TY - JOUR A1 - Brzezinka, Klaus-Werner A1 - Trunschke, A. A1 - Hoang, D. L. A1 - Radnik, J. A1 - Brückner, A. A1 - Lieske, H. T1 - Transition metal oxide/carbon composite catalysts for n-alkane aromatization: Structure and catalytic properties N2 - Nanocrystalline particles of high temperature pretreated titania, zirconia or hafnium oxide, embedded in a carbon matrix, have been found to catalyze the aromatization of n-octane into ethylbenzene (EB) and o-xylene (OX) with high selectivity. The carbon matrix itself is catalytically not active, but seems to co-operate with the transition metal oxides in such a way that the various metal oxide/carbon composite materials exhibit equal selectivity patterns. In detail, the carbon component stabilizes a high dispersion of the oxides during the high temperature pretreatment procedure. This thermal treatment results in a destruction of surface acidity of the oxides, which would otherwise be responsible for undesirable consecutive and parallel reactions. Moreover, the carbon component is involved in the deep dehydrogenation of alkanes to multiple unsaturated alkenes. This is explained by the ability of surface carbon atoms to interact with hydrogen. The bulk and surface structure of the catalysts have been characterized by XRD, specific surface area measurements, XPS, UPS, Raman spectroscopy, in situ ESR and DRIFT spectroscopy. KW - Aromatization KW - Dehydrocyclization KW - n-Octane KW - Monofunctional catalysts KW - Zirconia KW - Titania KW - Oxide/carbon composites PY - 2001 DO - https://doi.org/10.1016/S0926-860X(00)00736-5 SN - 0926-860X SN - 1873-3875 VL - 208 IS - 1-2 SP - 381 EP - 392 PB - Elsevier CY - Amsterdam AN - OPUS4-1083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoang, D. L. A1 - Dittmar, A. A1 - Schneider, M. A1 - Trunschke, A. A1 - Lieske, H. A1 - Brzezinka, Klaus-Werner A1 - Witke, Klaus T1 - Evidence of lanthanum-chromium mixed oxides formed in CrOx/La2O3 model catalysts N2 - CrOx/La2O3 mixed oxides, prepared by impregnating La2O3 with appropriate aqueous solutions of (NH4)2CrO4 and calcining at 600 °C for 4 h, have been investigated by means of XRD, TPR, XPS, DRIFTS, and Raman spectroscopy (RS). The formation of the compounds La2CrO6, La(OH)CrO4 and LaCrO4 under these conditions was evidenced. Strong peaks at 864, 884, 913, and 921 cm-1, as well as weak peaks at 136, 180, 354, 370, and 388 cm-1 in the RS spectrum of CrOx/La2O3 have been assigned to La2CrO6. KW - Lanthanum-chromium mixed oxides KW - La2CrO6 KW - LaCrO4 KW - TPR KW - XPS KW - XRD KW - DRIFTS KW - Raman spectroscopy PY - 2003 DO - https://doi.org/10.1016/S0040-6031(02)00491-4 SN - 0040-6031 SN - 1872-762X VL - 400 SP - 153 EP - 163 PB - Elsevier CY - Amsterdam AN - OPUS4-2397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, M. A1 - Trunschke, A. A1 - Bentrup, U. A1 - Brzezinka, Klaus-Werner A1 - Schreier, E. A1 - Schneider, M. A1 - Pohl, M.-M. A1 - Fricke, R. T1 - Selective Catalytic Reduction of Nitric Oxide by Ammonia over Egg-Shell MnOx/NaY Composite Catalysts N2 - A novel composite catalyst system for the selective catalytic reduction (SCR) of NOx by NH3 is described operating at temperatures lower than 470 K in the presence of water with NO conversions of 80–100% at space velocities of 30,000–50,000 h-1. The catalyst is prepared by egg-shell precipitation of MnO2 on the external surface of zeolite NaY. Structural and thermal stability of precipitated MnO2 as well as of the MnO2/NaY composite catalyst were characterized by N2 adsorption, X-ray diffraction, laser Raman spectroscopy, temperature-programmed reduction, and electron microscopy. MnO2 precipitated on zeolite NaY (15 wt% loading) retained its amorphous state up to calcination temperatures of 775 K. The zeolite component remained structurally intact. Calcination at higher temperatures destroyed the zeolite structure and transformed MnO2 into Mn3O4. DRIFT spectroscopic investigations revealed the presence of symmetric O=N—O—N=O species formally corresponding to N2O3 on the composite catalyst after contact with NO. Catalytic measurements under integral flow conditions showed that the catalyst performance is associated with a close coupling of nitrite formation and its drain off from equilibria with NO/NO2 and nitrate by ammonia. Several results are in line with the “diazotation” mechanism, including NH3 protonation to NH4+, whereas prevailing Lewis acid sites should enable NH3 activation via amide species, thus leading to a parallel “amide/nitrosamide” SCR reaction route. The activity-temperature profile fulfills the requirements of a low-temperature NOx reduction catalyst for mobile diesel engines if an ammonia supply is implemented “on board,” e.g., by urea decomposition. PY - 2002 DO - https://doi.org/10.1006/jcat.2001.3468 SN - 0021-9517 SN - 1090-2694 VL - 206 SP - 98 EP - 113 PB - Acad. Press CY - San Diego, Calif. AN - OPUS4-1638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -