TY - JOUR A1 - Sikora, A. A1 - Bartczak, D. A1 - Geißler, Daniel A1 - Kestens, V. A1 - Roebben, G. A1 - Ramaye, Y. A1 - Varga, Z. A1 - Palmai, M. A1 - Shard, A.G. A1 - Goenaga-Infante, H. A1 - Minelli, C. T1 - A systematic comparison of different techniques to determine the zeta potential of silica nanoparticles in biological medium N2 - The surface charge density of nanoparticles plays an important role in the way they interact with biological systems. The ability to measure the surface charge density of nanoparticles in biological media is therefore of importance in understanding the magnitude of such interactions. There are a number of methods which may be used to assess surface charge density through the measurement of electrophoretic mobility. In order to better understand the comparability of these methods, the ζ-potential of silica nanoparticles in water, buffer and serum-based biological medium was measured by one ensemble and two particle-by-particle techniques: electrophoretic light scattering (ELS), tunable resistive pulse sensing (TRPS) and zeta particle tracking analysis (z-PTA). To allow the comparability of results from different techniques, test samples were prepared according to an established protocol, although some variations were necessary to meet specific instrument requirements. Here we compare, for the first time, measurement results from the different techniques and discuss how modifications related to parameters such as environmental pH, dilution factor and presence of biomolecules influence the charge measurements. PY - 2015 DO - https://doi.org/10.1039/C5AY02014J SN - 1759-9660 SN - 1759-9679 VL - 7 IS - 23 SP - 9835 EP - 9843 PB - RSC Publ. CY - Cambridge AN - OPUS4-34966 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szczerba, Wojciech A1 - Zukrowski, J. A1 - Przybylski, M. A1 - Sikora, M. A1 - Safonova, O. A1 - Shmeliov, A. A1 - Nicolosi, V. A1 - Schneider, M. A1 - Granath, T. A1 - Oppmann, M. A1 - Straßer, M. A1 - Mandel, K. T1 - Pushing up the magnetisation values for iron oxide nanoparticles via zinc doping: X-ray studies on the particle's sub-nano structure of different synthesis routes N2 - The maximum magnetisation (saturation magnetisation) obtainable for iron oxide nanoparticles can be increased by doping the nanocrystals with non-magnetic elements such as zinc. Herein, we closely study how only slightly different synthesis approaches towards such doped nanoparticles strongly influence the resulting sub-nano/atomic structure. We compare two co-precipitation approaches, where we only vary the base (NaOH versus NH3), and a thermal decomposition route. These methods are the most commonly applied ones for synthesising doped iron oxide nanoparticles. The measurable magnetisation change upon zinc doping is about the same for all systems. However, the sub-nano structure, which we studied with Mössbauer and X-ray absorption near edge spectroscopy, differs tremendously. We found evidence that a much more complex picture has to be drawn regarding what happens upon Zn doping compared to what textbooks tell us about the mechanism. Our work demonstrates that it is crucial to study the obtained structures very precisely when “playing” with the atomic order in iron oxide nanocrystals. KW - Magnetic nanoparticles KW - Zinc ferrite KW - magnetic saturation KW - Mössbauer KW - XAFS KW - Synthesis KW - XRD PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-379583 DO - https://doi.org/10.1039/C6CP04221J VL - 18 SP - 25221 EP - 25229 PB - RSC Publishing AN - OPUS4-37958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roebben, G. A1 - Kestens, V. A1 - Varga, Z. A1 - Charoud-Got, J. A1 - Ramaye, Y. A1 - Gollwitzer, Christian A1 - Bartczak, D. A1 - Geißler, Daniel A1 - Noble, J.E. A1 - Mazoua, S. A1 - Meeus, N. A1 - Corbisier, P. A1 - Palmai, M. A1 - Mihály, J. A1 - Krumrey, M. A1 - Davies, J. A1 - Resch-Genger, Ute A1 - Kumarswami, N. A1 - Minelli, C. A1 - Sikora, A. A1 - Goenaga-Infante, H. T1 - Reference materials and representative test materials to develop nanoparticle characterization methods: the NanoChOp project case N2 - This paper describes the production and characteristics of the nanoparticle test materials prepared for common use in the collaborative research project NanoChOp (Chemical and optical characterization of nanomaterials in biological systems), in casu suspensions of silica nanoparticles and CdSe/CdS/ZnS quantum dots (QDs). This paper is the first to illustrate how to assess whether nanoparticle test materials meet the requirements of a "reference material" (ISO Guide 30, 2015) or rather those of the recently defined category of "representative test material (RTM)" (ISO/TS 16195, 2013). The NanoChOp test materials were investigated with small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and centrifugal liquid sedimentation (CLS) to establish whether they complied with the required monomodal particle size distribution. The presence of impurities, aggregates, agglomerates, and viable microorganisms in the suspensions was investigated with DLS, CLS, optical and electron microscopy and via plating on nutrient agar. Suitability of surface functionalization was investigated with attenuated total reflection Fourier transform infrared spectrometry (ATR-FTIR) and via the capacity of the nanoparticles to be fluorescently labeled or to bind antibodies. Between-unit homogeneity and stability were investigated in terms of particle size and zeta potential. This paper shows that only based on the outcome of a detailed characterization process one can raise the status of a test material to RTM or reference material, and how this status depends on its intended use. KW - Nanoparticle KW - Materials characterization KW - Reference material KW - Analytical quality assurance KW - Metrology PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-349644 DO - https://doi.org/10.3389/fchem.2015.00056 SN - 2296-2646 VL - 3 SP - Article 56, 1 EP - 16 PB - Frontiers Media CY - Lausanne AN - OPUS4-34964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Gollwitzer, C. A1 - Sikora, A. A1 - Minelli, C. A1 - Krumrey, M. A1 - Resch-Genger, Ute T1 - Effect of fluorescent staining on size measurements of polymeric nanoparticles using DLS and SAXS N2 - The influence of fluorescence on nanoparticle size measurements using dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) was investigated. For this purpose, two series of 100 nm-sized polymer nanoparticles stained with different concentrations of the fluorescent dyes DY555 and DY680 were prepared, absorbing/emitting at around 560 nm/590 nm and 695 nm/715 nm, respectively. SAXS measurements of these particle series and a corresponding blank control (without dye) revealed similar sizes of all particles within an uncertainty of 1 nm. DLS measurements carried out at three different laboratories using four different DLS instruments and two different laser wavelengths, i.e., 532 nm and 633 nm, revealed also no significant changes in size (intensity-weighted harmonic mean diameter, ZAverage) and size distribution (polydispersity index, PI) within and between the two dye-stained particle series and the blank sample. Nevertheless, a significant decrease of the detected correlation coefficients was observed with increasing dye concentration, due to the increased absorption of the incident light and thus, less coherent light scattering. This effect was wavelength dependent, i.e. only measurable for the dye-stained particles that absorb at the laser wavelength used for the DLS measurements. PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-349684 DO - https://doi.org/10.1039/C5AY02005K SN - 1759-9660 SN - 1759-9679 VL - 7 IS - 23 SP - 9785 EP - 9790 PB - RSC Publ. CY - Cambridge AN - OPUS4-34968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -