canfieldite at 120K has been found. Here, we investigate structural, vibrational and thermodynamic properties of Ag8SnS6 at room- and low-temperature employing density functional theory (DFT) and lattice dynamics computations. Thermal properties calculations were based on the quasi-harmonic approximation (QHA) as implemented in phonopy. We achieve good agreement with experiments. Thermal properties such as the constant-pressure heat capacity (Cp) and thermal conductivity are very close to experimental measurements. Furthermore, we compared RT and LT Ag8SnS6 Grüneisen parameters with argyrodites analogues, Ag8XS6 (X = Sn, Si, Ge), to arrive at an improved T2 - 16th International conference on materials chemistry (MC16) CY - Dublin, Ireland DA - 03.07.2023 KW - Thermoelectric materials KW - DFT KW - QHA KW - Grüneisen parameter PY - 2023 AN - OPUS4-57887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, Yuanbin A1 - Morrow, Joe D. A1 - Ertural, Christina A1 - Fragapane, Natascia L. A1 - Gardner, John L. A. A1 - Naik, Aakash A. A1 - Zhou, Yuxing A1 - George, Janine A1 - Deringer, Volker L. T1 - An automated framework for exploring and learning potential-energy surfaces N2 - Machine learning has become ubiquitous in materials modelling and now routinely enables large-scale atomistic simulations with quantum-mechanical accuracy. However, developing machine-learned interatomic potentials requires high-quality training data, and the manual generation and curation of such data can be a major bottleneck. Here, we introduce an automated framework for the exploration and fitting of potential-energy surfaces, implemented in an openly available software package that we call (‘automatic potential-landscape explorer’). We discuss design choices, particularly the interoperability with existing software architectures, and the ability for the end user to easily use the computational workflows provided. We show wide-ranging capability demonstrations: for the titanium–oxygen system, SiO2, crystalline and liquid water, as well as phase-change memory materials. More generally, our study illustrates how automation can speed up atomistic machine learning in computational materials science. KW - Automation KW - Machine Learning KW - Machine learning potentials KW - Amorphous materials KW - High-throughput KW - Ab initio KW - Materials property prediction PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-639882 DO - https://doi.org/10.1038/s41467-025-62510-6 SN - 2041-1723 VL - 16 IS - 1 SP - 1 EP - 12 PB - Springer Science and Business Media LLC AN - OPUS4-63988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - George, Janine A1 - Petretto, G. A1 - Naik, Aakash A1 - Esters, M. A1 - Jackson, A. J. A1 - Nelson, R. A1 - Dronskowski, R. A1 - Rignanese, G.-M. A1 - Hautier, G. T1 - Automated bonding analysis with crystal orbital Hamilton populuations N2 - Automated bonding analysis software has been developed based on Crystal Orbital Hamilton Populations to facilitate high-throughput bonding analysis and machine-learning of bonding features. This work presents the software and discusses its applications to simple and complex materials such as GaN, NaCl, the oxynitrides XTaO2N (X=Ca, Ba, Sr) and Yb14Mn1Sb11. KW - Chemical bonds KW - Automation KW - High-throughput PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551641 DO - https://doi.org/10.1002/cplu.202200123 SN - 2192-6506 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-55164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arnold, M. A1 - Katzmann, J. A1 - Naik, Aakash A1 - Görne, A. L. A1 - Härtling, Thomas A1 - George, Janine A1 - Schuster, C. T1 - Investigations on electron beam irradiated rare-earth doped SrF2 for application as low fading dosimeter material: Evidence for and DFT simulation of a radiation-induced phase N2 - A recent approach to measure electron radiation doses in the kGy range is the use of phosphors with an irradiation dose-dependent luminescence decay time. However, the applicability of the previously investigated material NaYF4:Yb3+,Er3+ is limited as it shows pronounced fading. Therefore, in this work, a modified SrF2 synthesis is presented that results in SrF2 nanoparticles codoped with Yb and either Er, Hm, or Tm. To assess their suitability as dosimeter material, dose response, as well as its degree of fading over 50 up to 140 days after irradiation were measured. Fading rates as small as 5% in SrF2:Er,Yb and 4% in SrF2:Ho,Yb were derived, which are comparable to established dosimeter materials. A combination of spectroscopy, diffraction and DFT calculations was used to elucidate the effect of irradiation, pointing towards the formation of a secondary phase of Yb2+ that we predict could be Yb2OF2. This irreversible formation of a secondary phase is considered to be the explanation for the low fading behavior in SrF2-based phosphors compared to NaYF4:Yb, Er, a highly attractive feature for electron beam dosimetry. KW - DFT KW - Structure prediction PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554115 DO - https://doi.org/10.1039/D2TC01773C SN - 2050-7526 VL - 10 IS - 32 SP - 11579 EP - 11587 PB - RSC CY - London AN - OPUS4-55411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Pauw, Brian Richard A1 - Laskina, Sofya A1 - Naik, Aakash A1 - Smales, Glen Jacob A1 - George, Janine A1 - Breßler, Ingo A1 - Benner, Philipp T1 - "Ultima Ratio": Simulating wide-range X-ray scattering and diffraction N2 - We demonstrate a strategy for simulating wide-range X-ray scattering patterns, which spans the small- and wide scattering angles as well as the scattering angles typically used for Pair Distribution Function (PDF) analysis. Such simulated patterns can be used to test holistic analysis models, and, since the diffraction intensity is on the same scale as the scattering intensity, may offer a novel pathway for determining the degree of crystallinity. The "Ultima Ratio" strategy is demonstrated on a 64-nm Metal Organic Framework (MOF) particle, calculated from Q < 0.01 1/nm up to Q < 150 1/nm, with a resolution of 0.16 Angstrom. The computations exploit a modified 3D Fast Fourier Transform (3D-FFT), whose modifications enable the transformations of matrices at least up to 8000^3 voxels in size. Multiple of these modified 3D-FFTs are combined to improve the low-Q behaviour. The resulting curve is compared to a wide-range scattering pattern measured on a polydisperse MOF powder. While computationally intensive, the approach is expected to be useful for simulating scattering from a wide range of realistic, complex structures, from (poly-)crystalline particles to hierarchical, multicomponent structures such as viruses and catalysts. KW - X-ray KW - Simulation KW - 3D Fourier Transform KW - High resolution KW - XRD KW - SAXS KW - PDF KW - Total scattering KW - X-ray scattering KW - Metal organic framework KW - Electron density map KW - FFT PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572067 DO - https://doi.org/10.48550/arXiv.2303.13435 VL - Cornell University SP - 1 EP - 12 PB - Ithaca, NY AN - OPUS4-57206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - George, Janine A1 - Naik, Aakash A1 - Ueltzen, Katharina T1 - Reflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry N2 - Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions. The submissions spanned seven key application areas and demonstrated the diverse utility of LLMs for applications in (1) molecular and material property prediction; (2) molecular and material design; (3) automation and novel interfaces; (4) scientific communication and education; (5) research data management and automation; (6) hypothesis generation and evaluation; and (7) knowledge extraction and reasoning from scientific literature. Each team submission is presented in a summary table with links to the code and as brief papers in the appendix. Beyond team results, we discuss the hackathon event and its hybrid format, which included physical hubs in Toronto, Montreal, San Francisco, Berlin, Lausanne, and Tokyo, alongside a global online hub to enable local and virtual collaboration. Overall, the event highlighted significant improvements in LLM capabilities since the previous year's hackathon, suggesting continued expansion of LLMs for applications in materials science and chemistry research. These outcomes demonstrate the dual utility of LLMs as both multipurpose models for diverse machine learning tasks and platforms for rapid prototyping custom applications in scientific research. KW - Large Language Models KW - Materials Design KW - Materials Properties KW - Phonons KW - Bonding Analysis KW - Machine Learning PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-622113 DO - https://doi.org/10.48550/arXiv.2411.15221 SP - 1 EP - 98 AN - OPUS4-62211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Zimmermann, Yoel A1 - Bazgir, Adib A1 - Al-Feghali, Alexander A1 - Ansari, Mehrad A1 - Bocarsly, Joshua A1 - Brinson, L. Catherine A1 - Chiang, Yuan A1 - Circi, Defne A1 - Chiu, Min-Hsueh A1 - Daelman, Nathan A1 - Evans, Matthew L. A1 - Gangan, Abhijeet S. A1 - George, Janine A1 - Harb, Hassan A1 - Khalighinejad, Ghazal A1 - Khan, Sartaaj Takrim A1 - Klawohn, Sascha A1 - Lederbauer, Magdalena A1 - Mahjoubi, Soroush A1 - Mohr, Bernadette A1 - Moosavi, Seyed Mohamad A1 - Naik, Aakash A1 - Ozhan, Aleyna Beste A1 - Plessers, Dieter A1 - Roy, Aritra A1 - Schöppach, Fabian A1 - Schwaller, Philippe A1 - Terboven, Carla A1 - Ueltzen, Katharina A1 - Wu, Yue A1 - Zhu, Shang A1 - Janssen, Jan A1 - Li, Calvin A1 - Foster, Ian A1 - Blaiszik, Ben T1 - 34 Examples of LLM Applications in Materials Science and Chemistry: Towards Automation, Assistants, Agents, and Accelerated Scientific Discovery N2 - Large Language Models (LLMs) are reshaping many aspects of materials science and chemistry research, enabling advances in molecular property prediction, materials design, scientific automation, knowledge extraction, and more. Recent developments demonstrate that the latest class of models are able to integrate structured and unstructured data, assist in hypothesis generation, and streamline research workflows. To explore the frontier of LLM capabilities across the research lifecycle, we review applications of LLMs through 34 total projects developed during the second annual Large Language Model Hackathon for Applications in Materials Science and Chemistry, a global hybrid event. These projects spanned seven key research areas: (1) molecular and material property prediction, (2) molecular and material design, (3) automation and novel interfaces, (4) scientific communication and education, (5) research data management and automation, (6) hypothesis generation and evaluation, and (7) knowledge extraction and reasoning from the scientific literature. Collectively, these applications illustrate how LLMs serve as versatile predictive models, platforms for rapid prototyping of domain-specific tools, and much more. In particular, improvements in both open source and proprietary LLM performance through the addition of reasoning, additional training data, and new techniques have expanded effectiveness, particularly in low-data environments and interdisciplinary research. As LLMs continue to improve, their integration into scientific workflows presents both new opportunities and new challenges, requiring ongoing exploration, continued refinement, and further research to address reliability, interpretability, and reproducibility. KW - Automation KW - LLM KW - Machine Learning KW - Agent KW - Bonding Analysis KW - Materials Searches KW - Finetuning PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-631720 DO - https://doi.org/10.48550/arXiv.2505.03049 SP - 1 EP - 33 AN - OPUS4-63172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Ueltzen, Katharina A1 - Naik, Aakash A. A1 - Ertural, Christina A1 - Benner, Philipp A1 - George, Janine T1 - Can simple exchange heuristics guide us in predicting magnetic properties of solids? N2 - A popular heuristic derived from the Kanamori-Goodenough-Anderson rules of superexchange connects bond angles and magnetism in certain transition metal compounds. We evaluate the fulfillment of this heuristic on databases of magnetic structures. The heuristic is partly satisfied in magnetic structures from experiment, and exceptions can be rationalized. We further show that incorporating this heuristic into machine learning models for magnetism improves the prediction. KW - Magnetism KW - Transition Metal Compounds KW - Materials Design KW - Sustainable Materials Design KW - Machine Learning KW - Materials Understanding PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-639290 DO - https://doi.org/10.26434/chemrxiv-2025-xj84d VL - Version 1 SP - 1 EP - 43 AN - OPUS4-63929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Liu, Yuanbin A1 - Morrow, Joe D. A1 - Ertural, Christina A1 - Fragapane, Natascia L. A1 - Gardner, John L. A. A1 - Naik, Aakash A1 - Zhou, Yuxing A1 - George, Janine A1 - Deringer, Volker L. T1 - An automated framework for exploring and learning potential-energy surfaces N2 - Machine learning has become ubiquitous in materials modelling and now routinely enables large-scale atomistic simulations with quantum-mechanical accuracy. However, developing machine-learned interatomic potentials requires high-quality training data, and the manual generation and curation of such data can be a major bottleneck. Here, we introduce an automated framework for the exploration and fitting of potential-energy surfaces, implemented in an openly available software package that we call autoplex ('automatic potential-landscape explorer'). We discuss design choices, particularly the interoperability with existing software architectures, and the ability for the end user to easily use the computational workflows provided. We show wide-ranging capability demonstrations: for the titanium-oxygen system, SiO2, crystalline and liquid water, as well as phase-change memory materials. More generally, our study illustrates how automation can speed up atomistic machine learning -- with a long-term vision of making it a genuine mainstream tool in physics, chemistry, and materials science. KW - Machine learned interatomic potentials KW - Ab initio KW - DFT KW - Automation KW - Workflows KW - Machine learning KW - Materials design KW - Materials discovery PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-623188 DO - https://doi.org/10.48550/arXiv.2412.16736 SN - 2331-8422 SP - 1 EP - 27 PB - Cornell University CY - Ithaca, NY AN - OPUS4-62318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -