TY - JOUR A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Treutler, K. A1 - Schroepfer, Dirk A1 - Wesling, V. A1 - Kannengießer, Thomas T1 - Investigations on influencing the microstructure of additively manufactured Co‑Cr alloys to improve subsequent machining conditions JF - Welding in the World N2 - Co-Cr alloys are frequently used for highly stressed components, especially in turbine and plant construction, due to their high resistance to thermal and mechanical stress, as well as to corrosive and abrasive loads. Furthermore, they are classified as difficult-to-cut materials because of their high strength and toughness as well as their low thermal conductivity. However, for Co, an increased cost and supply risk can be observed in recent years. Therefore, additive manufacturing (AM) offers significant economic advantages due to higher material efficiency regarding repair, modification, and manufacturing of such components. Concerning inhomogeneity and anisotropy of the microstructure and properties as well as manufacturing-related stresses, a lot of knowledge is still necessary for the economic use of additive welding processes in SMEs. In addition, subsequent machining, particularly contour milling, is essential to generate the required complex contours and surfaces. Hence, additive and machining manufacturing processes need to be coordinated in a complementary way, especially due to additional challenges arising in milling of heterogeneous hard-to-cut microstructures. Recently, it has been shown that modern, hybrid cutting processes, such as ultrasonic-assisted milling (US), can improve the cutting situation. In this investigation, the Co-Cr initial alloy is additionally modified with Ti and Zr up to 1 wt% with the aim to enhance the homogeneity of the microstructure and, thus, the machinability. Hence the investigation includes finish milling tests of the AM components and the comparison of US and conventional machining. Both the modifications and the ultrasonic assistance exhibit a significant effect on the machining situation; for example US causes a higher surface integrity of the finish milled surfaces compared to conventional milling. T2 - International Congress on Welding, Additive Manufacturing and associated non-destructive testing CY - Online meeting DA - 08.06.2022 KW - Cobalt-chromium alloy KW - Additive manufacturing KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560917 DO - https://doi.org/10.1007/s40194-022-01397-z SP - 1 EP - 9 PB - Springer CY - Heidelberg AN - OPUS4-56091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Treutler, K. A1 - Schroepfer, Dirk A1 - Wesling, V. A1 - Kannengießer, Thomas ED - da Silva, L. F. M. ED - Martins, P. A. F. ED - Reisgen, U. T1 - Nickel-Iron-Alloy Modification to Enhance Additively Welded Microstructure for Subsequent Milling T2 - 2nd International Conference on Advanced Joining Processes (AJP 2021) N2 - The aerospace industry uses nickel–iron alloys, e.g., FeNi36, to create moulding tools for composite materials, since these alloys have a low coefficient of thermal expansion. Nickel–iron alloys are hard-to-cut materials. The moulding tools are large in size and involve complex structures, making them cost-intensive and difficult to manufacture. Thus, the focus is set on additive manufacturing, which can additionally enable the repair of components in order to eliminate local defects. However, the process usually results in a heterogeneous microstructure and anisotropic mechanical properties. As there is a high demand for a precise and exact fit of the precision moulds and the surface quality, the welded components must be subsequently machined. Additionally, inhomogeneous microstructure may lead to unstable cutting forces and conditions. Consequently, a modification of the microstructure morphology is achieved through specific alloy modifications in order to stabilise and improve the subsequent machining process. Therefore, titanium and zirconium are chosen as modification elements with a maximum 1% weight percent and are added to nickel–iron alloy powder. The elements are alloyed, and build-up welded by plasma-transferred-arcwelding. The resulting microstructure morphology of the welded wall structure and the machining properties are then determined. It can be shown that titanium has a significant effect on the structural morphology of the welded layers, as well as on the machining. KW - Alloy modification KW - Alloy 36 KW - Plasma-transferred arc welding KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 SN - 978-3-030-95463-5 DO - https://doi.org/10.1007/978-3-030-95463-5_6 SP - 85 EP - 99 PB - Springer CY - Cham AN - OPUS4-55484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Treutler, K. A1 - Wesling, V. A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Modification of Co–Cr alloys to optimize additively welded microstructures and subsequent surface finishing JF - Welding in the World N2 - Cobalt chromium alloys are often used in turbine and plant construction. This is based on their high thermal and mechanical stress resistance as well as their high wear resistance to corrosive and abrasive loads. However, cobalt is a cost-intensive material that is difficult to machine. Moreover, increasingly complex structures and the optimisation of resource efficiency also require additive manufacturing steps for the production or repair of components in many sectors. Concerning inhomogeneity and anisotropy of the microstructure and properties as well as manufacturing-related stresses, a lot of knowledge is still necessary for the economic use of additive welding processes in SMEs. As a result of the high stresses on the components and requirements for a high surface quality, a complementary use of additive and machining manufacturing processes is necessary. Thereby, Co–Cr alloys are extremely challenging for machining with geometrically defined cutting edges because of their low thermal conductivity combined with high strength and toughness. An approach to solve this problem is to refine and homogenise the microstructure. This is achieved by modifying the alloy with elements zirconium and hafnium, which are added up to a maximum of 1 wt.-%. A reduction of the process forces and stresses on the tool and work piece surface is also achievable via hybrid milling processes. There are already studies on the combined use of additive and machining manufacturing processes based on laser technology. However, knowledge based on powder and wire-based arc processes is important, as these processes are more widespread. Furthermore, the effects on the surface zone of additively manufactured components by hybrid finish milling have not yet been a subject of research. The results show that the structural morphology could be significantly influenced with the addition of zirconium and hafnium. KW - Alloy modification KW - Ultrasonic-assisted milling KW - Plasma-transferred arc welding KW - Co-Cr-alloy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554182 DO - https://doi.org/10.1007/s40194-022-01334-0 SN - 0043-2288 SN - 1878-6669 SP - 1 EP - 13 PB - Springer CY - Heidelberg AN - OPUS4-55418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Effect of alloy modification for additive manufactured Ni alloy components on microstructure and subsequent machining properties T2 - AWT Fachkonferenz 2022 Additive Fertigung Werkstoffe – Prozesse – Wärmebehandlung Tagungsband N2 - Ni alloys are generally classified as difficult-to-cut materials and cost intensive. Additive manufacturing (AM) offers economic advantages. However, machining of these AM components is mandatory to create the final contour or surface. The inhomogeneous and anisotropic microstructure and properties of AM components causes an unstable cutting process. Moreover, undesirable tensile residual stresses are generated due to subsequent machining. In this investigation, the initial alloy 36 is modified with Ti and Nb up to 1.6 wt.-% and build-up welded via gas metal arc welding (GMAW) and plasma-transferred-arc (PTA). Then, finish-milling tests are carried out to investigate the influence of the modification as well as the cutting parameters on the resulting cutting force and the surface integrity. In addition, the conventional milling process (CM) is compared with the ultrasonic-assisted milling process (US), which has a significant influence on the machinability as well as on the surface integrity. T2 - Additive Fertigung – Werkstoffe – Prozesse – Wärmebehandlung 2022 CY - Bremen, Germany DA - 29.06.2022 KW - Additive manufacturing KW - Alloy 36 KW - Alloy modification KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 SP - 57 EP - 67 AN - OPUS4-55430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Optimisation of surface residual stresses using ultrasonic‑assisted milling for wire‑arc additive manufactured Ni alloy components JF - The International Journal of Advanced Manufacturing Technology N2 - Nickel alloys are cost intensive materials and generally classified as difficult-to-cut material. However, machining of these materials is needed especially in case of alloy 36 (1.3912), which is commonly used in mould construction for the production of fibre-reinforced composites. With regard to repair, modification and manufacturing of such components, additive manufacturing offers significant economic advantages. Nevertheless, subsequent machining steps are needed to achieve the final component contour and defined surface conditions. Dependent on the material and machining process conditions, detrimental tensile residual stresses may be the result on the machined surface, having negative impact on the component performance and safety. In this investigation, machining experiments were carried out on wire arc additive manufactured components made of alloy 36, varying the cutting speed and the feed rate. In addition, the conventional milling process (CM) was compared with a modern, hybrid machining process, the ultrasonic-assisted milling (US). The cutting forces and the surface-near residual stresses were analysed using X-ray diffraction. A significant improvement of the machinability as well as the surface integrity by using the ultrasonic assistance was observed, especially at low cutting speeds. The CM induced mainly tensile residual stresses, the US mainly compressive residual stresses. KW - Surface integrity KW - Ultrasonic-assisted milling KW - Additive manufacturing KW - Ni alloy KW - Alloy 36 PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575246 DO - https://doi.org/10.1007/s00170-023-11326-z SN - 1433-3015 VL - 126 IS - 9 SP - 4191 EP - 4198 PB - Springer Nature AN - OPUS4-57524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Engelking, Lorenz A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Eissel, A. A1 - Treutler, K. A1 - Wesling, V. T1 - Alloy modification for additive manufactured Ni alloy components Part II: Effect on subsequent machining properties JF - Welding in the World N2 - Alloy 36 (1.3912) is an alloy with 36% nickel and 64% iron and is generally classified as a difficult-to-cut material. Increasingly complex structures and the optimization of resource efficiency are making additive manufacturing (AM) more and more attractive for the manufacture or repair of components. Subsequent machining of AM components is unavoidable for its final contour. By using modern, hybrid machining processes, e.g., ultrasonic-assisted milling (US), it is possible to improve the cutting situation regarding the resulting surface integrity as well as the cutting force. Part I deals with the influence of the alloying elements Ti, Zr, and Hf on the microstructure and the hardness of the initial alloy 36. Part II focusses on the effect of the alloy modifications and the ultrasonic assistance on machinability as well as on the surface integrity after finish-milling. The results show a highly significant influence of the ultrasonic assistance. The cutting force during the US is reduced by over 50% and the roughness of approx. 50% compared to conventional milling (CM) for all materials investigated. Moreover, the US causes a defect-free surface and induces near-surface compressive residual stresses. CM leads to a near-surface stress state of approx. 0 MPa. T2 - 75th IIW Annual Assembly CY - Tokyo, Japan DA - 17.07.2022 KW - Alloy 36 KW - Ultrasonic-assisted milling KW - Surface integrity KW - Modification of structural morphology PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566609 DO - https://doi.org/10.1007/s40194-022-01438-7 SP - 1 EP - 8 PB - Springer CY - Heidelberg AN - OPUS4-56660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -