TY - JOUR A1 - Herrmann, Antje Jutta A1 - Techritz, Sandra A1 - Jakubowski, Norbert A1 - Haase, A. A1 - Luch, A. A1 - Panne, Ulrich A1 - Müller, Larissa T1 - A simple metal staining procedure for identification and visualization of single cells by LA-ICP-MS N2 - High lateral resolution of metal detection in single cells by use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) demands powerful staining methods. In this work different staining procedures for the single cell analysis with LA-ICP-MS were optimized. An iridium intercalator was utilized to stain the cell nuclei whereas the whole cell was stained by the use of maleimido-mono-amide-DOTA (mDOTA) complexing lanthanide(III) ions. The content of the artificially introduced metals per cell was quantified using a matrix matched calibration approach based on cellulose membranes onto which standards were spotted by a microarray spotter. Absolute metal stain amounts in the range of 2.34 to 9.81 femtomole per cell were determined. The metal staining procedures allow direct identification and visualization of single cells and their cell compartments by element microscopy without the use of bright field images of the sample. KW - Single Cell Analysis KW - Bioimaging KW - LA-ICP-MS based immunoassays PY - 2017 DO - https://doi.org/10.1039/c6an02638a SN - 0003-2654 SN - 1364-5528 VL - 142 IS - 10 SP - 1703 EP - 1710 PB - The Royal Society of Chemistry AN - OPUS4-40251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Binder, F. A1 - Bircher, B. A1 - Laquai, René A1 - Küng, A. A1 - Bellon, Carsten A1 - Meli, F. A1 - Deresch, A. A1 - Ulrich Neuschaefer-Rube, U. A1 - Hausotte, T. T1 - Methodologies for model parameterization of virtual CTs for measurement uncertainty estimation N2 - X-ray computed tomography (XCT) is a fast-growing technology for dimensional measurements in industrial applications. However, traceable and efficient methods to determine measurement uncertainties are not available. Guidelines like the VDI/VDE 2630 Part 2.1 suggest at least 20 repetitions of a specific measurement task, which is not feasible for industrial standards. Simulation-based approaches to determine task specific measurement uncertainties are promising, but require closely adjusted model parameters and an integration of error sources like geometrical deviations during a measurement. Unfortunately, the development of an automated process to parameterize and integrate geometrical deviations into XCT models is still an open issue. In this work, the whole processing chain of dimensional XCT measurements is taken into account with focus on the issues and requirements to determine suitable parameters of geometrical deviations. Starting off with baseline simulations of different XCT systems, two approaches are investigated to determine and integrate geometrical deviations of reference measurements. The first approach tries to iteratively estimate geometric deviation parameter values to match the characteristics of the missing error sources. The second approach estimates those values based on radiographs of a known calibrated reference object. In contrast to prior work both approaches only use a condensed set of parameters to map geometric deviations. In case of the iterative approach, some major issues regarding unhandled directional dependencies have been identified and discussed. Whereas the radiographic method resulted in task specific expanded measurements uncertainties below one micrometre even for bi-directional features, which is a step closer towards a true digital twin for uncertainty estimations in dimensional XCT. KW - Geometrical deviation KW - X-ray computed tomography KW - Uncertainty estimation KW - Virtual CT PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553263 DO - https://doi.org/10.1088/1361-6501/ac7b6a VL - 33 IS - 10 SP - 1 EP - 15 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-55326 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosenkranz, D. A1 - Kriegel, F. L. A1 - Mavrakis, E. A1 - Pergantis, S. A. A1 - Reichardt, P. A1 - Tentschert, J. A1 - Jakubowski, N. A1 - Laux, P. A1 - Panne, Ulrich A1 - Luch, A. T1 - Versatile dual-inlet sample introduction system for multi-mode single particle inductively coupled plasma mass spectrometry N2 - Metal-containing nanoparticles (NP) can be characterized with inductively coupled plasma mass spectrometers (ICP-MS) in terms of their size and number concentration by using the single-particle mode of the instrument (spICP-MS). The accuracy of measurement depends on the setup, operational conditions of the instrument and specific parameters that are set by the user. The transport efficiency of the ICP-MS is crucial for the quantification of the NP and usually requires a reference material with homogenous size distribution and a known particle number concentration. Currently, NP reference materials are available for only a few metals and in limited sizes. If particles are characterized without a reference standard, the results of both size and particle number may be biased. Therefore, a dual-inlet Setup for characterizing nanoparticles with spICP-MS was developed to overcome this problem. This setup is based on a conventional introduction system consisting of a pneumatic nebulizer (PN) for nanoparticle solutions and a microdroplet Generator (μDG) for ionic calibration solutions. A new and flexible interface was developed to facilitate the coupling of μDG, PN and the ICP-MS system. The interface consists of available laboratory components and allows for the calibration, nanoparticle (NP) characterization and cleaning of the arrangement, while the ICP-MS instrument is still running. Three independent analysis modes are available for determining particle size and number concentration. Each mode is based on a different calibration principle. While mode I (counting) and mode III (μDG) are known from the literature, mode II (sensitivity), is used to determine the transport efficiency by inorganic ionic Standard solutions only. It is independent of NP reference materials. The μDG based inlet system described here guarantees superior analyte sensitivities and, therefore, lower detection limits (LOD). The size dependent LODs achieved are less than 15 nm for all NP (Au, Ag, CeO2) investigated. KW - Spectrometer KW - Reference KW - Calibration PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536121 DO - https://doi.org/10.3791/61653 SN - 1940-087X IS - 163 SP - 1 EP - 19 PB - MyJoVE Corporation CY - Cambridge, MA, USA AN - OPUS4-53612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moreno-Gordaliza, E. A1 - Giesen, Charlotte A1 - Lázaro, A. A1 - Esteban-Fernández, D. A1 - Humanes, B. A1 - Canas, B. A1 - Panne, Ulrich A1 - Tejedor, A. A1 - Jakubowski, Norbert A1 - Gómez-Gómez, M.M. T1 - Elemental bioimaging in kidney by LA-ICP-MS as a tool to study nephrotoxicity and renal protective strategies in cisplatin therapies N2 - A laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS)-based methodology is presented for Pt, Cu, and Zn bioimaging on whole kidney 3 µm sagittal sections from rats treated with pharmacological doses of cisplatin, which were sacrificed once renal damage had taken place. Pt turned out to accumulate in the kidney cortex and corticomedullary junction, corresponding to areas where the proximal tubule S3 segments (the most sensitive cells to cisplatin nephrotoxicity) are located. This demonstrates the connection between platinum accumulation and renal damage proved by histological examination of HE-stained sections and evaluation of serum and urine biochemical parameters. Cu and Zn distribution maps revealed a significant displacement in cells by Pt, as compared to control tissues. A dramatic decrease in the Pt accumulation in the cortex was observed when cilastatin was coadministered with cisplatin, which can be related to its nephroprotective effect. Excellent imaging reproducibility, sensitivity (LOD 50 fg), and resolution (down to 8 µm) were achieved, demonstrating that LA–ICP–MS can be applied as a microscopic metal detector at cellular level in certain tissues. A simple and quick approach for the estimation of Pt tissue levels was proposed, based on tissue spiking. PY - 2011 DO - https://doi.org/10.1021/ac201933x SN - 0003-2700 SN - 1520-6882 VL - 83 IS - 20 SP - 7933 EP - 7940 PB - American Chemical Society CY - Washington, DC AN - OPUS4-24965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wooley, A. T. A1 - Cárdenas, S. A1 - Cavazzini, A. A1 - Panne, Ulrich T1 - Meet the three newest ABC Editors N2 - Editorial - Introduction of the new editors. KW - ABC PY - 2023 DO - https://doi.org/10.1007/s00216-023-04615-9 SP - 1 EP - 3 PB - Springer Verlag GmbH CY - Germany AN - OPUS4-57188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chan, George C.-Y. A1 - Hieftje, Gary M. A1 - Omenetto, Nicoló A1 - Axner, Ove A1 - Bengtson, Arne A1 - Bings, Nicolas H. A1 - Blades, Michael W. A1 - Bogaerts, Annemie A1 - Bolshov, Mikhail A. A1 - Broekaert, José A.C. A1 - Chan, WingTat A1 - Costa-Fernández, José M. A1 - Crouch, Stanley R. A1 - De Giacomo, Alessandro A1 - D’Ulivo, Alessandro A1 - Engelhard, Carsten A1 - Falk, Heinz A1 - Farnsworth, Paul B. A1 - Florek, Stefan A1 - Gamez, Gerardo A1 - Gornushkin, Igor B. A1 - Günther, Detlef A1 - Hahn, David W. A1 - Hang, Wei A1 - Hoffmann, Volker A1 - Jakubowski, Norbert A1 - Karanassios, Vassili A1 - Koppenaal, David W. A1 - Kenneth Marcus, R. A1 - Noll, Reinhard A1 - Olesik, John W. A1 - Palleschi, Vincenzo A1 - Panne, Ulrich A1 - Pisonero, Jorge A1 - Ray, Steven J. A1 - Resano, Martín A1 - Russo, Richard E. A1 - Scheeline, Alexander A1 - Smith, Benjamin W. A1 - Sturgeon, Ralph E. A1 - Todolí, José-Luis A1 - Tognoni, Elisabetta A1 - Vanhaecke, Frank A1 - Webb, Michael R. A1 - Winefordner, James D. A1 - Yang, Lu A1 - Yu, Jin A1 - Zhang, Zhanxia T1 - Landmark Publications in Analytical Atomic Spectrometry: Fundamentals and Instrumentation Development N2 - The almost-two-centuries history of spectrochemical analysis has generated a body of literature so vast that it has become nearly intractable for experts, much less for those wishing to enter the field. Authoritative, focused reviews help to address this problem but become so granular that the overall directions of the field are lost. This broader perspective can be provided partially by general overviews but then the thinking, experimental details, theoretical underpinnings and instrumental innovations of the original work must be sacrificed. In the present compilation, this dilemma is overcome by assembling the most impactful publications in the area of analytical atomic spectrometry. Each entry was proposed by at least one current expert in the field and supported by a narrative that justifies its inclusion. The entries were then assembled into a coherent sequence and returned to contributors for a round-robin review. KW - Analytical atomic spectrometry KW - Spectroscopy KW - Instrumental analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-621588 DO - https://doi.org/10.1177/00037028241263567 SN - 1943-3530 VL - 78 SP - 1 EP - 456 PB - Sage CY - London AN - OPUS4-62158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz-Forberg, Bernd A1 - Ulrich, A. T1 - Transport of RAM in Tanks - How to fit into the IAEA safety philosophy T2 - 7th International symposium Packaging and Transportation of Radioactive Materials CY - New Orleans, La., USA DA - 15.05.1983 PY - 1983 VL - 1 SP - 54 EP - 58 AN - OPUS4-36464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, W. A1 - Wei, A. A1 - Huang, W. A1 - Zhao, Peng A1 - Schmidt, Martin A1 - Krause, Ulrich A1 - Wu, Dejian T1 - Experimental and theoretical study on the inhibition effect of CO2/N2 blends on the ignition behavior of carbonaceous dust clouds N2 - Gaseous inhibitors are used in many industries for the explosion prevention of combustible dusts, mitigating the potential hazard to humans, properties and environments. This work experimentally and theoretically studied the inerting effect of gaseous inhibitors on the ignition process of dust clouds in O2/N2/CO2 atmospheres, with an emphasis on the role of the CO2/N2 ratio. 10 different combustible carbonaceous dusts were selected, including grain dust, biomass dust and coal dust. Experimental results showed that the inhibition effect of CO2/N2 is closely related to the ignition mechanism of dust clouds. Specifically, a higher ratio of CO2/N2 yields a stronger inhibition effect on the ignition process of dust samples with relatively low volatile matter contents predominated by heterogeneous ignition. In addition, two novel steady-state ignition mechanism models were developed to interpret the experimental observations. Maxwell-Stefan equations were used to describe the diffusivity in the ternary O2/N2/CO2 gas mixtures. The analytical results were in good agreement with the experimental data of the minimum ignition temperature of dust cloud (MITC) in oxygen-lean atmospheres. The mechanism modelling can be used to estimate the critical ignition temperature of all carbonaceous dust clouds with a wide range of volatile matter content under different inert atmospheres, which will provide a reference for the explosion hazard assessment of dust posed by a hot surface in the process industries. KW - CO2/N2 ratio KW - Inerting effect KW - Volatile matter content KW - MITC KW - Mechanism model PY - 2021 DO - https://doi.org/10.1016/j.psep.2021.07.005 SN - 0957-5820 VL - 153 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-53662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulrich, A. S. A1 - Kasatikov, S. A1 - König, T. A1 - Fantin, Andrea A1 - Margraf, J. T. A1 - Galetz, M. C. T1 - Decreased Metal Dusting Resistance of Ni-Cu Alloys by Fe and Mn Additions N2 - Ni-Cu alloys are promising for application at temperatures between 400–900 °C and reducing atmospheres with high C-contents. Typically, under such conditions, metallic materials in contact with the C-rich atmosphere are degraded by a mechanism called metal dusting (MD). Ni-Cu-alloys do not form protective oxide scales, but their resistance is attributed to Cu, which catalytically inhibits the C-deposition on the surface. Adding other alloying elements, such as Mn or Fe, was found to enhance the MD attack of Ni-Cu alloys again. In this study, the effect of the Mn and Fe is divided into two affected areas: the surface and the bulk. The MD attack on binary Ni-Cu alloys, model alloys with Fe and Mn additions, and commercial Monel Alloy 400 is experimentally demonstrated. The surface electronic structure causing the adsorption and dissociation of C-containing molecules is investigated for model alloys. Analytical methods such as scanning electron microscopy combined with energy-dispersive X-ray spectroscopy, electron probe microanalysis combined with wavelength-dispersive X-ray spectroscopy, X-ray diffraction analysis, and near-edge X-ray absorption fine structure measurements were used. The results are correlated to CALPHAD calculations and atomistic simulations combining density functional theory calculations and machine learning. It is found that the Cu content plays a significant role in the surface reaction. The effect of Mn and Fe is mainly attributed to oxide formation. A mechanism explaining the enhanced attack by adding both Fe and Mn is proposed. KW - Metal Dusting KW - XANES PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608226 DO - https://doi.org/10.1007/s11085-024-10263-w SN - 2731-8397 SP - 1 EP - 14 PB - Springer Science and Business Media LLC AN - OPUS4-60822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Malow, Marcus A1 - Schulze, A. A1 - Krause, Ulrich T1 - The main gaseous products and the mass loss during the self-ignition of combustible materials T2 - 6th International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions CY - Halifax, Canada DA - 2006-08-27 KW - Self-ignition KW - Combustion KW - Biomass KW - FTIR-gas-measurements KW - Macro-thermal balance PY - 2006 SN - 0950-4230 SN - 1873-3352 SP - 825 EP - 836 PB - Butterworth CY - Guildford, Surrey AN - OPUS4-12892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -